

A further addition to the genus Arthothelium (Arthoniales) from Tasmania

Gintaras Kantvilas

Tasmanian Herbarium, Tasmanian Museum and Art Gallery, PO Box 5058, UTAS LPO, Sandy Bay, Tasmania 7005 *Email:* Gintaras.Kantvilas@tmag.tas.gov.au

Abstract: Arthothelium palustre Kantvilas sp. nov. is described from lowland coastal swamp forests in Tasmania. It is characterised by having an opaque maroon-red to red-brown epithecial pigment that reacts magenta-pink in K and C, and ellipsoid, non-macrocephalic, richly muriform ascospores, (25-) 28-33.5-40 $(-45) \times (11-)$ 12-14.6-18 (-19) μ m, with 6-8 transverse and 1-3 (-4) longitudinal septa. Reddish-reacting pigments in the genus are discussed, and a revised key to the 11 species of Arthothelium known from Tasmania is presented.

Keywords: Arthoniaceae, biodiversity, lichenised Ascomycetes, lichens, new species, pigments

Introduction

Arthothelium A.Massal. is a group of chiefly tropical or subtropical, mostly corticolous lichens, characterised by an ecorticate crustose thallus with a trentepohlioid photobiont, peculiar apothecioid ascomata with a highly reduced or excluded exciple that frequently yields a "rubbed down" appearance, branched and anastomosed paraphyses, and broadly clavate to subglobose, hemiamyloid asci. The genus is distinguished from Arthonia Ach. by its muriform (rather than transversely septate) ascospores. It was revised for Tasmania by Kantvilas (2021) who recognised ten species, of which five are known only from the island, the remainder being more widespread in temperate regions of Australasia and beyond. The history of systematic study of the genus, especially in the Australasian region, is outlined therein and is not repeated here. Its phylogenetic placement remains unresolved (Ertz & Tehler 2010; Frisch et al. 2014) and whereas some recent 'flora' accounts now treat Arthothelium species under Arthonia (e.g. Grube 2007; McCune 2017), others (e.g. Coppins 2009; Gupta & Sinha 2018; Cannon et al. 2020) continue to retain Arthothelium in its traditional, spore-defined circumscription.

Kantvilas (2021) discussed the salient features of *Arthothelium*, illustrating and noting the importance of the *Arthothelium*-type ascus: subglobose to broadly obovoid, hemiamyloid, with a thick, non-amyloid wall and a well-developed KI+ blue tholus with a small, darker-staining ring and beak-like ocular chamber (see also Grube & Giralt 1996; Grube 1998; Sparrius 2009). These features are best observed in younger

asci, and as the ascospores mature, the tholus and ring structure become compressed between the ascus wall and the ascoplasm to eventually become imperceptible.

At the species level, a character of critical importance in *Arthothelium* is apothecial pigmentation, where Kantvilas (2021) recognised three main pigments, named *Endoauranticaum*-gold, *Magenteum*-red and *Interveniens*-brown. Since that study, a further new species has been discovered, characterised by an additional pigment. This new species is described here and the relevant pigments are characterised and compared.

Materials and methods

The study is based chiefly on the author's collections, derived from several decades of lichenological exploration in Tasmania and housed in the Tasmanian Herbarium (HO). Investigations were undertaken on hand-cut sections of the thallus and apothecia, using standard methods, reagents and stains: water, 10% KOH (K), 50% HNO₃ (N), commercial bleach solution (C), Lactophenol Cotton Blue, Lugols Iodine (I) and concentrated HCl (H). The presence or absence of calcium oxalate was investigated by eluting hand-cut sections in 20% H₂SO₄.

Measurements of ascospores are presented in the format 5th percentile–*average*–95th percentile, with outlying values in brackets and *n* the number of observations. Routine thin-layer chromatographic analysis (TLC) was undertaken using standard methods, with solvent A as the preferred medium (Orange *et al.* 2010).

