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Executive summary 

This report assesses the potential to make greater use of nutrient and microalgae monitoring data in the 
Coorong, Lower Lakes and Murray Mouth (CLLMM) region to strengthen the links between the physical-
chemical conditions and food web dynamics. Efforts in past research programs have established effective 
frameworks for integrating knowledge of river flows, water level, salinity and ecological response dynamics 
in the Coorong, and for integrating hydrodynamic and biogeochemical knowledge in the Lower Lakes. There 
are significant challenges in making more use of nutrient and microalgae monitoring data in such 
frameworks, and it remains an open question as to whether these data can be more effectively included in 
integrated assessments. 

Priorities identified in this review reflect well-identified principles for good ecosystem monitoring and 
research: 

 A focus on question-driven monitoring and research; 

 Build upon the existing capacity for whole-of-system integrated assessment; 

 Conduct this work within an adaptive management and adaptive monitoring framework. 

This review suggests the following general strategy: 

1. Maintain a set of clear, well evaluated, clearly communicated monitoring objectives and review 

these objectives regularly. 

2. Identify those monitoring objectives that are amenable to opportunistic funding arrangements, and 

commission field campaigns to address these as and when funding allows. 

3. Ensure any investments in interpretation of monitoring data place a high priority on maintaining 

and building upon the existing capacity for system-wide integrated assessment. 

4. Monitoring site locations and parameters into the future: 

a. As much as practicable, maintain consistency with sites and parameters monitored in the 

past: regular, repeated measurements over a long time are more readily incorporated into 

long-term, integrated assessments. 

b. When locations or parameters are changed, ensure a period of overlap so the effects of the 

changes can be discerned. 

c. Where possible, measure concentrations and exchange rates at input locations (ocean, 

barrages, drains and creeks), particularly during flow events, as these are key determinants 

of biogeochemical budgets. 

d. When selecting site locations, a greater spatial extent is more informative than dense 

spatial coverage of a more limited extent. 

e. Ongoing review of monitoring in light of new data and insights as part of the adaptive 

management for the region. 

Specific steps consistent with this strategy include: 

1. Maintain and extend existing frameworks for integration of multiple knowledge sources to make 

whole-of-system assessments. These are valuable research infrastructure and allow the most value 

to be derived from monitoring data. Such frameworks include: hydrodynamic modelling in the 

Coorong, nutrient budgets in the Coorong, state and transition modelling in the Coorong and 

hydro-biogeochemical modelling in the Lower Lakes.  
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2. Link existing knowledge of Ruppia physical requirements to the existing hydrodynamic model and 

generate habitat suitability maps. 

3. Calculate post-flood nutrient budgets using the updated hydrodynamic modelling. 

4. Undertake a small field program aimed at testing whether shoreline measurements are 

representative of centreline concentration measurements. 

5. Make continuous measurements of water level in the North and South Lagoon simultaneously with 

flow at Parnka Point to better inform the relationship between water level and flow between the 

two Lagoons.
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Nutrient and microalgae monitoring in the Coorong 
and Lower Lakes 

Background 

With legislative and governance mechanisms in place to secure and deliver environmental water in the 
Murray-Darling Basin, there is an imperative to provide evidence for the ecological responses enabled by 
environmental flows. Such evidence underpins the characterisation of multiple benefits and trade-offs 
associated with ecosystem services (CSIRO 2010). One region of considerable importance is the Coorong, 
Lower Lakes and Murray Mouth (CLLMM) complex, where information on ecological responses to changing 
environmental conditions is required to inform site management.  

For the Coorong there have been significant efforts to bring together monitoring data from many sources 
to create evidence-based models of ecological response to flow, water level and salinity (Lester and 
Fairweather 2009; Lester and Fairweather 2011; Lester, Webster et al. 2009; Lester, Webster et al. 2011). 
The work has demonstrated the powerful potential of integrating knowledge of physical processes with 
knowledge of species distribution and abundance over time. Understanding the links between physical, 
biogeochemical and ecological processes provides a valuable whole-of-ecosystem perspective. 
Biogeochemical processes and primary production mediate the higher trophic level responses, however 
integrating nutrient and microalgae monitoring data into such models has proved challenging (Lester, pers. 
comm).  

Much of the monitoring data used previously in integrated modelling frameworks was collected during the 
drought years of 2000-2010 as little regular data was collected prior to this period. The Murray-Darling 
Basin saw its wettest year on record in 2010 and has continued to experience high rainfalls since, leading to 
substantial flows to the CLLMM region. Post-flood nutrient and microalgae measurements have been 
monitored with the intention of better understanding the links between hydrodynamic processes, physico-
chemical conditions and higher trophic level interactions to better inform the long term management of 
the site. 

The Long Term Plan for the Coorong, Lower Lakes and Murray Mouth Region (DEH 2010) makes adaptive 
management a priority. Adaptive management is an effective way to combine immediate management 
actions with long-term learning and flexibility that leads to review and revision of management practices. 
Within this framework, this report assesses the potential to make greater use of nutrient and microalgae 
monitoring data in the CLLMM region to strengthen the links between the physical-chemical conditions and 
food web dynamics. The purpose of this report is to assess whether there is potential to learn more from 
existing measurements, especially if they are better integrated with other knowledge sources. The 
assessment is informed by a review of existing data and reports, and interviews with researchers with long-
standing involvement with nutrient and microalgae data in this region. Note that this report is a review of 
previously completed reports and did not include any further data analysis. 

Available data and analyses 

The focus of this review is on recent nutrient and microalgae monitoring and analysis, primarily conducted 
by the University of Adelaide, the Department of Environment, Water and Natural Resources (DEWNR) and 
the Environment Protection Authority South Australia (SA EPA). It is useful to place that work in the context 
of long-term monitoring in the region by DEWNR and SA EPA and the range of ecological research 
conducted as part of the Coorong Lower Lakes and Murray Mouth Ecology Cluster (CLLAMMecology), a 
CSIRO cluster initiative that helped fund a concerted research effort in the region (Brookes, Lamontagne et 
al. 2009). 
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LONG-TERM PHYSICO-CHEMICAL AND NUTRIENT MONITORING 

Regular monitoring of physico-chemical properties and nutrients by DEWNR in the Coorong since 1998 has 
provided a backbone for much of the analysis and interpretation involving water quality, nutrients and 
microalgae. Much of this sampling period coincided with a decadal drought in the Murray Darling Basin 
(2000-2010) and so the representativeness of these measurements is uncertain. A key feature of the 
CLLMM region is high variability, and cycles of drought and flood in particular. This variability is reflected in 
barrage flow and salinity time series in Figure 1. 

 

Figure 1 Observed salinity and barrage flows in the Coorong North Lagoon and modelled salinity range from 
hydrodynamic modelling. Image provided by Ian Webster, CSIRO. 

Monitoring is a vital means of characterising this variability and informing management options that 
accommodates variability rather than managing for steady state conditions. Details of DEWNR monitoring 
sites and parameters are given in Table 1, and Figure 2 provides a diagram showing the frequency of 
measurements. At a minimum these data allowed key water quality parameters to be tracked over time 
against water quality guidelines and management targets (e.g. DEH 2010; DENR 2010). 

The measurements were assessed in a recent (unpublished) internal review of the monitoring program 
(DENR 2010). The focus of the review was on the effectiveness of the monitoring for water quality 
management objectives, such as the ability to identify trends or trigger alerts. One of the recommendations 
from that review was the need for clear monitoring program objectives, which is echoed in this review and 
discussed later as an important consideration in future monitoring. The water quality monitoring was found 
to be adequate for the provision of long-term baseline data, for example for reporting against water quality 
guidelines and targets, but not appropriate for triggering alerts. More specific recommendations revolved 
around decisions whether to retain particular measurements in the future, given considerations such as 
cost and limits of readability amongst others. 
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Table 1 DEWNR monitoring sites in the Coorong from January 1998 to June 2010. 

Sample Sites Date Range Eastings Northings 

Coorong Monument Road 2007  - 2010 303168 6066540 

Ewe Island Barrage 2007  - 2010 316560 6062006 

Coorong Sub Lagoon 1 Tauwitcherie 1998 - 2010 320979 6059330 

Coorong Sub Lagoon 2 Mark Pt 1998 - 2004 326000 6055000 

Coorong Sub Lagoon 3 Long Point 1998 - 2010 333756 6048257 

Coorong Sub Lagoon 4 Noonameena 1998 - 2004 347000 6041000 

Coorong Sub Lagoon 5 Bonneys 1998 - 2010 347969 6037304 

Coorong Sub Lagoon 6 McGrath Flat North 1998 - 2004 354500 6031000 

Coorong Sub Lagoon 7 Parnka Point 1998 - 2010 355258 6025752 

Coorong Sub Lagoon 8 1998 - 2004 363000 6021500 

Coorong Sub Lagoon 9 Stony Well 1998 - 2004 367000 6018500 

Coorong Sub Lagoon 10 Nth Jacks Point 1998 - 2010 371049 6011575 

Coorong Sub Lagoon 11 Sth Policemans 
Point 

1998 - 2004 373950 6006000 

Coorong Sub Lagoon 12 Sth Salt Creek 1998 - 2010 377463 6000059 

Coorong Fairview Drain Keilira Regulator 1999-2005   

Coorong Morella Basin 2000-2006   

Coorong Salt Creek Footbridge 2000-2005   
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Figure 2 DEWNR Coorong monitoring intensity at each location over time from January 1998 to June 2010. Square markers indicate dates and locations of measurements, and 
the colours indicate the number of parameters from Table 2 measured. Locations are plotted on the vertical axis according to site latitude and horizontal lines mark the 
delineation between Murray Mouth region, North Lagoon and South Lagoon. Note there has also been monitoring at Ewe Island Barrage that is not included in this diagram. 
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Table 2 DEWNR monitoring sites in the Coorong from January 1998 to June 2010. 

