
With the collaboration of:                Research supported 

by: 

 

 

 

 

 

 

 

Water for a Healthy Country 
 

 

 

Ecosystem states of the Coorong: 

An ecosystem response model 
 

 

Method development and sensitivity analyses 
  

Rebecca E. Lester & Peter G. Fairweather  

 
DRAFT 

 

April 2009 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Water for a Healthy Country 
 

 

 

 

 

 

Ecosystem states of the Coorong: 

An ecosystem response model 
 

 

 

 

Method development and sensitivity analyses 
 

 

 

Rebecca E. Lester & Peter G. Fairweather  
 

 

 

DRAFT 

 

 

April 2009 

 



 

 

Water for a Healthy Country Flagship Report series ISSN: 1835-095X 

ISBN: (available from CSIRO Land and Water divisional editor Sally Tetreault-Campbell: sally.tetreault-
campbell@csiro.au) * 

 

 

 

The Water for a Healthy Country National Research Flagship is a research partnership between CSIRO, 
state and Australian governments, private and public industry and other research providers. The Flagship 
aims to achieve a tenfold increase in the economic, social and environmental benefits from water by 
2025. 

The Australian Government, through the Collaboration Fund, provides $97M over seven years to the 
National Research Flagships to further enhance collaboration between CSIRO, Australian universities 
and other publicly funded research agencies, enabling the skills of the wider research community to be 
applied to the major national challenges targeted by the Flagships initiative. 

 

 

© Commonwealth of Australia 2009 All rights reserved. 
This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be 
reproduced by any process without prior written permission from the Commonwealth.   

 

 

Citation: Lester, R.E. & Fairweather, P.G., 2009. Ecosystem states of the Coorong: an 
ecosystem response model.  Method development and sensitivity analyses. CSIRO: Water for a 
Healthy Country National Research Flagship  

 

 

DISCLAIMER 

CSIRO advises that the information contained in this publication comprises general statements based on 
scientific research. The reader is advised and needs to be aware that such information may be 
incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made 
on that information without seeking prior expert professional, scientific and technical advice. To the extent 
permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for 
any consequences, including but not limited to all losses, damages, costs, expenses and any other 
compensation, arising directly or indirectly from using this publication (in part or in whole) and any 
information or material contained in it. 

 

 

For more information about Water for a Healthy Country Flagship or the National Research Flagship 
Initiative visit www.csiro.au. 

mailto:sally.tetreault-campbell@csiro.au
mailto:sally.tetreault-campbell@csiro.au


 

 

Foreword 

 

The environmental assets of the Coorong, Lower Lakes and Murray Mouth (CLLAMM) region in 
South Australia are currently under threat as a result of ongoing changes in the hydrological 
regime of the River Murray, at the end of the Murray-Darling Basin. While a number of initiatives 
are underway to halt or reverse this environmental decline, rehabilitation efforts are hampered 
by the lack of knowledge about the links between flows and ecological responses in the system. 

The CLLAMM program is a collaborative research effort that aims to produce a decision-support 
framework for environmental flow management for the CLLAMM region.  This involves research 
to understand the links between the key ecosystem drivers for the region (such as water level 
and salinity) and key ecological processes (generation of bird habitat, fish recruitment, etc).  A 
second step involves the development of tools to predict how ecological communities will 
respond to manipulations of the “management levers” for environmental flows in the region.  
These levers include flow releases from upstream reservoirs, the Lower Lakes barrages, and 
the Upper South-East Drainage scheme, and dredging of the Murray Mouth.  The framework 
aims to evaluate the environmental trade-offs for different scenarios of manipulation of 
management levers, as well as different future climate scenarios for the Murray-Darling Basin. 

One of the most challenging tasks in the development of the framework is predicting the 
response of ecological communities to future changes in environmental conditions in the 
CLLAMM region.  The CLLAMMecology Research Cluster is a partnership between CSIRO, the 
University of Adelaide, Flinders University and SARDI Aquatic Sciences that is supported 
through CSIRO‟s Flagship Collaboration Fund.  CLLAMMecology brings together a range in 
skills in theoretical and applied ecology with the aim to produce a new generation of ecological 
response models for the CLLAMM region.  

This report is part of a series summarising the output from the CLLAMMecology Research 
Cluster. Previous reports and additional information about the program can be found at 
http://www.csiro.au/partnerships/CLLAMMecologyCluster.html 

 

 

 

 



 

Ecosystem states of the Coorong   Page i 

Table of Contents 

Acknowledgements ............................................................................................... ii 
Executive Summary ...............................................................................................iii 
1. Introduction ..................................................................................................... 1 
2. Methods ........................................................................................................... 4 

2.1. Method development ................................................................................................ 4 
2.1.1. Lessons from the modelling review .................................................................. 4 
2.1.2. Data collection .................................................................................................. 5 
2.1.3. Developing the basic ecological response model........................................... 11 
2.1.4. Developing a predictive model ........................................................................ 18 
2.1.5. Creating a model independent of barrage flows ............................................. 19 
2.1.6. Creating spatial and temporal links in ecosystem states ................................ 20 
2.1.7. Model evaluation ............................................................................................. 20 
2.1.8. Evidence for additional ecosystem states within the Coorong ....................... 22 

2.2. Sensitivity analyses ................................................................................................ 23 
2.2.1. Assessing sensitivity to initial clustering ......................................................... 23 
2.2.2. Assessing sensitivity to threshold values ....................................................... 24 

2.3. Scenario analyses .................................................................................................. 25 
3. Results ............................................................................................................30 

3.1. An ecosystem state model for the Coorong ........................................................... 30 
3.1.1. Characterising each of the ecosystem states ................................................. 41 
3.1.2. Mapping the ecosystem states in space and time .......................................... 44 