G. Kantvilas Swainsona 39 (2025)

Key to the Tasmanian species of Arthothelium

1. Ascos	spores macrocephalic, with a conspicuously enlarged, undivided proximal cell and a muriform "tail"
2. Ap	othecia internally with a brownish, K+ olive pigment
2: Ap	othecia internally golden-yellow, K+ crimson
	Ascospores with 4–5 transverse and 0–3 longitudinal septa; on sheltered rocks in inland areas of moderate elevation
3:	Ascospores with 6–8 transverse and 2–4 longitudinal septa; corticolous in wet forest A. macounioides
1: Ascos	spores not macrocephalic, muriform ± throughout
4. Ap	othecia internally with brownish, K+ olive pigment only
	Ascospores longer than 50 μm; apothecia strongly convex to subglobose; thallus lichenicolous
	Ascospores mostly shorter than 40 μm; apothecia usually applanate or flattened, and only rarely strongly convex; thallus corticolous or saxicolous
(6. Apothecia markedly convex and basally constricted, coarsely white-pruinose with calcium oxalate crystals at least when young; usually on rough, dry bark
(6: Apothecia applanate or plane, adnate, always epruinose; on smooth bark
	7. Apothecia to 2 mm wide; ascospores sparingly muriform, with 4–8 transverse and 0–1 (–2) longitudinal septa, the central, widest cells typically undivided
	7: Apothecia rarely > 0.6 mm wide; ascospores densely muriform throughout, with 6–10 transverse and 2–3 longitudinal septa
4: Ap	othecia with golden-yellow or reddish pigments yielding crimson or vivid pink reactions in K
8.	Apothecial pigment golden-yellow, K+ crimson
,	9. Apothecia emergent, frequently with some attached fragments of thalline tissue, plane and adnate, occasionally white-pruinose with calcium oxalate crystals; corticolous in coastal scrub and woodland
!	9: Apothecia superficial, subglobose and basally constricted, never pruinose; on littoral rocks
8:	Apothecial pigment dark maroon-red or brownish red, K+ vivid magenta-pink
	10. Apothecial pigment C+ magenta-pink, K+ magenta-pink with a blue halo that soon fades; ascospores $25-45\times11-19~\mu m$, with $6-8$ transverse and $1-3$ (-4) longitudinal septa A. palustre
	10: Apothecial pigment C+ orange-brown, K+ magenta-pink without a short-lived blue halo; ascospores $25-55\times11-22~\mu m$, with $7-15$ transverse and $1-5$ longitudinal septa A. magenteum

Taxonomy

Arthothelium palustre Kantvilas, sp. nov.

Holotypus: Australia, Tasmania, Woolnorth, "Paperbark Corner", 40°44'S 144°43'E, 15 m elevation, on *Melaleuca ericifolia* in low forest with dominant scattered eucalypts, 6 Feb. 2023, *G. Kantvilas 46/23* (HO613005).

Mycobank number: MB860919.

Thallus effuse, continuous or rather patchy, 60–180 μ m thick, usually whitish grey to dull pale grey, forming extensive, undelimited, irregular patches to c. 20 cm wide or more, frequently interrupted by other lichens, in section ecorticate, I+ brownish red, KI+ patchily very pale blue, lacking calcium oxalate. *Photobiont* trentepohlioid, with cells subglobose to broadly ellipsoid, $12–18\times10-12~\mu$ m, in short chains or clusters.

Apothecia abundant, scattered or rarely with adjacent ones fused, roundish to irregularly ellipsoid, 0.5-1.2 mm diam., 180-80 µm thick, brown-black, sometimes with a reddish brown tint when moist, epruinose, convex, broadly adnate, a little lobate when confluent. Proper exciple diffusely reddish brown, K+ olive-green, laterally extremely reduced or lacking, basally poorly differentiated from the hypothecium and 20-80 µm thick. Hypothecium barely differentiated from the hymenium and exciple, c. 25–100 (–160) µm thick, hyaline and K+ pale yellowish, or infused with brownish excipular pigment. Hymenium 80–130 (-180) µm thick, mostly hyaline and weakly K+ pale yellowish, I+ yellow-brown, KI+ blue, with the amyloid reaction strongest in the asci, overlain by a thick, uneven layer 20-70 µm thick of opaque, brownish maroon-red pigment, K+ magenta-pink with a diffuse blue halo that soon fades, C+ magenta-pink, soon fading to colourless. Paraphyses branched and anastomosed, embedded in a gel matrix, unevenly 1–1.5 µm thick, with the apices not expanded. *Asci* 60–80 × 35–60 µm, 8-spored, of the *Arthothelium*-type: subglobose to broadly obovoid, hemiamyloid, with a thick, non-amyloid wall; tholus well-developed, KI+ blue, with a small, darker-staining ring and beak-like ocular chamber, best observed in younger asci and becoming compressed and imperceptible at maturity. *Ascospores* broadly ellipsoid, rarely a little curved, hyaline at first, becoming brown with age, persistently smooth-walled, (25–) 28–33.5–40 (–45) × (11–) 12–14.6–18 (–19) µm (n = 70), with 6–8 transverse and 1–3 (–4) longitudinal septa.