Biological, physical and nutrient measurements Chemical measurements 

Chlorophyll a Sodium Adsorption Ratio - Calculation 

Chlorophyll b Sodium/Total cations ratio 

Chlorophyll by Acetone Extraction Ion balance 

Ammonia as N Carbon Dioxide - Free 

Nitrate + Nitrite as N Carbonate hardness as CaCO3 

Phosphorus - Filterable Reactive as P Magnesium Hardness as CaCO3 

Phosphorus - Total Bicarbonate 

TKN as Nitrogen Total Hardness as CaCO3 

Silica - Reactive Alkalinity as Calcium Carbonate 

Nitrate + Nitrite as NO3 Langelier Index 

Ammonia (NH3  unionised) as N Chloride 

Ammonium (NH4  ionised) as N Dissolved solids by calculation 

Total Dissolved Solids (by EC) Chlorides - Total as NaCl 

Conductivity Calcium Hardness as CaCO3 

pH Noncarbonate hardness as CaCO3 

Turbidity Carbonate 

 Fluoride 

 Hydroxide 

The monitoring program in the Coorong altered after June 2010 with changes to site locations, parameters 
measured and even the reporting methods. An analysis of the degree of overlap (shared sites and 
parameters) was not possible within this review. Similarly, monitoring of physical conditions in the Lower 
Lakes has intensified since 2009, building on existing event-based and regular monitoring of water level and 
electrical conductivity. A comprehensive collation of all monitoring in the Coorong and Lower Lakes since 
2010 has been assembled by Hipsey and Busch (2012): refer to Appendix A of their report for maps of 
monitoring sites and tables of parameters measured. Hipsey and Busch (2012) reported they have 
developed a flexible analytical framework to make it easier to bring together data spreadsheets from 
different organisations. Such frameworks are vital precursors to any integrated modelling or assessment 
work, and well worth developing and maintaining.  

CLLAMMECOLOGY RESEARCH CLUSTER 

The Coorong Lower Lakes and Murray Mouth Ecology Cluster (CLLAMMecology) was established by CSIRO 
in late 2006, and enabled research collaborations across key institutions in the region, including the 
University of Adelaide, Flinders University, the South Australian Research and Development Institute 
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(SARDI) and CSIRO. The research was conducted over three years and brought together hydrodynamic, 
biogeochemical and ecological knowledge and enabled the development of analysis tools and products 
specifically built to inform management in the region. The CLLAMMecology research cluster delivered a 
final report in 2009 that built upon several years’ monitoring and research in the Coorong and Lower Lakes, 
and including historical monitoring data (Brookes, Lamontagne et al. 2009). Aspects of the research that are 
particularly relevant to this review include: 

1. The development of a hydrodynamic model of the Coorong, described by Webster (2010) as 

follows: “The one-dimensional hydrodynamic model simulates water motions and water levels 

along the Coorong from the Mouth to the south end of the South Lagoon as these respond to the 

driving forces associated with water level variations in Encounter Bay (including tidal, weather 

band, and seasonal), the wind blowing over the water surface, barrage inflows, flows from the 

Upper Southeast Drainage area (USED), precipitation, and evaporation from the water surface.” A 

more complete description of the hydrodynamic model is provided by Webster et al (2007). 

2. A review of the biogeochemistry of the Coorong by Ford (2007), and this work included an 

unsuccessful attempt to calculate nutrient budgets using the Land Ocean Interactions in the Coastal 

Zone (LOICZ) method (Gordon, Boudreau et al. 1996) to calculate nitrogen and phosphorus 

budgets. The problems were addressed by using the hydrodynamic model to infer the physical 

exchanges (Grigg, Robson et al. 2009): nutrient budgets in the Coorong were constructed by 

combining the aforementioned DEWNR nutrient monitoring measurements with hydrodynamic 

model output, so creating time-varying nutrient budgets from January 1998 to November 2007 that 

were consistent with the hydrodynamics. Nutrient measurements were interpreted in a nutrient 

budget framework for the Lower Lakes (Cook, Aldridge et al. 2008) for the period between 1979 

and 1996.   

3. State and transition modelling of ecosystem response to flow provided a clear, defensible way to 

link knowledge of flow, water level and salinity with ecological outcomes, and to do so in a way that 

could explore the consequences of different future scenarios (Lester and Fairweather 2009; Lester 

and Fairweather 2011; Lester, Webster et al. 2009; Lester, Webster et al. 2011). 

4. Other studies relevant to nutrients and micro algae included field surveys carried out by Haese et al 

(2009) to identify nutrients limiting primary production in the water column and nutrient sources 

delivered through groundwater inflows and as a result of organic matter degradation within the 

sediments. The study yielded useful measurements and conceptual models that aided in the 

interpretation of other biogeochemical work in the Coorong. Seasonal variations in primary 

production were measured along the north-south salinity gradient that develops in the Coorong 

using 14C and dissolved oxygen techniques (Nayar and Loo 2009). Their results pointed to low 

phytoplankton productivity at their three sites and evidence for considerable heterotrophic 

productivity. 

Key to the nutrient budget modelling and the state and transition modelling was the development of a 
hydrodynamic model of the Coorong (Webster 2005; Webster 2007; Webster 2010; Webster 2011). It is 
increasingly common to require a ‘systems’ or ‘integrated’ view informing the stewardship of valued 
ecosystems, and the Coorong hydrodynamic model has been a key component enabling diverse sources of 
knowledge to be combined in a self-consistent, quantitative framework. A result that emerged across all 
these pieces of work was the importance of adequately accounting for the role of the hydrodynamics. Over 
the study period the Coorong functioned as an inverse estuary: evaporation exceeded the sum of rainfall 
and river inflows and drove an inward flow of seawater at the Murray Mouth. These dynamics affected the 
movement and accumulation of all material in the system, and the hydrodynamic model was needed to 
account for these dynamics in any interpretation of the data. 

The hydrodynamic model provided the transport fluxes used to develop nutrient budgets from the 1998-
2007 Coorong monitoring data (Grigg, Robson et al. 2009). A strong North-to-South gradient of chlorophyll 
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a concentrations had been observed in the latter years of monitoring data, with highest concentrations 
observed in the South Lagoon (Figure 3a). In the absence of any other information, the intuitive response to 
these observations would be to infer that the South Lagoon is highly productive. However, the Coorong is 
an inverse estuary, and evapo-concentration processes dominated its hydrodynamics over the period of 
study. In light of this knowledge, it is to be expected that any constituent in the system would accumulate 
in the South Lagoon. These evapo-concentration processes need to be taken into account when making any 
data-derived inferences about the origin and fate – the sources and sinks – of nutrients and other 
constituents. The analysis derived aggregate budgets for two riverine flow conditions: ‘flow’ years from 
January 1998 to January 2002; and ‘no flow’ years from January 2002 to November 2007 (Figure 3c). A 
particular effort was devoted to sensitivity analyses in order to identify results that held across a range of 
assumptions. Physical fluxes due to evapo-concentration were found to be of similar magnitude to the 
internal fluxes. For most variables analysed (including chlorophyll a) the South Lagoon was a sink with 
evapo-concentration processes moving material from the North to the South Lagoon against the North-
South concentration gradient; the movement of material is such that these concentration gradients are 
reinforced rather than dissipated (and so a counter-intuitive finding). Webster (2007) provides detailed 
descriptions of evapo-concentration, horizontal mixing and Murray Mouth exchanges. 

 

   (a)       (b) 

 

(c) 

Figure 3 (a) Phytoplankton nitrogen concentration estimates derived from measured chlorophyll a concentrations. 
(b) Location numbers correspond to boxes uses in the hydrodynamic model (right hand side). (c) Estimated budget 
for flow (before Jan 2002, blue arrows) and no-flow (after Jan 2002, orange arrows) years. Units are tonnes per 
year. Arrows within each box are internal fluxes (from both water column and sediment processes). Figures from 
(Grigg, Robson et al. 2009). 

An ecosystem state model was developed that coupled with the hydrodynamic model and was used to 
assess 20 possible future scenarios, including climate change, sea-level rise and various management 
options. The ecosystem state model was a data-derived model built using classification and regression tree 
approaches. It used the available data for physico-chemical parameters, including nutrient data, 
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abundances of macrophytes, birds, fish and benthic macroinvertebrates, and meteorology and water 
quantity. It did not include microalgae data. Linking a data-derived statistical model of ecosystem states 
with a process-based hydrodynamic model was a powerful combination. It ensured good integration of the 
hydrodynamic knowledge, for which there is a relatively high level of certainty, while ensuring statistically 
significant inferred ecosystem states, which are derived from data with far greater uncertainties and 
variability. A finding from the ecosystem state and transition modelling was that the most valuable 
monitoring data were those measurements that were repeated in time and space across all variables of 
interest according to a well-considered monitoring design. The absence of repeated data meant that some 
measurements were of less value than they could have been had these criteria been met.  