3.2. Developing a predictive model................................................................................ 49 
3.3. Alternative models independent of barrage flows................................................... 51 
3.4. Model evaluation ..................................................................................................... 55 

3.4.1. Comparing model predictions for 1980s to available data ............................. 55 
3.4.2. Comparing model predictions for 2008 to available data ............................... 68 

3.5. Evidence for any additional ecosystem states within the Coorong ........................ 70 
3.6. Sensitivity analyses ................................................................................................ 71 

3.6.1. Sensitivity to initial clustering .......................................................................... 71 
3.6.2. Sensitivity to threshold values ........................................................................ 78 

4. Discussion......................................................................................................87 
4.1. Model development ................................................................................................ 87 
4.2. Model evaluation ..................................................................................................... 89 
4.3. Sensitivity analyses ................................................................................................ 91 
4.4. Limitations of the modelling .................................................................................... 92 
4.5. Management implications ....................................................................................... 94 
4.6. Applicability of ecosystem state modelling to other systems .................................. 95 

5. Conclusions ...................................................................................................96 
6. References .....................................................................................................97 
Appendix A – Road map to the outputs from the CLLAMM Futures theme .... 100 
Appendix B – Summary of modelling and analysis techniques investigated . 102 
Appendix C – Species list from 1984/85 ............................................................ 106 
 

 



 

Ecosystem states of the Coorong   Page ii 

Acknowledgements 

 

This research was supported by the CSIRO Flagship Collaboration Fund and represents a 
collaboration between CSIRO, the University of Adelaide, Flinders University and SARDI 
Aquatic Sciences.  

We also acknowledge the contribution of several other funding agencies to the CLLAMM 
program and the CLLAMMecology Research Cluster, including Land & Water Australia, the 
Fisheries Research and Development Corporation, SA Water, the Murray-Darling Basin 
Commission‟s (now the Murray-Darling Basin Authority) Living Murray program and the SA 
Murray-Darling Basin Natural Resources Management Board.  Other research partners include 
Geosciences Australia, the WA Centre for Water Research, and the Flinders Research Centre 
for Coastal and Catchment Environments.  The objectives of this program have been endorsed 
by the SA Department for Environment and Heritage, SA Department of Water, Land and 
Biodiversity Conservation, SA Murray-Darling Basin NRM Board and Murray-Darling Basin 
Commission.  

We would like to thank all the members of the CLLAMMecology Research Cluster for their 
ongoing contributions to the development of these models and scenarios, and the 
CLLAMMecology Management Committee for their overall encouragement.  The participants of 
the three CLLAMM Futures workshops, and the third workshop in particular, also contributed 
useful suggestions and criticisms of the model development process.  Constructive criticism and 
useful suggestions regarding model development, evaluation and verification were additionally 
offered by Peter Petraitis and Gene Likens.  Other crucial inputs regarding modelling came from 
Ian Webster, Barbara Robson, Nick Bond, Sebastien Lamontagne, Nicky Griggs, Nick Marsh, 
Gerry Quinn, Sam Lake and Di Walker.  Participants of the three CLLAMM Futures workshops, 
along with other managers and stakeholders also provided critical advice regarding the 
selection and development of the scenario set presented here, with Glynn Ricketts from the SA 
Murray-Darling Basin NRM Board and Russell Seaman from DEH making particularly significant 
contributions. 

Invaluable access to data and assistance in interpretation of those data were provided by David 
Paton and Daniel Rogers from the University of Adelaide, Sabine Dittmann and Alec Rolston 
from Flinders University, Qifeng Ye and Craig Noell from SARDI Aquatic Sciences, Joseph 
Davis from the Murray-Darling Basin Authority, and the Australian Wader Study Group.  The 
generosity of these contributors in sharing their valuable datasets is gratefully acknowledged.  
The foresight of these scientists in collecting these datasets is exemplary.  Funding bodies 
contributing to the original collection of these data include the South Australian Department for 
Environment and Heritage, Earthwatch and the Fisheries Research and Development 
Corporation.  Additional data were supplied by the South Australian Department for 
Environment and Heritage, Primary Industries and Resources South Australia, the Australian 
Bureau of Meteorology Climate & Consultative Services, the National Tidal Facility, and Flinders 
Ports.   

We also gratefully acknowledge the excellent research assistance provided by Rebecca 
Langley and Stephanie Duong, and assistance with map-making from Craig Noell at SARDI 
Aquatic Sciences. 



 

Ecosystem states of the Coorong   Page iii 

Executive Summary 

The Coorong is an internationally-important wetland that has undergone significant degradation, 
particularly over the last five to ten years.  The Coorong is the estuary for Australia‟s largest 
river basin, the Murray-Darling, and is of ecological significance due to the range of biota that it 
supports and the numbers of waterbirds that use it.  

The recent degradation has led to efforts to improve the ecological understanding and 
management of this system.  CLLAMMecology was a CSIRO Collaboration Fund Research 
Cluster designed to assist, particularly in the development of ecological understanding.  One of 
the four themes within CLLAMMecology, CLLAMM Futures, was tasked with developing an 
ecological response model for the Coorong in order to predict the ecological response of the 
system to a range of potential futures, including both climate change and a variety of possible 
management actions.  This report provides detail into the methodological development that 
occurred during the construction of the model, a description of the model itself and the resultant 
ecosystem states, and a range of model evaluation and sensitivity analyses that were 
conducted to understand the various limitations and sensitivities of the developed model. 

The data available for the Coorong was a disparate mixture, including quantitative, semi-
quantitative and qualitative data, collected using a variety of methods and at different temporal 
and spatial scales.  The imperfect data coverage of some areas (e.g. the role groundwater and 
nutrients) led to a statistical approach, rather than an attempt to find deterministic relationships.  
A review of potentially-useful modelling techniques indicated that a state-and-transition model 
built using a combination of techniques to identify the ecosystem states and their transitions 
(including classification and regression trees (CART), multiple regression trees and structural 
equation modelling) was a promising option.   