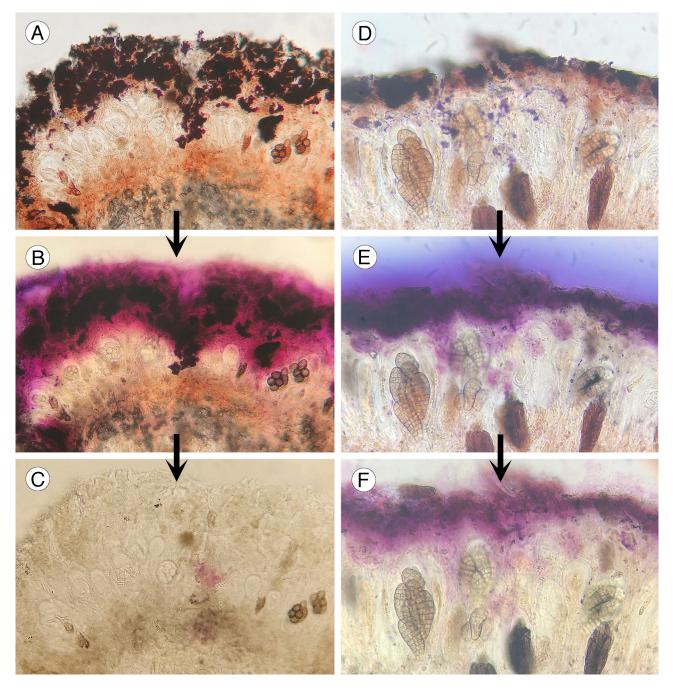
Coniodiomata rare, semi-immersed, black, speck-like, c. 0.08 mm wide; wall brown, K+ dull olive-green; conidia bacilliform, 5–8 × 0.5 µm. **Figs 1, 2A–F, 3.**

Chemistry. No substances detected by TLC.

Diagnosis. Similar to *A. magenteum* Kantvilas, but with a different, opaque maroon-red to red-brown epithecial pigment that reacts K+ magenta-pink with a blue halo, C+ magenta-pink, and with the richly muriform ascospores somewhat smaller, $25-45 \times 11-19$ μm, and with only 6-8 transverse and 1-3 (-4) longitudinal septa.

Etymology. The specific epithet refers to the swampy habitat of the new species.

Distribution & habitat. Arthothelium palustre is known only from Tasmania, where it is a common constituent of epiphytic communities on the papery bark of the small tree Melaleuca ericifolia (Myrtaceae) in coastal swampy forest and woodland. Melaleuca is either the dominant canopy species in such vegetation, or forms a significant part of the understorey. This forest type had long been overlooked in floristic and


ecological studies, but in more recent years, targeted investigations have revealed a diverse and fascinating lichen flora, rich in species that are either entirely restricted to this vegetation or attain their greatest extent there (Baker et al. 2021; de Salas et al. 2023; Kantvilas 2024). The most significant species, all potentially rare or highly localised, include Arthothelium endoaurantiacum Makhija & Patw., Bacidia septosior (Nyl.) Zahlbr., Bactrospora metabola (Nyl.) Egea & Torrente, B. paludicola Kantvilas, Caloplaca pulcherrima (Müll.Arg.) S.Y.Kondr. & Kärnefelt, Coenogonium flavoinspersum Kantvilas, Enterographa micrographa (Nyl.) Redinger, Haematomma sorediatum R.W.Rogers, Inoderma applanatum Kantvilas, Leptogium coralloideum (Meyen & Flot.) Vain. and Pseudocyphellaria aurata (Ach.) Vain., as well as an undescribed species of Enterographa. The forests have been very significantly impacted by agricultural activities, particularly by clearing for grazing (mainly dairy) or serving as shelter for livestock, to the extent that as much as 70% of this vegetation is estimated to have been lost since European settlement (NRE TAS 2022). In many locations, the forests as a viable ecosystem complete with their epiphytes have essentially collapsed, even though individual Melaleuca trees may survive. The forests continue to be overlooked in conservation efforts and thus the long-term persistence of many of the lichens is tenuous.