The CLLAMMecology work was conducted during drought years when there were no significant flows and 
much of the research tracked the decline of ecological condition (Brookes, Lamontagne et al. 2009).  
However the models developed during the study provide a powerful platform for assessing future data 
needs and for incorporating new monitoring and research measurements into current understanding of the 
system. These models are playing a role in directing ongoing research effort but this could be further 
enhanced by incorporating new data into the current models. This may help to improve their reliability and 
may also identify needs for model improvement or adaptive development.  

The usefulness of the Coorong hydrodynamic model did not occur by accident and it was developed in 
response to a careful scoping process in which conceptual models were developed in discussions and 
workshops with stakeholders. The outcomes of this process are documented in Lamontagne et al. (2004) 
and formed the basis for the design of the CLLAMMecology program. This process identified the need for a 
hydrodynamic model to do the following: 

1. Represent water exchange, water level and salinity in the Coorong as a function of key drivers (e.g. 

barrage flows, ocean water levels, Murray Mouth characteristics, Upper South-East Drainage inputs 

and climate); 

2. Be simple enough to produce simulations over several decades because the system changes at that 

scale; 

3. Be suitable for integrating with biogeochemical or ecological models. 

In this process monitoring data played an important role in informing the system conceptualisation and the 
data enabled the resulting hydrodynamic model to be well calibrated. 

LOWER LAKES 

The risk of acid sulfate soil exposure in the Lower Lakes has been a primary motivation for research and 
analysis in Lower Lakes (Mosley, Barnett et al. 2010), and it has led to a different approach and emphasis to 
the CLLAMMecology research. The aspect of the research of relevance to this review is the development of 
a hydro-geochemical model of the Lower Lakes, calibrated using available physico-chemical monitoring 
data (Hipsey, Busch et al. 2010; Hipsey and Busch 2012). Although the model development and application 
has been focussed on understanding and managing acid sulphate soil risks, its value extends beyond this 
application. In particular, this modelling approach is a powerful way to integrate all available nutrient, 
water quality and microalgae monitoring in the Lower Lakes to inform system-level understanding and 
management. The model authors have made recommendations for how to improve the model’s ability to 
inform on broader biogeochemical and water quality processes. 

RECENT MICROALGAE MONITORING AND ANALYSIS 

Reports published by Aldridge and Brookes (2011) and Aldridge and Payne (2012) document monitoring 
and analysis aimed at investigating the responses of water quality and microalgae communities to barrage 
flows from the Lower Lakes. The work was motivated by the return of barrage flows after several years of 
drought during which there were no flows from the Lower Lakes to the Coorong. It was anticipated that the 
flows would deliver increased nutrient loads to the Coorong, triggering an associated increase in primary 
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and secondary production. It was also anticipated that there might be potential impacts of acidic water 
passing to the Coorong due to the inundation of acid-sulfate soils in the Lower Lakes. Specific hypotheses 
were addressed by Aldridge and Brookes (2011): 

 Flows will have increased habitat availability for aquatic organisms due to decreased salinity and 

decreased hypoxia/anoxia that was caused by salinity stratification; 

 Flows will have increased food availability for aquatic organisms due to (a) imported nutrients and 

autochthonous productivity, and (b) imported phytoplankton with high abundance of diatoms and 

green algae, which are preferred food sources for species such as Goolwa Cockles (Seuront and 

Leterme 2009). 

And a further hypothesis in the follow up study by Aldridge and Payne (2012) was: 

 The microalgae community will shift away from Cyanobacteria towards Bacillariophyta with 

continued inflows during 2011‐ 2012. 

Table 3 Monitoring sites used by Aldridge & Brookes (2011) and Aldridge & Payne (2012). Sites C1 through to C11 
were used by Aldridge & Brookes (2011). Sites used in both studies are marked with an asterisk (*) and site C12 was 
used by Aldridge & Payne (2012) only. 

Site Description Longitude (°E) Latitude (°S) 

C1* Goolwa Barrage Downstream 138.81737 35.52718 

C2 Half Way 138.8511 35.54021 

C3 Sugar’s Beach 138.87921 35.55139 

C4 Southern Ocean 138.87552 35.55749 

C5* Murray Mouth 138.88164 35.5572 

C6 Hunter’s Creek 138.89107 35.53571 

C7 Mundoo Channel 138.89784 35.53969 

C8 Boundary Creek 138.93509 35.55551 

C9* Ewe Island 138.96111 35.56748 

C10 Tauwitchere 139.00363 35.58852 

C11* Mark Point 139.07573 35.63423 

C12** Parnka Point 139.396 35.90197 

Measurements made at Aldridge & Brookes (2011) sites in addition to microalgae identification and abundance counts: profiles of water 
temperature, specific electrical conductivity, dissolved oxygen (concentration and saturation), pH, turbidity and chlorophyll a; Unfiltered 
water samples were analysed for total phosphorus (TP), total Kjeldahl nitrogen (TKN), chlorophyll a and phytoplankton identification and 
abundance. Filtered samples were analysed for ammonia (NH 4 ‐N), oxidised  nitrogen  (NO x ‐N),  filterable  reactive  phosphorus  (FRP)  
and  filterable reactive silica (FRSi). 

Measurements made at Aldridge & Payne (2012) in addition to microalgae identification and abundance counts: specific electrical conductivity. 

The monitoring by Aldridge and Brookes (2011) was conducted between November 2010 and May 2011 at 
eleven sites at approximately fortnightly (and no more than 6-weekly) intervals. The monitoring involved 
physico-chemical properties, nutrient concentrations and microalgae abundance and diversity. The 
monitoring by Aldridge and Payne (2012) was conducted between February 2012 and June 2012 at monthly 
intervals at a smaller subset of the sites used by Aldridge and Brookes (2011), with an extra site included at 
Parnka Point (where the Southern and Northern Coorong Lagoons meet). Measurements of microalgae 



10   |  Review of reports on the microalgae and nutrient conditions within the Coorong and Lower Lakes 

abundance and diversity were made as in the previous study; however the only other measurements made 
were conductivity depth profiles. Locations are listed Table 3 and Figure 4. 

 

 

Figure 4 Coorong monitoring sites. Green markers are the locations for microalgae monitoring by Aldridge & 
Brookes (2011) and Aldridge & Payne (2012). Red markers are the locations for nutrient monitoring by DEWNR 
between 1998 and 2010 (Table 1). Refer to Hipsey and Busch (2012) for most recent maps and summary of all sites 
and quantities measured in the Coorong and Lower Lakes. 

Aside from descriptions of time series and profiles of the various constituents and physico-chemical 
parameters, the main analysis method brought to bear on the interpretation of the data was the use of 
nonmetric multidimensional scaling (NMS) ordination. In this case the analysis yielded plots, in either two 
or three dimensions, in which each point represented a site’s microalgae community for a particular date 
based on cell counts. These points were located in graph space according to the similarity of the sets of cell 
counts between sites and dates: the closer together the points the more similar the community 
composition. Furthermore, the method allowed an analysis of the relationship to a second set of physico-
chemical properties at the same sites and dates, providing statistical evidence for possible driving 
influences on patterns in cell counts. 

Note that this analysis approach places an emphasis on microalgae counts and their spatial-temporal 
patterns and statistical correlations with salinity and other physico-chemical properties. There are useful 
qualitative findings from the work, and these include: 

 Clear shifts in microalgal community composition over time, with inferred implications for higher 

trophic levels (e.g. based on knowledge of species food preferences). 

 The NMS ordination analysis shows that within-trip results are more similar than within-site results 

(i.e. measurements are clustered by trip rather than by site in the NMS ordination), suggesting that 

capturing higher frequency temporal dynamics may be more informative than denser spatial 

sampling. The exception is for site C12 (Parnka Point) – a site included only in Aldridge and Payne 

(2012)– where the NMS analysis shows the community was quite distinct from the other sites and 

remained so over the duration of the study. This site is much further south than the other sites, and 

so this result shows that covering a greater spatial extent is informative.  
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 The NMS ordination analysis also derives statistically significant relationships between some 

physico-chemical conditions and microalgal responses, which can be used to prioritise further 

analyses and hypothesis testing. 

 Calculations of stoichiometric ratios to inform what nutrients are limiting microalgae growth at 

particular sites and locations. 

 Evidence for salinity stratification and associated hypoxic conditions. 

There is much background process knowledge that is drawn upon in the interpretation of the results. For 
example: 

 The potential for unwanted reinforcing feedback loops such as: increased nutrient availability 

fuelling increased microalgal biomass, which reduces light availability for submerged plant growth, 

which in turn creates conditions for more sediment suspension, which then exacerbates light-

limiting conditions and so allowing the ongoing dominance of microalgal populations rather than 

submerged vegetation. The existence of such feedback loops as proposed in the report creates 

conditions that are problematic to reverse once established. 

 The observed high abundance of Chlorella at Parnka Point was expected to reduce the amount of 

light available to support the growth of Ruppia tuberosa. 

 It was proposed that the switch in microalgae community at high salinities at the southern-most 

site (Parnka Point) might be due to reduced predation, increased competition, elevated nutrient 

levels or a combination of the three.   

 The potential influence of interactions between stratification, dissolved oxygen and nutrient 

limitation were referred to in Aldridge and Brookes (2011), and related to implications for habitat 

availability, sediment nutrient release, ammonia accumulation due to prevented nitrification, and 

microalgae productivity (citing Nayar and Loo (2009)). 

 Explanations of trends in concentrations of nitrate, ammonia and total organic nitrogen were 

developed in terms of processes such as coupled nitrification/denitrification and uptake of 

nutrients into microalgae biomass. 