Two data sets were collated, a biological data set and an environmental (physico-chemical) 
data set.  The biological data set consisted of bird, fisheries-independent fish and invertebrate 
abundances, catch per unit effort data from the local commercial fishery, and coverage data for 
the dominant macrophyte, Ruppia tuberosa.  The environmental data set included 
meteorological and water quality data, along with modelled flows, water levels, depths and 
salinities.  Variables within the environmental data set were constructed to include maxima, 
minima, ranges and lagged variables, in addition to means.  The original training data set 
included annual data from between 1999 and 2007. 

An ecosystem response model was constructed using a series of steps.  Firstly, biological data 
were clustered to identify groups of cases (sites in a given year, referred to as a „site-year‟) with 
similar biota.  These biotic assemblages were tested for statistical distinctness, and those that 
were distinct were used as preliminary ecosystem states.  The preliminary ecosystem states 
were used as the response variable for a CART analysis using the environmental data set.  This 
identified physico-chemical associates of biota within the system.  Cases within each terminal 
node were again tested for biological distinctness, and terminal nodes that did not support a 
unique biota were combined with the next closest node.  The resultant CART model was then 
used to classify cases that had been excluded from the analysis to this point (due to the 
presence of missing values in the biological data set).  The biota for each terminal node in the 
original data set were compared to the biota of the same terminal node for the new data set to 
ensure that the CART model was capable of predicting a biotic assemblage based on the 
environmental conditions for each case.  The resultant ecosystem states were then 
characterised based on their environmental and biological characteristics.   

The original annual time-step used for the analysis did not capture recent declines in condition 
in the Coorong sufficiently, so the model development process was repeated with more-recent 
data at a seasonal time step (2005-2007).  The short-term (quarterly) and long-term (annual) 
models were then combined to give a single ecosystem state model for the Coorong.  This 
model had eight distinct ecosystem states, with the tidal range, number of days without barrage 
flows, water levels, depths from the previous year and salinity as the driving variables.  These 
states were divided into two basins; a marine basin and a hypersaline basin, each containing 



 

Ecosystem states of the Coorong   Page iv 

four states.  The threshold for the number of years without barrage flows (at 339 days) was such 
that it suggested a continuum of states in each basin, from healthy to degraded, and they were 
named as such.  The eight states were named Estuarine/Marine, Marine, Unhealthy Marine, 
Degraded Marine, Healthy Hypersaline, Average Hypersaline, Unhealthy Hypersaline and 
Degraded Hypersaline. 

We undertook a model evaluation process in which we predicted the ecosystem state of sites 
for years in the past and compared the predicted biotic assemblage to data on the actual biotic 
assemblage found at that location for that time.  The sparseness of the data made this a difficult 
task, and a number of different analyses were run, firstly using data on single taxonomic groups 
(e.g. commercial fisheries data or bird abundances), and then using combinations of taxonomic 
groups (e.g. commercial fisheries data and bird abundances) to assess differences in the biotic 
assemblages between states and within states but between decades.  The results were mixed, 
but suggested that, for the most part, there were distinct biotic assemblages between states, but 
that the biota of the 1980s was distinct from that of the 2000s.  In particular, the 
Estuarine/Marine state appeared to have several distinct biotic assemblages, suggesting that it 
may, in fact, represent several distinct states over time.  The model evaluation process was also 
undertaken for the only more-recent data set that was available; fisheries-independent fish 
abundances from 2008.  Again, this suggested a distinct biotic assemblage in 2008 compared 
with those within the training data set.   

A predictive state-and-transition model was developed from the ecosystem state model.  By 
happenstance, all variables within the model were ones that could be modelled, either using 
catchment modelling undertaken by the Murray-Darling Basin Authority, or a hydrodynamic 
model developed by CSIRO.  The biggest challenge involved in developing a predictive model 
was in extrapolating modelled data to sites that fell outside the model domain.  Single and 
multiple regressions were used to develop these relationships.  This meant that scenarios 
including combinations of climate change and possible management options could be 
developed, run through the hydrodynamic model and the ecosystem state model and then the 
resultant time series interrogated to predict ecosystem responses. 

A second set of models was also developed for possible management actions that were 
designed to be an alternative to barrages flows during drought.  The presence of the number of 
days without barrage flows as the second driving variable in both the marine and hypersaline 
basins meant that ecological change in response to interventions other than barrage releases 
(e.g. dredging) would not be adequately predicted.  We, therefore, developed new models for 
the marine basin and for the hypersaline basin by excluding flow-related variables from the 
model development process.  These alternative models predicted the ecosystem states of the 
original model with a high degree of success. 

The possibility of additional ecosystem states in the Coorong was investigated.  The model 
evaluation process suggested that the Estuarine/Marine state, in particular, may, in fact, include 
several distinct states.  This would be consistent with the fact that the training data set included 
only dry years, where low flows resulted in declining ecosystem condition.  Evidence suggesting 
the existence of healthier, more-estuarine ecosystem states was not surprising.  Biological data 
from site-years predicted to be Estuarine/Marine revealed three or four distinct biotic 
assemblages.  There were insufficient data, however, to resolve the environmental drivers of 
these assemblages, so they were not included in the predictive model.  Their likely presence is, 
however, noted for future extensions of the model, should more data become available.   