The new species has been encountered only occasionally, and mostly in the far north-west of Tasmania (including King Island), even though *Melaleuca*-dominated woodlands range across the northern part of the island and down its eastern coast. Two outlying populations are known from the south-east, where it occurs on the papery bark of the low tree *Bedfordia salicina* (Asteraceae), also in coastal woodland.

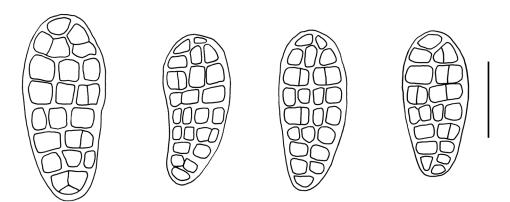


Fig. 1. Arthothelium palustre (holotype) habit, with "rubbed down", black apothecia on a whitsh grey thallus. Scale = 2 mm. Photo: J. Jarman.

G. Kantvilas Swainsona 39 (2025)

Fig. 2. Apothecial pigments in *Arthothelium palustre*. **A, D** In water. **B** Immediate reaction in calcium hypochlorite (C). **C** Reaction in C after 5 minutes. **E** Immediate reaction in potassium hydroxide (K). **F** Reaction in K after 5 minutes.

Fig. 3. Ascospores of Arthothelium palustre. Scale = $20 \mu m$.

Table 1. Profiles of reddish-reacting pigments in Tasmanian species of Arthotheli	um.

	Endoaurantiacum-gold	Magenteum-red	Cinnabarinum-red
Colour in water	golden-yellow to orange- or reddish brown when highly concentrated	dark maroon-red	maroon-red to red-brown
Colour in polarised light	brownish orange	orange-pink	orange-pink
Reaction in K	deep crimson-red	vivid magenta-pink	vivid magenta-pink with a diffuse blue halo which gradually dissipates
Reaction in C	pink (fading)	orange-brown	vivid magenta-pink, at length fading to colourless
Reaction in N	nil	orange-brown	slowly purple-black
Reaction in H	nil	nil	slowly dark purple
Species where present	A. endoaurantiacum, A. bacidinum, A macounioides, A. subtectum	A. magenteum	A. palustre; also present in Coniocarpon cinnabarinum

Remarks. The distinctive apothecial pigment, termed here *Cinnabarinum*-red, characterises this species. It appears to be the same as one of the pigments found in the apothecia of *Coniocarpon cinnabarinum* DC. (hence the name). There are several different pigments in *Arthothelium* that produce a shade of pink or red with K, and these are compared and contrasted in Table 1, where the distinctiveness of *Cinnabarinum*-red is clearly evident.

The most similar species to A. palustre is A. magenteum Kantvilas, but as well as having a different apothecial pigment, that species also has larger ascospores, (25–) 33.5-41.4-53.5 (-55) × (11–) 12.5-17.7-22 µm, with 7-15 transverse and 1-5 longitudinal septa (Kantvilas 2021). The two species also have starkly different ecologies, with A. magenteum occurring in cool temperate rainforest and associated wet sclerophyll forest or scrub, and ranging from lowland to subalpine elevations. In his description of A. magenteum, Kantvilas (2021) noted two unusual lowland collections with a subtly different pigment profile; these are now classified as A. palustre. In addition to Cinnabarinum-red, the new species also contains a brownish, K+ greenish pigment in the reduced exciple as well as sometimes in the hypothecium; this is Interveniens-brown of Kantvilas (2021).

Additional specimens examined.

TASMANIA. Tasman Track, W of O'Hara Bluff, 43°05'S 147°57'E, 380 m, 21 Nov. 2020, *G. Kantvilas 273/20* (HO); Bivouac Bay, 43°07'S 147°58'E, 5 m, 27 Dec. 2020, *G. Kantvilas 344/20, 345/20* (HO); Woolnorth, "Paperbark Corner", 40°44'S 144°43'E, 15 m, 6 Feb. 2023, *G. Kantvilas 59/23* (HO); Woolnorth, Three Sticks Run, 40°43'S 144°43'E, 30 m, 9 Feb. 2023, *G. Kantvilas 144/23* (HO); King Island, Collier Swamp Conservation Area, 40°05'47"S 143°58'41"E, 25 m, 26 Oct. 2023, *G. Kantvilas 407/23* (HO); ibid., 40°05'37"S 143°59'08"E, 40 m, 26 Oct. 2023, *G. Kantvilas 421/23* (HO).