 There were no dissolved organic carbon measurements, however its potential role and influence on 

dissolved oxygen and pH was inferred. 

So while the interpretation of data in these reports draws on relevant process knowledge, the data were 
not collected with an aim to make quantitative estimates of these processes. In other words, the 
monitoring and analysis approach was not intended to infer the state of autotrophy or heterotrophy, nor to 
estimate microalgae growth rates, material fluxes, ecological interactions such as competition or grazing 
rates (other than qualitative descriptions) nor quantitative constraints set by hydrodynamic transport 
processes (other than in a qualitative way by referring to the potential influence of salinity stratification). 
The next section reviews the potential to extend interpretation of existing physico-chemical, nutrient and 
microalgae data in this direction.  

Opportunities to infer more from existing data 

This review is to assess whether there is the potential to better use existing nutrient and microalgae 
measurements to understand system functioning, and whether this information could be used for making 
useful inferences about higher trophic level responses. The response to this question has been primarily 
informed by interviews with key researchers experienced in using these data and familiar with the CLLMM 
system. Their responses fell into two categories: (1) general, overarching considerations; (2) specific, 
tangible opportunities. 
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OVERARCHING CONSIDERATIONS 

The relationship between flow and ecological response is not easily characterised and understood for the 
CLLMM site. It is made particularly difficult by several interrelated factors, including: 

 Long chains of cause and effect. For example, barrage flows influence water levels, salinity, 

material inputs and residence times, which in turn shape the nature of primary production and 

habitat availability, so shaping the higher trophic level responses, which in turn affect material 

fluxes and primary production. There are multiple, interconnected ways in which these factors 

influence one another. 

 Highly variable system, both in time and space. 

 Substantial time lags, path dependence, feedback loops and other nonlinear processes. For 

example, the state of the system can be locked in due to events or conditions in the past (e.g. 

drought, flood, loss of particular species). 

These aspects of system behaviour are not easily characterised through statistical analysis alone, and 
attempts to do so often preclude the incorporation of relevant process knowledge. However, the variability 
and uncertainties in responses mean that any process-based approaches should incorporate statistical 
methods to ensure that findings are well supported by data and statistically significant. Such approaches 
also offer valuable insights into the usefulness of the data. 

It is neither common nor easy to combine process-based and statistical methods. Neglecting statistical 
approaches can mean that too much is being inferred from limited data (e.g. estimating process rates in a 
way that is indefensible from a statistical perspective). Neglecting process-based knowledge is a lost 
opportunity to include constraints on possible interpretations of the data (e.g. requiring basic consistency 
with principles such as conservation of mass).  

Knowledge of conservation of mass, time lags and cumulative impacts are crucial. For example, in the 
Coorong, barrage flows, water level and salinity are not simply related and useful, predictive relationships 
are not easily discoverable through statistical processes alone. Yet these interactions are well encapsulated 
in the hydrodynamic modelling work for the Coorong. Similarly, barrage flows and microalgae will interact 
in even more complex and multiple ways. Where there is knowledge of these processes, such as rates or 
fluxes associated with biogeochemical interactions, it brings more lines of evidence to narrow the range of 
possible interpretations of system response. Higher trophic level responses are influenced by more system 
linkages with time lags and potential for system futures to be locked in by historical conditions or events 
(e.g. population response is typically shaped by important pre-conditions, such as the viability of seed-
banks or recruitment processes). 

Models play an important role as diagnostic tools. Nutrient budgets are useful because they provide 
insights into fluxes, sources and sinks. When managing a system for water quality targets, for example, 
knowledge of key sources and sinks is useful for targeting action most effectively. A nutrient budget is a 
bare minimum for inferring more from nutrient data, and in a highly variable system like the CLLMM site it 
is essential to calculate time-varying budgets rather than create static budgets (which may represent an 
average that is rarely actually experienced in a system that is ranging across extremes). Such budgets are 
also helpful for generating or testing hypotheses. For example, nutrient budget calculations reported in 
Grigg et al (2009) suggested that high chlorophyll a concentrations were consistent with passive transport 
in the absence of predation (so echoing similar hypothesis by Aldridge and Payne (2012) that high 
microalgae abundance may be due to reduced predation). More generally, the results certainly indicated 
that the role of hydrodynamic transport in microalgae distributions should not be ignored. 

Reanalysing these budgets in light of new developments, especially with respect to the hydrodynamic 
model, and incorporating more recent data where possible would help consolidate the status and 
usefulness of the nutrient budgets.  The monitoring data would seem to provide a strong base for this 
analysis but further detailed investigation of the data quality is required to confirm this. This review did not 
have the resources to investigate or analyse data sets but simply to overview them. 
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Reports to date have readily acknowledged the role of non-linear processes and system feedbacks such as 
the unwanted feedback loop reinforcing algal dominance described in the previous section. In general, 
process-based modelling frameworks are better able to represent and even predict such outcomes than 
statistical inference methods. The hydrodynamic-biogeochemical modelling conducted in the Lower Lakes 
(Hipsey, Busch et al. 2010; Hipsey and Busch 2012) represents the most comprehensive process-based 
approach in the CLLMM region. The model has been used to investigate acid sulphate soil risk, and a more 
careful review and assessment would be required to evaluate its readiness for wider application. 

The work most closely integrating a balance of statistical and process-based methods is the state and 
transition modelling by Lester and colleagues (Lester and Fairweather 2009; Lester and Fairweather 2011; 
Lester, Webster et al. 2009; Lester, Webster et al. 2011). The inclusion of nutrient and microalgae data into 
this framework has been problematic in the past, and yet given the important mediating role nutrients and 
primary production play in linking hydrodynamics to higher trophic level responses it is anticipated that the 
potential benefits in attempting this development make it a worthwhile exercise. 

In some cases critical knowledge gaps were identified that limit the potential to learn more from existing 
data. These suggest the potential for small, targeted measurement programs to address specific knowledge 
gaps. This is discussed in the later section on future monitoring opportunities, but clear identification of 
these gaps require detailed attempts at modelling with the available data to demonstrate the need and 
these modelling efforts should continue in order to provide a framework for data collection. 

SPECIFIC OPPORTUNITIES 

The following specific opportunities do not represent an exhaustive search for possibilities: they are 
conservative recommendations based on expanding upon existing methods that have already been applied 
in this region. 

Ruppia response 

All interviewed researchers indicated further opportunities to make better links to existing data and 
knowledge about Ruppia dynamics. Ruppia is well-recognised as a crucial component of the ecosystem, 
especially as it links so much of interest: it competes for nutrients and so is both dependent upon and 
influences nutrient fluxes; it is a component of primary production in the system, so contributing to 
whether the system is autotrophic or heterotrophic; and it provides food and habitat for valued species, so 
is a link between supporting processes such as nutrient cycling and higher trophic levels. 

Ruppia propagules were identified as crucial because an absence of a viable stock of Ruppia propagules is a 
problem regardless of nutrient and salinity conditions. This means that any inference about Ruppia 
response needs to account for these requirements and ensure a good understanding and representation of 
requisite conditions. The dependence on the time course of previous conditions (e.g. for build up of viable 
propagules) is also critical, particularly for identifying any potential system hysteresis. 

Water level is a key driver of Ruppia dynamics (Rogers and Paton 2009). There is the opportunity to link 
existing knowledge of Ruppia physical requirements to the existing hydrodynamic model and generate 
habitat suitability maps. Furthermore, it would be possible to include knowledge of time lags, although 
further investigation is needed to assess whether adequate data exists to quantify the time lags. For 
example, once Ruppia has died in a particular location, a return to suitable conditions will see Ruppia re-
established only after a time delay, given available propagule banks. 

The recent improvements to the hydrodynamic model open up opportunities to improve previous 
modelling attempts and to extend the modelling to other biota.  Using the available information and the 
types of “state transition” approaches used previously effort should be made to investigate the suitability 
of the monitoring data on microalgae, invertebrates and other biota for assessing their physical 
requirements and generating habitat suitability maps. Such an approach would be possible for microalgae, 
invertebrates and other species using knowledge of viable salinity ranges, for example. Researchers with 
expertise in these areas could work in conjunction with the hydrodynamic and state-transition modellers to 
quickly assess the suitability of the available data for developing such modelling constructs.   
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Nutrient budgets 

Previous estimations of nutrient budgets in the Coorong were reliant on a hydrodynamic model configured 
to match the spatial locations of nutrient monitoring sites (Grigg, Robson et al. 2009). The improved 
hydrodynamic model for the Coorong is at a 1km resolution, so allowing the flexibility to generate 
hydrodynamic information that is configured to link with measurements from diverse monitoring locations. 
Previous nutrient budgets were constructed only for the drought period. The hydrodynamic model has 
been updated and covers the period until present. It would be instructive to calculate post-flood nutrient 
budgets although there are important caveats here. Previous analysis shows the importance of having 
barrage flow and ocean concentrations when calculating system budgets and major improvements might 
depend on the availability of these measurements.  

The budget calculated for the Lower Lakes was limited to the period between 1979 and 1996 and the 
authors judged there were insufficient data to calculate a more recent budget using the same approaches. 
However, the hydro-geochemical model for the Lower Lakes provides a more rigorous framework for 
integrating Lower Lakes monitoring data and calculating budgets (Hipsey, Busch et al. 2010; Hipsey and 
Busch 2012) but the current status of these analyses are unknown. 