The model was subjected to a number of sensitivity analyses.  The initial clustering step was 
one that had been identified as being key to the entire model development process, as it 
provided the preliminary ecosystem states.  We tested the sensitivity of the model to the 
clustering technique used (comparing group-averaging to k-means clustering).  We also tested 
the sensitivity of the ecosystem state model to random errors within the biological data set and 
to clustering of the environmental data set, instead of the biological data set.  The clustering 
was more sensitive when more clusters were identified.  For the long-term model, three clusters 
had been originally identified, and these were relatively robust, both the changes in the 
clustering technique and to random errors in the data set.  As the number of clusters identified 
became greater, however, the concordance with the original clusters declined. 
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Overall, the model was not particularly sensitive to the choice of initial clustering technique.  
This was because of the independent assessment of biotic assemblages later in the model 
development phase identifying any groups that were not statistically distinct and allowing for 
these to be combined.  There were mixed results when clusters based on the environmental 
data set were compared with those based on biological data, with the short-term data set 
showing good concordance and the long-term data set having relatively poor concordance, 
despite a small number of clusters.  The decision to use the biological data set was based on 
the modelling and monitoring capabilities of management agencies and the notion that biotic 
assemblages usually respond to physico-chemical parameters, rather than the other way 
around. 

We also assessed the sensitivity of the predicted ecosystem states to the exact value of the 
threshold for each driving variable.  It was not surprising that predictions were most sensitive to 
the value of thresholds for variables closest to the top of the decision tree (i.e. tidal range and 
number of days without flow).  The model was very robust to changes in the threshold value for 
variables near the bottom of the decision tree (i.e. water levels and salinity).  However, none of 
the threshold values were statistically significant when compared with a distribution built from 
random choices of the threshold value.   

The model was used to assess ecological response to a series of scenarios.  These scenarios 
included testing the effects of climate change, current extraction levels, sea level rise, The 
Living Murray initiative, dredging at the Murray Mouth, and increased flows through Salt Creek 
via the Upper South East Drainage scheme.  Methods are presented here, but all results and 
interpretations based on these scenarios can be found in Lester et al. (2009). 

The ecosystem state model developed here has a number of limitations.  These include our 
inability (as yet) to characterise additional ecosystem states for truly estuarine conditions or to 
build spatiotemporal links into the predictive model.  The model was built using a sequence of 
low flow years, so it is biased towards predicting the decline of the Coorong ecosystem rather 
than any recovery.  This means that potential recovery trajectories and any lags may not be 
adequately described by the model as is.  Also it is not intended to describe causal links, but 
rather robust correlations between the environmental and biological aspects of the ecosystem 
for use as indicators by managers. 

Nonetheless, the ecosystem state model seems to be a useful tool in predicting ecosystem 
response, and in understanding some of the physico-chemical drivers of biotic assemblages.  It 
has the potential to improve the management of large ecosystems, by dramatically simplifying 
definitions of ecosystem health and allowing management for a set of ecosystem states, rather 
than arbitrarily-defined thresholds.  The range of environmental conditions over which given 
ecosystem states occur could replace attempts to define limits of acceptable change based on 
the literature or untested expert opinion.  The ecosystem state model is a data-driven, 
multivariate representation of a complex system that can be used in simple assessments of 
ecological condition, or in detailed scenario analyses. 
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1.  Introduction 

Ecosystem response modelling is a relatively new tool in the natural resource management 
(Sutherland, 2006).  With streams of environmental data becoming increasingly automated, 
more data are now being collected than ever before.  With improved computer-processing 
power, new techniques in ecosystem modelling continue to emerge, taking advantage of this 
increased computational capacity.  This means that, for a given problem, there are likely to 
be a range of ecological modelling options available.  A comprehensive review of the 
approaches commonly used to predict the ecological consequences of environmental 
change was undertaken by Sutherland (2006).  He recommended a combination of 
traditional model development to address a specific problem with the use of expert opinion, 
output-driven modelling and scenario analyses (Sutherland, 2006).  This recommendation 
presents ecologists and modellers with a challenge to develop new techniques and/or apply 
several of them together in novel combinations.  Here we attempt to answer this challenge 
for the Coorong estuary and lagoons. 

The Murray-Darling Basin ends on the South Australian coast in an estuarine and coastal 
lagoon complex called the Coorong (Figure 1.1).  The Coorong is a long, narrow system 
comprising two main lagoons, the North Lagoon and the South Lagoon, and an estuarine 
region around the Murray Mouth, which is the single connection to the Southern Ocean 
(Phillips and Muller, 2006).  The system is an inverse estuary (Wolanski, 1987), with both the 
Murray Mouth and the source of freshwater, the River Murray, at the same end, rather than 
the more common pattern where freshwater enters at the upstream end and flows to a 
downstream mouth.  The water sources into the Coorong include freshwater flows from the 
River Murray across a series of barrages, marine water as tidal input through the Murray 
Mouth, fresh to brackish inputs from the Upper South East Drainage (USED) scheme of 
southeastern region of South Australia via Salt Creek near the southeastern end of the 
system, and more localised rainfall and groundwater inputs (Webster, 2006).   

The Coorong is ecologically significant as a part of the Coorong, Lower Lakes and Murray 
Mouth (CLLAMM) region that is listed under the Ramsar Convention on Wetlands of 
International Importance (Department for Environment and Heritage, 2000) and is 
designated as one of six icon sites within the Murray-Darling Basin (Phillips and Muller, 
2006).  For example, the region supports more than 1% of the global population (one of the 
criteria for Ramsar listing) for a number of migratory wading bird species, including the 
curlew sandpiper (Calidris ferruginea), red-necked stint (Calidris ruficollis) and sharp-tailed 
sandpiper (Calidris acuminata) (Paton et al., in press).  The region also has significant 
cultural, economic and recreational values, with sizable local tourism and commercial fishing 
industries, nearby agriculture and a local indigenous Australian community, the Ngarrindjeri 
nation.   