Acknowledgements

I thank Matthew Baker for assistance with photomicroscopy, and Jean Jarman for the habit photograph that illustrates this paper, as well as for preparing all illustrations for publication. Field work was undertaken principally under the Tasmanian Museum and Art Gallery's (TMAG) *Expeditions of Discovery* programme, supported by Woolnorth Wind Farm Holdings, the Australian Biological Resources Study through its Bush Blitz Programme, and the Friends of TMAG.

References

Baker, M.L., Grove, S., de Salas, M.F., Byrne, C., Cave, L., Bonham, K., Moore, K., Cooke, L. & Kantvilas, G. (2021). Tasmanian Museum & Art Gallery's Expedition of Discovery. II. The flora and fauna of Musselroe Wind Farm, Cape Portland, Northeast Tasmania. *Papers and Proceedings* of the Royal Society of Tasmania 155(2): 69–96.

Cannon, P., Ertz, D., Frisch, A., Aptroot, A., Chambers, S., Coppins, B., Sanderson, N., Simkin, J. & Wolseley, P. (2020). Arthonialeas: Arthoniaceae. *Revisions of British and Irish Lichens* 1. https://britishlichensociety.org.uk/identification/lgbi3 [accessed: 25 Sep. 2025].

Coppins, B.J. (2009). Arthothelium A. Massal (1852). In: Smith, C.W., Aptroot, A., Coppins, B.J., Fletcher, A., Gilbert, O.L., James, P.W. & Wolseley, P.A. (eds), The Lichens of Great Britain and Ireland, pp. 176–179. (British Lichen Society: London).

Department of Natural Resources and Environment Tasmania [NRE TAS] (2022). *Tasmanian Threatened Native Vegetation Communities*. Version 2. 11 April 2022. https://nre.tas.gov.au/Documents/30.%20Melaleuca%20ericifolia%20 swamp%20forest.pdf [accessed: 25 Sep. 2025].

de Salas, M.F., Baker, M.L., Cave, L. & Kantvilas, G. (2023). The botany of the Stony Head Training Area: New records from a biodiverse remnant in northern Tasmania, Australia. *Proceedings of the Royal Society of Victoria* 134: 85–107.

G. Kantvilas Swainsona 39 (2025)

- Ertz, D. & Tehler, A. (2010). The phylogeny of Arthonialaes (Pezizomycotina) inferred from nucLSU and RPB2 sequences. *Fungal Diversity* 49: 47–71.
- Frisch, A., Thor, G., Ertz, D. & Grube, M. (2014). The Arthonialean challenge: Restructuring Arthoniaceae. *Taxon* 63: 727–744.
- Grube, M. (1998). Classification and phylogeny in the Arthoniales (lichenized Ascomycetes). *Bryologist* 101: 377–391.
- Grube, M. (2007). *Arthonia*. In: Nash III, T.H., Gries, C. & Bungartz, F. (eds), *Lichen Flora of the Greater Sonoran Desert Region* 3: 39–61. (Lichens Unlimited: Tempe).
- Grube, M. & Giralt, M. (1996). Studies on some species of *Arthothelium* occurring in the western Mediterranean. *Lichenologist* 28: 15–36.

- Gupta, P. & Sinha, G.P. (2018). *Lichen Flora of Assam*. (Bishen Singh Mahendra Pal Singh: Dehra Dun).
- Kantvilas, G. (2021). A synopsis of the genus *Arthothelium* (Arthoniales) in Tasmania. *Lichenologist* 53: 415–431.
- Kantvilas, G. (2024). Additions to the genus *Cliostomum* (Ramalinaceae) from Australia. *Lichenologist* 56: 27–37.
- McCune, B. (2017). *Microlichens of the Pacific Northwest*, Vol. 2: *Keys to the Species*. (Wild Blueberry Media: Corvallis).
- Orange, A., James, P.W. & White, F.J. (2010). *Microchemical Methods for the Identification of Lichens*, 2nd edn. (British Lichen Society: London).
- Sparrius, L.B. (2009). *Synarthothelium*, a new genus in the Arthoniaceae with a thalline exciple, similar to *Synarthonia*. *Bibliotheca Lichenologica* 99: 373–382.

With the exception of images and other material protected by a trademark and subject to review by the Government of South Australia at all times, the content of this publications is licensed under the *Creative Commons Attribution 4.0 Licence* (https://creativecommons.org/licenses/by/4.0/). All other rights are reserved.

© 2025 Board of the Botanic Gardens and State Herbarium (Adelaide, South Australia)