State and transition modelling 

Previous ecosystem state and transition modelling has proved to be insightful from a research point of 
view, as well as useful from a management application perspective. Previous ecosystem state-and-
transition modelling could be extended in the Coorong to include more recent data and improvements to 
the hydrodynamic model. A step wise process using experts in particular areas in conjunction with the 
modellers could assess potential benefits of doing so. If the data are indeed unsuitable then the process 
would at least have identified data needs more clearly. Prospects for a state and transition modelling 
approach in the Lower Lakes are less certain.  

Future monitoring considerations 

When given the opportunity to identify future monitoring improvements, it is hard not to be drawn into 
outlining ideal situations that may not be realistic given resource constraints. Rather than make unrealistic 
recommendations, this section is structured to highlight the different kinds of considerations raised by 
interviewed researchers. These are: 

 Observations about the existing monitoring and analysis; 

 The identification of critical knowledge gaps that would help us learn more from existing data; 

 Data housing and availability 

 General principles for improved future monitoring 

OBSERVATIONS ABOUT EXISTING MONITORING AND ANALYSIS 

All interviewed researchers observed that existing monitoring and analysis has been fragmented, 
sometimes required at short notice and conducted as isolated experiments rather than as part of a system-
wide coordinated effort. This is particularly relevant for more recent monitoring and analysis. Even where 
such frameworks have existed (clear monitoring design criteria set and agreed to by all parties involved), 
there are cases where protocols were not followed and data could not be used for intended end purposes 
as a result. 

Quarterly nutrient data are not frequent enough to learn adequately about nutrient and microalgal 
dynamics. Inferring nutrient dynamics requires monthly or more frequent monitoring. The range of 
relevant time scales when developing an integrated picture is challenging as the existing monitoring data 
point to high variability across sampling dates, and currently there are insufficient high-frequency data to 
inform optimal monitoring requirements. Regular monitoring augmented by event driven monitoring could 
dramatically improve understanding.  
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Greater spatial coverage will make a major difference particularly to capture what is happening at system 
boundaries. For example, the recent NMS analysis of Aldridge and Payne (2012), showed that the Parnka 
Point site was markedly different from other more northern sites that were more closely clustered together 
in the NMS ordination. Extending the spatial coverage needs to be balanced against information required 
on specific sites, and should be considered in relation to the modelling framework and statutory 
requirements. Parnka Point is an important location as measurements have shown it marks a substantial 
transition point between conditions in the North and South Lagoons. Measurements to date make clear 
that conditions in the South Lagoon are profoundly different to the North Lagoon and spatial coverage to 
include the South Lagoon is important. 

Many of the measurements are below limits of detection, which presents a particular challenge. If a 
nutrient is limiting the system then the chances of detecting its bioavailable inorganic form are low and 
only light-limitation will see the detection of such constituents. Although it appears to be a waste of 
analysis costs to have below-detection results key constituents have been chosen based on experience and 
knowledge of key influences and in this sense below-detection readings may provide useful information. 
The integration of data and the development of system understanding through the process of modelling 
improve our knowledge and can help ensure that the parameters selected for measurements are the most 
appropriate for the system under consideration 

IMPORTANT UNKNOWNS PREVENTING MORE INSIGHTS FROM EXISTING DATA 

The following points were identified as current unknowns that would aid interpretation and analysis of 
existing data. Addressing the following unknowns adequately would mostly require new measurements. 

Monitoring data in the Coorong has been primarily based on shoreline samples. The representativeness of 
shore concentration measurements was identified as a key unknown. Are shoreline measurements in the 
Coorong representative of centreline concentration measurements? Shore sampling risks detecting local 
effects only. When estimating a nutrient budget, for example, if shore concentrations are not 
representative of the budget volume in question then there will be errors in the system-wide sources and 
sinks inferred in the budget. Note that Cook et al (2008) also mention that there are issues with 
representativeness of shoreline data in the Lower Lakes.  

The connectivity between the two lagoons in the Coorong is also a key unknown, and a small, targeted 
measurement program would go a long way to address this gap. A month of measuring water levels and 
the flow between the two Lagoons at Parnka Point would allow the construction of relationships between 
water level and flow. If the measurements could be made at two different times in the year it would allow 
the relationships to capture low and high water level conditions. This knowledge is crucial for informing 
material fluxes of nutrients and microalgae between the two lagoons. Cook et al (2008) similarly identified 
hydrodynamic fluxes as a critical knowledge requirement for interpreting nutrient data in the Lower Lakes, 
and modelling work since then has improved understanding of Lower Lake hydrodynamics (Hipsey, Busch 
et al. 2010; Hipsey and Busch 2012). 

Previous nutrient budget calculations in the Coorong were severely impacted by the absence of good 
estimates of nutrient loads entering the system. More reliable quantification of barrage, Murray Mouth and 
other inputs to the Coorong (e.g. from creeks, drains and groundwater) would improve confidence in 
calculated budgets. This issue was addressed in Grigg et al (2009) by conducting multiple budget 
calculations over a range of possible input conditions, allowing the estimation of budget uncertainties 
resulting from this missing information. Groundwater inputs were not included in this analysis and 
groundwater influences remain unknown. There is no compelling evidence that groundwater is a major 
component of the water or nutrient budget, however the lack of knowledge around groundwater is 
significant and would require a directed study to address adequately. 

Better identified trophic links would help interpret microalgae data in particular. What species of 
microalgae are being consumed by whom (e.g. Aldridge and Brookes (2011) and Aldridge and Payne (2012) 
refer to the preferences of Goolwa Cockles identified by Seuront and Leterme (2009)). Such knowledge 
would inform appropriate management targets around favoured microalgae species, and would drive more 
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investigations into the physico-chemical conditions needed for particular microalgae species. Simultaneous 
monitoring of different trophic levels (e.g. zooplankton and Ruppia) would provide further valuable data to 
underpin food web relationships. 

It is widely understood that the system is highly variable both temporally and spatially. Little is known 
about the high frequency biogeochemical variability and the deployment of more automated, continuous 
monitoring stations would provide information on temporal variability and rapid responses to events such 
as flow changes or storm surges. Such continuous high-frequency monitoring exists for water level and 
salinity, for example1, and there are opportunities for similar approaches for biogeochemical and bio-
optical measurements. High frequency time series are also particularly useful for the calibration of 
hydrodynamic and biogeochemical modelling, particularly if these capture significant events. 

Data housing and availability 

Current data housing and access arrangements have allowed good availability of physico-chemical data and 
associated metadata. If they are to be better integrated with other data sources, however, comparable 
levels of access are necessary but these are not always possible. Intellectual property issues have 
hampered some attempts at integrated analysis in the past. Efforts that see good provider agreements and 
shared data housing arrangements are encouraged. 

There is a growing requirement to house data in common, widely accessible data portals (e.g. SA 
Waterconnect site, CSIRO data portal) and this is an important trend. There are ongoing national 
developments in this area, for example: 

 the Bureau of Meteorology has expanded its strategic scope to include providing a broader set of 

‘environmental intelligence’ (BOM 2010); 

 National Plan for Environmental Information (NPEI)2 to improve access to knowledge of Australian 

ecosystems; 

 The Atlas of Living Australia (ALA)3  and the Terrestrial Ecosystem Research Network (TERN)4   are 

funded by the National Collaborative Research Infrastructure Strategy (NCRIS)5; 

 The eWater Toolkit6 includes a repository of ecological response models; 

 Australian River Assessment System (AUSRIVAS)7, the Australian Soil Resource Information System 

(ASRIS)8, and the State of the Environment reporting9; 

 legacy data and assessments no longer maintained, such as the National Land and Water Resources 

Audit10 and associated Australian Natural Resources Atlas11; 

 the prospect for availability of data from ecogenomic methods for ecosystem assessment 

(Chariton, Court et al. 2010; Hardy, Adams et al. 2011; Hardy, Krull et al. 2010). 

                                                           

 
1 http://www.waterconnect.sa.gov.au/RMWD/Pages/default.aspx 
2 http://www.environment.gov.au/npei/index.html 
3 http://www.ala.org.au/ 
4 http://www.tern.org.au/ 
5 http://www.innovation.gov.au/Science/ResearchInfrastructure/Pages/NCRIS.aspx 
6 http://www.ewater.com.au/products/ewater-toolkit/ 
7 http://ausrivas.canberra.edu.au/ 
8 http://www.asris.csiro.au/ 
9 http://www.environment.gov.au/soe/index.html 
10 http://www.environment.gov.au/land/nlwra/index.html 
11 http://www.anra.gov.au/ 
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GENERAL PRINCIPLES TO IMPROVE FUTURE MONITORING 

Clear monitoring objectives or questions 

All researchers interviewed stressed the importance of clarity around monitoring objectives. Identified 
purposes and objectives included: 

 To track progress against defined management targets. 

 To provide data for model calibration and/or verification, including deriving empirical relationships 

used in models. Examples include the estimation of microalgae growth rates, material fluxes, and 

ecological interactions such as competition or grazing rates. 

 To inform risk assessments e.g. identifying new risks or monitoring the system to assess system 

status against risk assessment criteria. 

 Make system-level assessments: 

o identify quantitative constraints set by hydrodynamic transport processes (including 

salinity stratification). 

o infer the state of autotrophy or heterotrophy 

 Ground-truthing for interpreting remote sensing data. 

 Filling identified knowledge gaps. 

 Testing hypotheses or addressing well-posed questions e.g. what nutrients are limiting primary 

production? 

The form of the data constrains what analyses are possible, and so limits the questions that can actually be 
answered. For example, recent nutrient and microalgal data were amenable to NMS ordination analysis 
conducted by Aldridge and Bookes (2011) and Aldridge and Payne (2012), but it is less clear how such data 
can be integrated into nutrient budgets or ecosystem state and transition modelling. 