There are a number of potential „levers‟ able to be used in the management of the system to 
affect ecosystem condition.  These levers include: environmental flows of fresh water, either 
from the USED via Salt Creek, or from the River Murray; dredging of the Murray Mouth to 
maintain the connection to the ocean; barrage operations controlling the flow of water 
between the Lower Lakes (Figure 1.1) and the Coorong, including the operation of fishways; 
and various local engineering solutions that are possible in the region, including pumping 
and dredging options.  These, combined with climatic forcing factors, determine the 
ecological condition of the Coorong, and the identified “water benefits” of the region, such as 
a viable fishery based on fish recruitment, tourism, cultural values, sustained waterbird 
populations and an open Murray Mouth.  
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Figure 1.1.  Map of the Coorong showing the twelve study sites used as focal 
locations during CLLAMMecology and forming the basis of our ecosystem response 
modelling  

(Source: Craig Noell, SARDI Aquatic Sciences, South Australia) 

 

The recent observed decline in condition (Lester and Fairweather, in press; Paton et al., in 
press) and the desire to have a good scientific basis to guide the management of the system 
prompted the formation of the CLLAMMecology Research Cluster (Lamontagne et al., 2004).  
CLLAMM is an acronym for „Coorong, Lower Lakes and Murray Mouth‟, thereby describing 
the overall region in which the Cluster was to operate.  The Cluster included researchers 
from the University of Adelaide, Flinders University, the South Australian Research & 
Development Institute Aquatic Sciences (SARDI Aquatic Sciences) and the Commonwealth 
Scientific and Industrial Research Organisation (CSIRO) Water for a Healthy Country 
Flagship.  Management agencies responsible for the Coorong were also involved, including 
the South Australian Department for Environment and Heritage, and the South Australian 
Department of Water, Land and Biodiversity Conservation.  The aim of the Research Cluster 
was to develop an ecosystem-level understanding of the Coorong, Lower Lakes and Murray 
Mouth.  Four themes were developed to achieve this aim, targeting the response of key 
species, productivity and trophodynamics in the system, dynamic habitat availability, and 
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ecological responses to a range of alternative futures.  This final theme, labelled CLLAMM 
Futures, aimed to combine existing information with that derived from during 
CLLAMMecology to develop an ecosystem response model for the Coorong. 

The CLLAMM Futures theme thus aimed to develop a set of models at an ecosystem scale 
to integrate the knowledge generated by the other CLLAMMecology themes with existing 
knowledge. These models developed are system-wide models that have been used to 
investigate the likelihood of a number of future scenarios, including possible management 
options and alternative states within the Coorong region (Lester and Fairweather, 2009a). 
The models are explicit in both space and time and allow prediction of the response of the 
ecosystem to the identified system drivers (including climatic forcing and management 
options, for example).  This report describes in detail the methods used to develop and then 
apply these models to a set of scenarios of interest.  

This report is one of a series of outputs from the CLLAMM Futures theme.  A “road-map” 
outlining the other outputs from the theme (either already produced or in preparation) can be 
found in Appendix A. 
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2. Methods 

2.1. Method development 

2.1.1. Lessons from the modelling review 

For a complex modelling application, such as that undertaken CLLAMM Futures, we 
considered that the best approach was likely to include a combination of several different 
modelling techniques.  Achieving the objective of the CLLAMM Futures theme, to construct a 
single, system-wide response model for the region, involved meeting a number of 
considerable challenges. The data sets that were available for use in modelling were 
disparate in nature and collection methods, included qualitative, semi-quantitative and 
quantitative data, were patchy in both space and time, but did not cover all variables of 
interest. The nature of the data, along with the complexity of the system as a whole, with 
estuarine, marine and hypersaline regions, meant that constructing a valid deterministic 
model was not feasible. There was simply insufficient information for any deterministic model 
to adequately capture the relevant processes and to be properly validated. For this reason, 
the CLLAMM Futures theme focused on developing a statistical, stochastic model, based on 
probabilities and analyses of existing data sets, rather than attempting to mathematically 
characterise all the interacting processes occurring.  

We undertook a review of the modelling and analysis alternatives considered most promising 
for use during CLLAMM Futures (Lester and Fairweather, 2008b).  Based on this review, a 
number of analytical techniques appeared promising for use during CLLAMM Futures.  A 
summary table listing the advantages, disadvantages and potential applicability to CLLAMM 
Futures of the 13 possibilities assessed is presented in Appendix B.  Classification and 
regression tree (CART) analysis (where the variation in a univariate response variable is 
explained through repeated splitting of the data into increasingly homogenous groups based 
on a variety of exploratory variables; De'ath and Fabricius (2000), multiple regression tree 
(MRT) analysis (an extension of the univariate regression trees used in applications such as 
CART, where the univariate dependent variable is, in effect, replaced by a multivariate 
response; De'ath, 2002), and structural equation modelling (SEM) (an extension of path 
analysis that seeks to minimise the differences between the variance and covariance 
matrices of the model under investigation; Reckhow et al. 2005) were identified as good 
initial choices, given their ability to classify and rank independent variables.  This will allow 
the various states postulated for the CLLAMM region to be objectively defined and tested.  
Of the three methods initially identified, only CART analyses were finally incorporated into 
the ecosystem state model described here due to the intensive data requirements of SEM 
and difficulties in the identification of groups in the biological data (especially across multiple 
data sets) using MRT. 

The information from these analyses was then used to construct a state-and-transition (S&T) 
model describing the ecosystem states of the CLLAMM region.  S&T models draw on the 
theory of alternative states for a community (Westoby et al., 1989; Bestelmeyer et al., 2004; 
Wilkinson et al., 2005), although the states do not necessarily need to be true alternative 
stable states.  The technique uses a box-and-arrow flow diagram to represent an ecosystem 
with the boxes used to define discrete system states, and the arrows representing the events 
and processes that cause the system to move between these states (transitions) (Plant and 
Vayssieres, 2000).  S&T models are designed to be a framework for allocating a system to 
various states. 