Long-term regular monitoring complemented by smaller, targeted field campaigns 

For a long-term and integrated picture, piecemeal approaches to monitoring (short notice, restricted 
temporal and geographical extent, projects of narrow scope disconnected from each other) are less 
informative than coordinated long-term monitoring at designated sites with good regional coverage. 
Regular monitoring (e.g. monthly) complemented by more flexible additional monitoring in response to 
events or specific research questions (so accommodating the unexpected and uncertainties around funding 
or other influences) is a workable strategy. Such an approach is also useful for calibrating and validating 
models. The value of short term, restricted monitoring projects which are  sometimes necessary due to 
various constraints,  can be greatly enhanced if there is an underpinning modelling framework and 
measurements are made in a manner that ensures that they can be combined within the models. 

In making future monitoring decisions, for the purposes of enabling analysis of long-term datasets, 
measuring data in ways that are consistent with what has come before (e.g. The Living Murray monitoring) 
should be a high priority. If measurement changes are needed, allowing a good overlap period would help 
allow impacts of changes in monitoring to be discerned. 

Where long-term ecological monitoring has been possible the benefits are profound, and recent reviews by 
David Lindenmayer and Gene Likens have provided a good overview relevant to Australian systems with 
references to extensive literature on long-term ecological monitoring (Lindenmayer and Likens 2009; 
Lindenmayer and Likens 2010). 

Other considerations and opportunities 

Effective monitoring for integration ideally requires an inclusive process that involves all relevant parties 
and ensures a shared and consistent approach. The irregular, piecemeal and fragmented nature of funding 
and measurement opportunities makes it harder to ensure a shared, consistent, and long-term approach to 
monitoring. 
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Future research directions could include: 

 Use of alkalinity, pH and dissolved oxygen to calculate pCO2 and state of system autotrophy or 

heterotrophy. Currently this is not possible, but other locations (e.g. Moreton Bay) have become 

net autotrophic after floods and this is important for inferring biogeochemical function. 

 High frequency CDOM measurements as a useful surrogate for DOC would help with interpreting 

remote sensing data and estimating the dissolved carbon budget.  CDOM fluorescence informs 

chlorophyll and particle size. 

 In general there is potential for automatic stations to learn more about variability. These would be 

deployed with the aim to learn more from short-term data (e.g. DOC, chlorophyll a and turbidity). 

For some applications 100 data points /day for a month might be more helpful (and cheaper) than 

10 points in a year. 

 There are promising remote sensing possibilities, especially given the higher temporal resolution 

and potential to track the spatial distribution of species such as Ruppia (and could allow rate of 

change of Ruppia to be a criterion informing management decisions). It is anticipated there would 

be particular difficulties due to the optical properties in the Coorong (and so would be more of a 

research effort rather than routine monitoring option at this stage). 

 The state and transition modelling acknowledges the potential for there to be system thresholds – 

transitions to dramatically different states – however the statistical methods employed can only 

detect states that exist in the data and not infer unsampled states. Only the inclusion of process 

knowledge can help infer possible future ecosystem states that have not been observed previously. 

This is a particularly challenging research and management question, and is beyond the scope of 

this report to pursue further. Addressing these issues requires methods that pay particular 

attention to non-linearity and questions of system resilience (Folke, Carpenter et al. 2010; Scheffer, 

Carpenter et al. 2001; Walker and Salt 2012). 

Discussion 

Experience around the world points to major challenges and barriers to ensuring high quality, long-term 
ecosystem monitoring (see Lindenmayer and Likens (2010) for a good, recent review of ecological 
monitoring). Furthermore, even the most comprehensive monitoring programs only yield valuable 
outcomes for management if there is also investment in the analysis and interpretation of the monitoring 
data. Reports that provide little further analysis beyond reporting the raw monitoring data offer little in the 
way of system-wide insights useful for management. A finding of this review is that the most valuable, 
whole-of-system results have come from the investment in integrated frameworks for combining data and 
knowledge from multiple sources. 

Past efforts at building such integrated frameworks in the Coorong– state and transition models, calibrated 
hydrodynamic models and system-wide nutrient budgets – were made possible because of a large, 
dedicated program (the CLLAMMecology research cluster). Similarly, a dedicated Acid Sulfate Soils 
Research Program has enabled the development of a hydro-geochemical model of the Lower Lakes. These 
modelling efforts relied upon existing monitoring programs to provide high-quality, frequent monitoring 
data.  These programs of work have yielded not only valuable insights about the system itself, but about 
the technical requirements for such efforts at integration to be successful and a set of tools for doing so. It 
is harder for such outcomes to be derived from smaller, disconnected pieces of research. All researchers 
interviewed for this review emphasised the challenges of operating in an environment in which short, 
disconnected projects are the primary vehicle for making progress. Any forward planning for future 
monitoring and analysis needs to accommodate this reality rather than expect ideal conditions for long-
term ecological monitoring and research. 
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All interviewed researchers stressed the importance of having clear monitoring objectives, and they each 
identified several objectives that spanned filling site-specific, immediate knowledge gaps through to 
providing whole-of-system, long-term system understanding. Many of these objectives can be met in the 
current operating environment: targeted, discrete field campaigns are amendable to variable and 
opportunistic funding structures (e.g. Table 4). The more challenging objectives of long-term, system-wide 
integration require a deliberate, coordinated strategy if they are to be achieved in this operating 
environment. Such a strategy needs to enable (a) ongoing, long-term, repeated measurements; and (b) an 
integrating framework for analysing and interpreting these measurements. 

Table 4 Examples of monitoring objectives suited to targeted, discrete field campaigns 

Example objectives amenable to targeted, discrete field campaigns 

Ascertain whether shoreline measurements are representative of centreline measurements in the Coorong 

Quantify the rates of exchange between North and South lagoons in the Coorong 

Assess microalgae palatability to different prey species 

Use high-frequency measurements to infer ideal sampling frequency 

Make ground-truthing measurements for interpreting remote sensing data 

 

The development of integrating frameworks is time-consuming and requires much coordination between 
different knowledge providers. The hydrodynamic modelling is an example of an integrating framework 
that once developed, has become a fundamental piece of research infrastructure. It provides ongoing 
benefit, so long as it is maintained and updated. Similarly, the state and transition modelling is an existing 
framework that can be updated and extended with new data and, together with the hydrodynamic 
modelling it, provides a demonstrated means for bringing together knowledge of the system 
hydrodynamics, salinity dynamics and ecological response. 

These frameworks developed during the CLLAMMecology work can be extended to include more recent 
data: the hydrodynamic model has already been updated accordingly, for example. It is not clear if efforts 
to extend all aspects of that previous work would be successful, however, as there have been substantial 
changes to the monitoring in the time since the CLLAMMecology research cluster. The judgment of 
researchers interviewed for this review is that there is untapped potential to integrate more recent data 
into existing frameworks. There is the risk, however, that such efforts will be hampered by limitations 
inherent in the data. Experience to date is that the existing nutrient and microalgae monitoring data has 
been difficult to incorporate in this framework (Lester, pers. comm), yet nutrients and primary production 
are crucial mediators linking physical context to ecological response and so their incorporation into such 
frameworks is highly desirable. It remains an open question whether any attempt to make more use of 
existing nutrient and microalgae measurements in this way will be successful, especially as previous efforts 
have struggled, however it is recommended that the effort is made. 

Therefore, a wise strategy for the Coorong into the future could be as follows. First, conduct any further 
efforts in interpreting existing nutrient and microalgae data by developing improved integrating 
frameworks that can (a) address difficulties experienced in previous attempts and (b) incorporate other 
relevant process knowledge such as knowledge of Ruppia habitat requirements and propagule stocks. In 
this way, if the data yield few new insights, the investment has produced a framework that will be useful 
for enabling system-wide inferences from future nutrient and microalgae measurements. Furthermore, 
creating that framework would clarify the technical requirements for more effective nutrient and 
microalgae monitoring into the future. 
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Similarly, the development of a hydro-biogeochemical modelling capability in the Lower Lakes has allowed 
the integration of many sources of monitoring data to make whole-of-system inferences, albeit with a focus 
on the risk of acid-sulfate soil exposure. Such modelling provides valuable underpinning infrastructure for 
interpreting microalgae and higher trophic-level species. 

It is a healthy sign that in the CLLMM region different approaches for integrating knowledge have evolved, 
driven by different research questions. In particular, it is interesting to see that process-based hydro-
geochemical modelling has been the emphasis in the Lower Lakes, while more statistical approaches have 
been developed in the Coorong. Maintaining both capabilities is a useful asset. Statistical approaches have 
significant limitations, especially when it comes to understanding the time-evolution of the system in 
conditions that have not been observed previously. 

Lindenmayer and Likens (2010) summarise their review of best practice in ecological modelling by 
identifying the following core requirements: (1) good questions; (2) a conceptual model of the ecosystem; 
(3) strong partnerships between scientists, policy-makers and managers; and (4) frequent use of data 
collected. All these attributes have been a strong part of previous monitoring and analysis in the CLLMM 
region, particularly while the CLLAMMecology program was in place. The researchers interviewed for this 
review similarly place a high priority on ‘good questions’, and in general, question-driven research was seen 
as the best way to ensure an effective adaptive-monitoring capacity. Where Lindenmayer and Likens (2010) 
emphasise the need for a conceptual model, existing work in the CLLMM region has ensured that not only 
are there good conceptual models for the system, but these have been developed further into useful 
integrating modelling frameworks, thus addressing one of the most difficult challenges identified by 
Lindenmayer and Likens (2010): the means to integrate knowledge from multiple sources. Viewed in this 
light, the existing ecological monitoring in the CLLMM region already meets core criteria for effective long-
term ecological monitoring. The main challenges identified in this review are the difficulties in including 
nutrient and microalgae data in the existing integrating frameworks, and the challenges associated with 
reduced monitoring and use of monitoring data since the end of the CLLAMMecology research effort. The 
recommendations from researchers interviewed as part of this review leads to a view that priorities for 
ongoing monitoring should involve question-driven research and an adaptive-monitoring strategy 
(Lindenmayer and Likens 2009), placing a strong emphasis on ongoing learning from the data. 

Conclusion 

In conclusion, reviewing past research in the CLLMM region points to the value of making conceptual 
models of the system explicit, thus providing an integrating framework and means to test hypotheses and 
address management questions. This review suggests the following general strategy into the future: 

1. Maintain a set of clear, well evaluated monitoring objectives and review these objectives regularly 

in light of monitoring results as part of the adaptive management of the region. Ensure that these 

objectives are well communicated. 

2. Identify those monitoring objectives that are amenable to opportunistic funding arrangements, and 

commission field campaigns to address these as and when funding allows. 

3. Ensure any investments in interpretation of monitoring data place a high priority on maintaining 

and building upon the existing capacity for system-wide integrated assessment, including: 

a. Integration frameworks and tools, e.g. hydrodynamic modelling, state and transition 

modelling, budget frameworks, GIS tools, risk assessment frameworks, system resilience 

assessments. 

b. Coordinating between multiple knowledge providers. 

c. Improving the effectiveness of and access to data repositories. 
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4. Monitoring site locations and parameters into the future: 

a. As much as practicable, maintain consistency with sites and parameters monitored in the 

past: regular, repeated measurements over a long time are more readily incorporated into 

long-term, integrated assessments. 

b. When locations or parameters are changed, ensure a period of overlap so the effects of the 

changes can be discerned. 

c. Where possible, measure concentrations and exchange rates at input locations (ocean, 

barrages, drains and creeks), particularly during flow events, as these are key determinants 

of biogeochemical budgets. 

d. When selecting site locations, a greater spatial extent is more informative than dense 

spatial coverage of a more limited extent. 

e. Ongoing review of monitoring in light of new data and insights as part of the adaptive 

management for the region. 

Specific steps consistent with this strategy include: 

1. Maintain and extend existing frameworks for integration of multiple knowledge sources to make 

whole-of-system assessments. These are valuable research infrastructure and allow the most value 

to be derived from monitoring data. Such frameworks include: hydrodynamic modelling in the 

Coorong, nutrient budgets in the Coorong, state and transition modelling in the Coorong and 

hydro-biogeochemical modelling in the Lower Lakes. This could be done in two steps: 

a. Bring experts on particular biota and model developers together for a short assessment 

project (e.g. 10 days’ work) to determine further benefits that can be derived from existing 

data sets and their incorporation into existing model frameworks. The intended outcomes 

would be (a) a set of key questions and objectives that could be addressed using existing 

data and updated or extended models; and (b) a work plan for updating or extending the 

models with existing data (e.g. ways of addressing difficulties experienced in previous 

attempts, and to incorporate knowledge such as habitat requirements).  

b.  Implement the plan. If updating and extending to include more existing data yield few new 

insights, the investment has at least strengthened the capacity to make full use of existing 

data, and will clarify the technical requirements for more effective future work. 

2. Link existing knowledge of Ruppia physical requirements to the existing hydrodynamic model and 

generate habitat suitability maps. 

3. Calculate post-flood nutrient budgets using the updated hydrodynamic model. 

4. Undertake a small field program aimed at testing whether shoreline measurements are 

representative of centreline concentration measurements. 

5. Make continuous measurements of water level in the North and South Lagoon simultaneously with 

flow at Parnka Point to better inform the relationship between water level and flow between the 

two Lagoons. 
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Appendix A  Interview notes 

The following points are notes taken from interviews with researchers from University of Adelaide, Flinders 
University and CSIRO who have been involved in hydrodynamic modelling, nutrient and microalgae 
fieldwork and analysis, and ecosystem state and transition modelling in the Coorong and Lower Lakes. The 
interviews revolved around the following topics: 

 Analysis and interpretation opportunities with current nutrient and microalgae data, particularly 

when integrating across knowledge and data sources and for making links to higher trophic levels. 

 Considerations to improve future monitoring. 

Each interviewee received a copy of the notes summarising their interview and made minor revisions to 
ensure their responses were well captured. There was considerable overlap in responses between the 
different interviewees: the dot points from all the interviews have been collated and grouped according to 
topics covered (retaining duplicate points made by different interviewees). 

Analysis and interpretation opportunities for existing data 

Important unknowns when interpreting existing data 

 Some important unknowns that would help us learn more from the data: 

o Are shore concentration measurements representative of centreline concentration 

measurements? 

o The relationship between water levels and flow between the two lagoons. 

 Important questions of the representativeness of data, eg. shore versus centreline measurements. 

 Budget calculations can be distorted by measurement artefacts. For example, shore sampling risks 

detecting local effects only (e.g. if shore concentrations are not representative of the budget 

volume in question then there will be errors in the system-wide sources and sinks inferred). If there 

are significant groundwater and regional rainfall runoff inputs directly to the system then this too is 

a complicating factor (which can be addressed to some extent by taking vertical profiles). 

 The material flux between the two lagoons is a key weakness in our understanding at the moment, 

and current and salinity measurements along with continuous flow measurements for a period of a 

month would give an independent means of inferring the mass balance. 

 Better quantification of barrage and other inputs are needed. Good estimates of loads entering the 

system are a high priority. 

Benefits of combining process-based and statistical methods 

 Possible statistical analysis methods are determined by the nature of the data. 

 If the objective is to seek empirical/data-driven relationships between flows and phytoplankton 

then is there an assumption that the relationship will be a simple one? There is no assurance that 

(a) such empirical relationships exist; and (b) such relationships would be useful if extrapolating to 

infer future system responses. Understanding causal mechanisms are important and allow us to 

infer more from measurements. For example, interpreting nutrient measurements in a budget 

framework provides valuable insights. 

 We can’t expect to infer ecological outcomes from hydrodynamic knowledge alone. Manipulating 

flows to the Coorong manipulates the nutrient dynamics and primary production, and these are 

important mediating steps in shaping the ecological outcomes. Equally, a statistical interpretation 
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linking ecological response directly to flow/water-level data misses the opportunity to include 

available knowledge of nutrient and primary production processes. 

 Inferences from the data can be strengthened by bringing in knowledge about underlying causes of 

observed changes. For example, population response is typically shaped by important pre-

conditions, such as viability of seed-banks or recruitment processes. Knowledge of these pre-

conditions and the time-lags inherent in these processes allows for more powerful data 

interpretation (including making assessments of ecosystem health and resilience). 

Ways to integrate existing diverse knowledge and data sources 

 Getting the nutrient budget right is a bare minimum for making better interpretation of nutrient 

data. A budget is not static, and the higher temporal resolution of the budget the better. Nutrient 

budgets were constructed only for drought period. It would be instructive to re-do nutrient budgets 

given post-flood nutrient data. Previous analysis shows the importance of having barrage flow and 

ocean concentrations when calculating system budgets. Budgets require much better 

quantification of input loads. Irrespective of future program this should be an immediate priority. 

Budgets are useful because they provide insights to fluxes, sources and sinks. If seeking to manage 

nutrient conditions, knowledge of key sources and sinks is particularly helpful as action can be 

better targeted as a result. A budget is a useful integrating device, converting point observations 

into system behaviour. 

 Ruppia habitat: 

o Ruppia is a key species to focus on as it serves several roles in the system: it provides food 

and habitat, it is a component of primary production and it competes for light and 

nutrients. 

o Ruppia responds to salinity and water level variations and these in turn are related to 

barrage flows, however the relationship is not simple. Barrage flows, water level and 

salinity are not simply related and our knowledge of their interactions is best encapsulated 

in physical (hydrodynamic) models. Similarly, barrage flows and phytoplankton interact in 

multiple ways. Even considering nutrient response alone there are time lags. 

o There is the opportunity to link knowledge of Ruppia physical requirements to the existing 

hydrodynamic model and generate habitat suitability maps. Further more, it would be 

possible to include knowledge of time lags (e.g. once Ruppia has died in a particular 

location, a return to suitable conditions will see Ruppia re-established only after a time 

delay).  Such an approach could also be possible for phytoplankton, invertebrates and 

other species (using knowledge of salinity ranges, for example). 

o Ruppia germination issues. An absence of viable stock of Ruppia propagules is a problem 

regardless of nutrient and salinity conditions, so any inference about Ruppia response 

needs to account for these requirements and ensure a good characterisation of requisite 

conditions, the dependence on the time course of previous conditions (e.g. for build up of 

viable propagules) and potential hysteresis. 

 An understanding of ecosystem functioning or biotic connections is instructive for inferring higher 

trophic level implications. For example, when the South Lagoon switched from fish to brine shrimp 

the bird life also shifted. 