Bayesian belief networks (BBNs) were identified as one possibility for constructing the S&T 
model, given that it was likely to include information from many different analyses, of varying 
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degrees of reliability, including data from experiments, as well as from condition monitoring, 
along with information from the literature and expert opinion, anecdotal information and 
suspicions where data were unavailable. In the end, this was not used, with a more 
traditional S&T structure being employed, in an attempt to maintain the data-driven integrity 
of the model (i.e. all states and transitions are derived from the available data), but this 
approach still has possibilities for future attempts at similar modelling applications. 

A diagram illustrating how the various modelling techniques were combined in the 
ecosystem state model is shown in Figure 2.1.  This synthesis of modelling techniques was 
then used as the basis of scenario modelling (Lester et al., 2009).  The process of converting 
the ecosystem state model into a predictive model and running scenario analyses is 
described below. 

 

 

Figure 2.1. Synthesis of modelling techniques used to construct the ecosystem state 
model 

Note that this figure shows a hypothetical S&T model.  Not all transitions between states are possible.  
Some states show hysteresis, where the driving variable (or threshold) governing transitions in one 
direction is different from that in the other direction.  The model is spatially explicit (indicated by the 
different squares for each site). 

 

2.1.2. Data collection 

As many data as possible were compiled for the Coorong.  Data sources included the 
available literature, data collected by CLLAMMecology researchers either prior to or during 
CLLAMMecology, monitoring data that had been collected by state or federal agencies in the 
region, and outputs of other models constructed for the Coorong.   
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We divided the data into a biological data set and an environmental (physico-chemical) data 
set.  The biological data set consisted of abundance data for birds, fish and benthic 
macroinvertebrates, plant coverage and abundance of propagules for the dominant 
macrophyte species, Ruppia tuberosa, and catch per unit effort data for the local commercial 
fishery (Table 2.1).  The environmental data set included modelled water levels, depths and 
salinities along the length of the Coorong, daily tidal range, flows over the barrages, 
meteorological data, and measured water quality parameters, including the concentration of 
nutrients, pH, alkalinity and turbidity (Table 2.2).  Tables 2.1 and 2.2 give references relating 
to the data-collection methods and attribute the data to their various provenances.  Due to 
these varied provenances, we have reported values in their original units rather than 
attempting to convert them where more standard values are common or more recent.   

For the environmental data set, a range of parameters related to variability per se were 
calculated for each variable, including maxima, minima, ranges, variability, moving averages 
(3 years) and lagged effects (1 and 2 years), particularly for flow and depth characteristics.  
This variety of parameters was included based on the understanding now that the mean 
conditions are not always the best predictors of ecosystem state or condition (Gaines and 
Denny, 1993).   
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Category Metrics included Variable Units Provenance Notes 

Macrophytes Percent of cores 
containing Ruppia, 
number of shoots, 
number of type I turions, 
number of type II turions 

Ruppia 
distribution 

%, number 
per core  

University of 
Adelaide 

See Paton and Rogers (2008) for a description 
of sampling methods.  Included in long-term 
analyses only.  A single survey was undertaken 
each year 

Bird abundances Average number 
sighted 

Species abundance 
per site 

University of 
Adelaide, DEH 

See Paton et al. (in press) and Dittmann et al. 
(2006) for a description of sampling methods.  
Species where >500 individuals were sighted 
over 8 years were included in long-term data, 
and >100 individuals sighted over the 3 years for 
the short term 

Fish abundances Average CPUE Commercial 
fish catch 

CPUE (net 
days) per 
site 

PIRSA The commercial fish CPUE is based on data 
collected from commercial fishermen on a daily 
basis.  Only species with a total of >5 CPUE 
across all sites and times were included.  
Averages were calculated of annual CPUE for 
long-term analyses and quarterly CPUE in the 
short-term 

 Average abundance Small-
bodied fish 
abundances 

abundance 
per site 

SARDI Aquatic 
Sciences 

Included in short-term analyses only.  See Noell 
et al. (2009) for a description of sampling 
methods. 

Benthic 
macroinvertebrate 
abundances 

Average number of 
individuals per species 

Adult 
abundances  

abundance 
per site 

Flinders 
University 

See Dittmann et al. (2008) for a description of 
sampling methods.  Included in short-term 
analyses only 

 Average number of 
individuals per species 

Juvenile 
abundances 

abundance 
per site 

Flinders 
University 

Included in short-term analyses only 

Table 2.1.  Biological variables included as part of the input data sets and their provenance 

Note:  All variables were included in both long- (annual time-step) and short-term (quarterly time-step) analyses unless specified.  Where more than one 
survey was undertaken within the time period analysed, abundance (or other relevant variable) were averaged.  The Units column presents the numerical 
units used in the analysis, and gives the sampling units in which the data was collected (e.g. per site for invertebrate abundances).  The division of turions into 
types I and II follows (Paton and Rogers, 2008).  Catch per unit effort was calculated using the number of nets by the number of days each was set (net days) 
as the measure of effort. 
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Category Metrics included Variables Units Provenance Notes 

Meteorology Average minimum, average 
maximum, maximum, minimum 

Temperature oC per 
day 

BOM Data from two weather stations (51 km 
apart) were used for all meteorological 
variables: Hindmarsh Island & Meningie, 
SA.  Averages were taken of daily 
measurements 

 Average, maximum & minimum Relative 
humidity 

% twice 
per day 

 Measured at 9 am & at 3 pm daily.  
Averages were of daily values for each 
reading 

 Average, maximum daily, minimum 
daily, total across the time period 

Precipitation mm per 
day 

 Averages were of total daily precipitation 

 Average, maximum daily & minimum 
daily. Average, maximum & minimum 
gust wind speed at Hindmarsh Island 