 Data-sets for various ecological components should be analysed together to identify major patterns 

and identify major drivers of the ecological response. This could be used to identify important 

research questions. e.g identifying linkages between water quality and organisms, identifying 

linkages between lower trophic and higher trophic organisms.  
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 Despite limitations, there are opportunities to learn more from the existing data. Previous 

ecosystem state-and-transition modelling could be repeated with more recent data. 

 Opportunities for better integrating existing knowledge from different sources – e.g. repeating 

budget work in light of recent post-flood measurements, biogeochemical/benthic chamber work, 

isotopic work, gut analyses for higher trophic level response. For example: 

o The Budget results could be brought into comparison with the benthic chamber 

measurements. Do they agree? For example, if the budget says there is a source of DIN 

does the benthic chamber also show a flux from the sediments? 

o How do the gut analyses compare with the isotopic signatures of predator and prey? 

 Hypothesis testing is an effective way of gleaning more from data. Given a range of hypotheses, 

which is most consistent with the data? 

Features of the hydrodynamic model 

 The one-dimensional hydrodynamic model is now at a 1km resolution. This has increased the 

flexibility for generating hydrodynamic information that is configured to link with measurements 

from diverse monitoring locations. 

 The existing two-dimensional hydrodynamic model for the Coorong is time-consuming to run and 

so presents challenges for calibration and validation. The 1D model readily allows multiple runs and 

can be run within an optimisation framework. 

Observations about existing monitoring 

 In general, the most valuable monitoring data for modelling work have been those measurements 

that are repeated in time and space (and across all variables of interest) according to well-

considered monitoring design. A lack of such consistency makes interpretation difficult, particularly 

if the intention is to integrate multiple sources of data to gain a better system understanding. The 

absence of repeated data has meant that some existing measurements are of less value than they 

could be. 

 Quarterly nutrient data is not frequent enough given the rates of change associated with nutrient 

dynamics and algal response in particular. The range of relevant time scales when developing an 

integrated picture is challenging, and currently there are insufficient high-frequency data to inform 

optimal monitoring requirements. It is possible that event-driven monitoring may be more effective 

than regular (e.g. weekly) monitoring. 

 Previous modelling work has been able to link water level and salinity to higher trophic level 

response thanks to sufficient water level and salinity measurements. It was not possible to include 

many of the microalgae measurements, for example, as the data were not in a form that was 

compatible with the modelling framework used. Similarly, nutrient data were too infrequent to 

infer their influence on ecological response. 

 Effective monitoring for integration ideally requires an inclusive process that involves all relevant 

parties and ensures a shared, consistent approach. The irregular, piecemeal and fragmented nature 

of funding and measurement opportunities makes it harder to ensure a shared, consistent, long-

term approach to monitoring. 

 Even where clear monitoring design criteria have been set and agreed to, there are cases where the 

protocols were not followed and data could not be used as a result. 

Data housing and access 

 Existing processes within DEWNR, MDBA and EPA for storing and accessing datasets are sufficient, 

although had some experience of project data sets not being stored sufficiently. 
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 Data sharing arrangements are important, particularly when it comes to pooling data from multiple 

sources. Intellectual property issues have hampered some attempts at integrated analysis. Efforts 

that see good provider agreements and shared data housing arrangements are welcome. 

Considerations to improve future monitoring 

Monitoring objectives  

 Need to have clear objectives. What questions are being asked and how does the monitoring help 

address those questions? Barrage flows affect the system in many ways, including changing salinity, 

water level and nutrient dynamics, and these have different and interacting impacts on the biota. 

When managing the system it is important to understand the contributions of each of these 

factors. Data are useful for distinguishing between a multitude of hypotheses and 

conceptualisations of how the ecosystem is being impacted by flow timing and volumes. 

 Monitoring is most effective when designed in response to specific questions and objectives, or to 

track measurements against targets. Scientists’ working hypotheses may not be well-aligned with 

management or monitoring objectives, so it’s important to be clear about these objectives. 

Monitoring objectives can be used: 

o To track progress against defined management targets. 

o To provide data for model calibration and/or verification. 

o To inform risk assessments (e.g. identifying new risks or monitoring the system to system 

status against risk assessment criteria). 

 Useful insights come from asking intelligent questions that are informed by research findings and 

monitoring data. 

o e.g. research informing what phytoplankton are being consumed by whom would be 

helpful for setting targets for desirable phytoplankton species, and setting up monitoring to 

track progress against the targets. 

o e.g. what are the important ecological links and the predetermining physico-chemical 

factors enabling those links? 

o e.g. what are important knowledge gaps? 

 Monitoring needs to be designed to be consistent with purpose and to take into account problems 

associated with what is measured. For example, many of the measurements are below limits of 

detection. If nutrient-limited then chances of detecting any dissolved inorganic nutrients are low 

and only light-limitation will see the detection of nutrients. 

 An important purpose of monitoring is to inform system-level understanding of dynamics and 

responses to events. This is usually made possible via mathematical frameworks, and these 

frameworks make the most of observations when measurements meet particular requirements. 

Measurements that are inconsistent with these requirements often need to be discarded, 

representing a lost opportunity. 

 It is important to be clear about the data requirements for adequately addressing a question. Often 

there simply are not sufficient measurements to be able to answer the question with any 

confidence. 

Future monitoring: benefits of long-term, regular monitoring complemented by smaller, targeted field 
campaigns 

 For a long-term, integrated picture, piecemeal approaches to monitoring (short notice, restricted 

temporal and geographical extent, projects of narrow scope disconnected from each other) are less 

informative than coordinated long-term monitoring at designated sites with good regional 
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coverage. Regular (e.g. quarterly) monitoring with additional monitoring in response to events is a 

workable strategy. Such an approach is also useful for calibrating and validating models. 

 Data should be compared between years (regular long-term data sets) can be very powerful in 

identify trends and patterns. 

 Small, targeted measurement programs would do a lot to address critical unknowns. For example, a 

month of measuring water levels and flow between the two lagoons would allow the construction 

of relationships between water level and flow. If the measurements could be made at two different 

times in the year it would allow the relationships to capture low and high water level conditions. 

 There is no doubt that long term over-arching monitoring programs are vital (e.g. Chesapeake Bay). 

 Ideal situation: an over-arching, consistent program of measurement that is complemented by a 

more flexible, targeted program of measurements designed to address specific questions. 

 Existing monitoring efforts are at a level where any reduction in measurements results in significant 

loss of knowledge about the system.  

 Inferring nutrient dynamics requires at least monthly monitoring and to infer seasonal variability a 

higher frequency is needed. 

 Monitoring should be integrated better with other ecological monitoring (e.g. ruppia, zooplankton). 

 In making future monitoring decisions,  keep measuring data in ways that are consistent with what 

has come before (e.g. TLM monitoring) should be a high priority. If measurement changes are 

needed, at least ensure a good overlap period so that impacts of the changes can be discerned. 

 It is advisable to have routine monitoring that provides a solid base of regular, repeated 

measurements in time and space, complemented by targeted experiments that aim to address 

specific questions and hypotheses. 

Other opportunities 

 Remote sensing possibilities, especially given the higher temporal resolution and potential to track 

the spatial distribution of Ruppia (and so allows rate of change of Ruppia to be a criterion informing 

management decisions). Points to another role for the monitoring – ground truthing for remote 

sensing work. Anticipate particular difficulties due to the optical properties in the Coorong (and so 

would be more of a research effort at this stage). 

 Potential for automatic stations to learn more about variability. These would be designed to get 

more short term data, e.g. DOC and its variations as a tracer of water movement, Chl a can be 

detected, and high frequency turbidity measurements are also possible.  100 data points /day for a 

month might be more helpful than 10 points in a year. It could be much cheaper also. 

 Future research directions:  

o measurements of alkalinity, pH and DO to calculate pCO2 and autotrophy/heterotrophy. 

Currently not able to do this.  Moreton Bay example – rapidly became net autotrophic after 

flows and this is important for inferring biogeochemical function. If always heterotrophic 

then it means the system is running down. It is a key indicator of ecosystem 

performance/carbon balance/metabolism. 

o DOC/CDOM. CDOM a useful surrogate for DOC, can be measured at high frequency and 

helps with both remote sensing and dissolved carbon budget.  CDOM fluorescence informs 

chlorophyll and particle size. 
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Appendix B  Task brief 

Proposal: Review of reports on the microalgae and nutrient conditions within the Coorong and Lower 
Lakes. 

Client: DEWNR SA. 

Task Outline: 

1. Read and review reports provided by DEWNR on the microalgae and nutrient conditions within the 

Coorong and Lower Lakes. 

2. Comment on the analyses and conclusions of the various reports and gauge their contribution to 

the development of an integrated understanding of the interactions between microalgae and 

nutrient conditions and implications for higher order ecological and site management of the 

Coorong and Lower Lakes. 

3. Set these reports in the context of other key studies of the microalgae and nutrient conditions 

within the Coorong and Lower Lakes. 

4. Develop a view based on the DEWNR reports, other key studies, and through interviews with key 

authors of the reports and studies as to whether the historical data provides opportunities for 

further analyses that will lead to greater understanding of the interactions between microalgae and 

nutrient conditions within the Coorong and Lower Lakes. 

5. Provide a conceptual description of additional analyses that could be undertaken to better 

understand the interactions between nutrients and broader groups of micro-organisms including 

zooplankton, or with key organisms such as Ruppia, or with ecological processes such as primary 

production. 

6. Based on these considerations and following discussions with key authors of previous research, 

suggest whether changes are needed regarding the monitoring locations, parameters and 

frequency of sampling to improve the data set available for analysis. 
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