Wind speed knots 
twice 
per day 

 Wind speed measured at 9 am & 3 pm 
daily. Gust wind speed is the maximum 
gust recorded each day.  Averages were 
of daily values for each reading 

 Average, maximum, minimum Cloud 
coverage 

eighths 
per day 

 Averages were of average daily cloud 
coverage 

Water quantity Average, average from previous year, 
average from 2 years ago, 3-year 
moving average, average minimum, 
average maximum, maximum, 
minimum, variance, change in water 
level across the year 

Water depth m per 
hour 

CSIRO Modelled data produced from a 
hydrodynamic model described in Webster 
(2006).  Averages were of average daily 
water depths 

 Average, average from the previous 
year, average from 2 years ago, 3-
year moving average, average 
minimum, average maximum, 
variance, minimum & maximum 

Water level m AHD 
per 
hour 

 Modelled data produced from a 
hydrodynamic model described in Webster 
(2006). Averages were of average daily 
water levels 

Table 2.2.  Environmental variables included as part of the input data sets and their provenance 

Note:  All variables were included in both long- (annual time-step) and short-term (quarterly time-step) analyses unless specified.  Where more than one 
survey was undertaken within the time period analysed, abundance (or other relevant variable) were averaged.  The Units column presents the numerical 
units used in the analysis, and gives the sampling units in which the data was collected (e.g. per day for rainfall) 
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Category Metrics included Variables Units Provenance Notes 

 Average, maximum Daily tidal 
range 

m per 
hour 

 Modelled data produced from a 
hydrodynamic model described in Webster 
(2006).  Averages were of daily tidal range 

 Average daily flow, average from the 
previous year, number of days in the 
time period when flow occurred, 
maximum number of days since flow, 
average flow size per event, average 
flow size from the previous year, 
average total flow & total flow from the 
previous year 

Flow GL per 
day 

MDBC Modelled data produced by MSM-BigMod 
(Close and Sharma, 2005) 

Water quality Average, average maximum, average 
minimum, variance, average from the 
previous year, average from 2 years 
ago, 3-year moving average, average 
& maximum change in salinity across 
the year 

Salinity g L-1 

per site 
CSIRO Modelled data produced from a 

hydrodynamic model described in Webster 
(2006).  Averages were of average daily 
salinities 

 Water temperature where and where 
invertebrates were collected 

Temperature oC per 
site 

Flinders 
University 

Measured data, only included for short-
term analyses 

 Average, maximum & minimum total 
phosphate, total Kjeldahl nitrogen & 
ammonia concentrations 

Nutrient 
concentration 

mg L-1 

per site 
DEH Data for all remaining water quality 

parameters were measured quarterly.  
Averages were of quarterly data for long-
term analyses.  For short-term analyses, a 
single measurement was included 

Table 2.2 cont.  Environmental variables included as part of the input data sets and their provenance 

Note:  All variables were included in both long- (annual time-step) and short-term (quarterly time-step) analyses unless specified.  Where more than one 
survey was undertaken within the time period analysed, abundance (or other relevant variable) were averaged.  The Units column presents the numerical 
units used in the analysis, and gives the sampling units in which the data was collected (e.g. per day for rainfall) 
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Category Metrics included Variables Units Provenance Notes 

 Average, maximum, minimum pH pH 
units 
per site 

  

 Average, maximum, minimum Alkalinity mg L-1 

per site 
  

 Average, maximum, minimum Turbidity NTU 
per site 

  

 Average, maximum, minimum Electrical 
conductivity 

mg L-1 
per site 

  

 Average, maximum, minimum Conductivity µS cm-1 
per site 

  

 Average, maximum, minimum Chlorophyll a 
& b 
concentration 

µg L-1 
per site 

  

Table 2.2 cont.  Environmental variables included as part of the input data sets and their provenance 

Note:  All variables were included in both long- (annual time-step) and short-term (quarterly time-step) analyses unless specified.  Where more than one 
survey was undertaken within the time period analysed, abundance (or other relevant variable) were averaged.  The Units column presents the numerical 
units used in the analysis, and gives the sampling units in which the data was collected (e.g. per day for rainfall) 
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2.1.3. Developing the basic ecological response model  

The initial ecological response model was constructed based on an annual time-step at each 
of the 12 focal sites identified for CLLAMMecology (Figure 1.1).  Data were aliased where 
required to maximise the spatial and temporal coverage of the data sets to the relevant 
scales.  This involved aligning data from the various regions and sites used during the 
collection of each data set with the focal sites identified for CLLAMMecology, and averaging 
data where multiple sampling events occurred within a single time-step (e.g. per annum).  
Maximum data was available for the period 1999 to 2007, which were the years included in 
the original model development.  This model is referred to as the „long-term‟ ecosystem state 
model.  This initial long-term model did not adequately capture declines in ecosystem 
condition that were identified during CLLAMMecology (Lester and Fairweather, in press; 
Noell et al., 2009; Paton et al., in press), so a second model was constructed using a 
quarterly time-step for the years 2005 to 2007, where the decline in condition of the Coorong 
ecosystems was most-clearly evident (referred to as the „short-term‟ ecosystem state 
model).  These models were eventually combined to produce a single ecosystem state 
model for the Coorong as described below. 

Developing an ecological response model (ERM) for the Coorong involved a number of 
steps.  The model development process is summarised in Figure 2.2.  Each step is 
described in detail below. 

Identifying preliminary states (Steps 1 & 2) 

Cluster analysis was used to identify preliminary groups of cases that had similar biotic 
assemblages.  Only cases that included a complete set of biological data were able to be 
clustered.  Step 1 (Figure 2.2) involved splitting the data into those cases that were complete 
(n = 85) and could be clustered (Step 2) and those that had missing values (n = 23) and 
would be retained for model validation later (Step 5). 

For the long-term time analysis, the data set included macrophyte cover, bird abundances 
and CPUE for commercial fish species.  The cluster analysis (Step 2) used a group-average 
linkage algorithm and a SIMPROF test to identify clusters which were statistically distinct 
(Clarke and Gorley, 2006).  These analyses were undertaken in PRIMER 6.  This analysis 
identified four distinct clusters within the long-term data, one of which consisted of only a 
single case.  The division between this case and the rest of the data was the first division of 
the data, so that case (at Barkers Knoll in 2001) was excluded from further analyses as an 
outlier, and so three clusters were retained. 

The short-term data set included bird abundances, CPUE for commercially-fished species, 
fisheries-independent fish abundances, and abundances of juvenile invertebrates, all at a 
quarterly time step (n = 144; i.e. 12 sites by 3 years by 4 quarters).  Migratory birds were 
excluded from the data set because their presence is seasonal and could be largely 
unrelated to the condition of the Coorong.  There was very little overlap in the cases that 
included data for both fisheries-independent fish abundances (n = 49) and juvenile 
invertebrate abundances (n = 69), so we divided the data into two (excluding cases that still 
had missing values; Step 1) and ran cluster analyses on both halves (Step 2) in PRIMER 
6.0.  Group-average cluster analysis on the short-term data including juvenile invertebrate 
abundances identified six initial clusters, two of which consisted of only a single case each.  
As for the long-term analyses, these two cases were excluded from further analysis, leaving 
four statistically-distinct biological clusters for the next step in the model development 
process. 

The short-term data set including fisheries-independent fish abundances proved to have 
nine distinct biotic groups.  Of these, four consisted of either a single case, or two cases, 
none of which was sufficient to be subjected to a CART analysis (Step 3), so these seven
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Figure 2.2.  Flow diagram summarising the steps in developing an ecosystem response model for the Coorong using both 
environmental and biological data sets (as per Tables 2.1 & 2.2) 

Note: This process was followed for both the long-term (annual time-step) and short-term (quarterly time-step) model development.  These were then 
combined into a single ecosystem model for the Coorong. 

2.  Identify clusters 
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cases were excluded from further analyses.  The cases that were excluded were from 
Quarters 2 and 3 in 2007 at Monument Road, Quarter 3 in 2007 at Barkers Knoll and Ewe 
Island, Quarter 1 from 2007 at Jack Point and Quarters 1 and 2 in 2007 from Salt Creek.  
This left five distinct biological clusters for the next step in the model development process.   

Before proceeding to the next step, the biological clusters identified in the two subsets of the 
short-term data set were combined.  Where a single case was categorised in both the short-
term cluster analyses (i.e. had abundance data for both fisheries-independent fish and 
juvenile invertebrates), the two clusters to which it belonged were amalgamated.  This gave 
us a total of six identified clusters across the two analyses for the short-term data set.  This 
approach may have resulted in more clusters being identified than would have been 
supported using a single complete data set, but later steps in the process were designed to 
identify extraneous states and combine these where needed (Step 4), so this was not seen 
to be a problem at this stage of the process. 

These biologically-distinct clusters of cases that were identified were considered to be 
preliminary states for the purposes of moving to Step 3. 

In addition to group-average cluster analysis, a number of other analytical techniques were 
explored to identify groups of biota that may constitute preliminary states within the model.  
Multiple regression tree analyses were attempted in order to identify biological groups and 
indentify the environmental variables driving these distinct assemblages simultaneously.  
These analyses were undertaken using the „mvpart‟ library in the R statistical environment 
(De'ath, 2002).  This attempt was abandoned when the analysis was not able to detect any 
subsets within the biological communities, despite the differences found using cluster 
analysis.  This may have been due to the large number of biological variables, and the 
degree of non-normality within the data set.  Principal components analysis was also 
explored as another tool for identifying distinct biological assemblages within the long-term 
data set.  These analyses were undertaken using SYSTAT 11.  The various principal 
components were not found to have strong links to the environmental variables when used 
during CART analysis (see below for detailed methods), so this avenue was not pursued 
further.   

Other clustering techniques were also explored.  K-means clustering was not considered 
useful in the first instance, because it required an a priori selection of the number of clusters 
to be identified.  Given the exploratory nature of this part of the analysis, we preferred to 
allow the analysis to identify the number of significant clusters, rather than imposing any 
preconceived ideas of the ecosystem state diversity of the system on the model.  Complete-
linkage and single-linkage clustering were also explored.  Single-linkage clustering tended to 
identify clusters consisting of a single or very small number of cases, which was not 
conducive to identifying broad environmental parameters that drove differences in biotic 
assemblages.  Complete-linkage clustering generated a more even distribution of cases 
across clusters and was pursued through to the investigation of environmental drivers, but 
subsequent CART analyses did not produce models with the same goodness of fit as for the 
group-average-derived preliminary states.  The complete-linkage clustering option does 
merit consideration in future attempts to apply this modelling technique, however, to gain an 
understanding of whether it out-performs group-averaging under any other circumstances.  
These cluster analyses were all undertaken using PRIMER 6. 

Differentiating between preliminary states using environmental variables (Steps 3, 4 & 
5) 

Classification and regression tree analyses were used to differentiate between the 
preliminary states using the environmental conditions under which each state occurred (Step 
3, Figure 2.2).  These analyses were undertaken using CART 6.0 (Steinberg and Golovnya, 
2007).   The package „rpart‟ in the R statistical environment (Therneau and Atkinson, 2009) 
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was also used to run CART analyses, but difficulties in penalising potential explanatory 
variables for the frequency of missing values meant that this platform was abandoned in 
favour of using CART 6.0.   

In the first instance, the predictive capacity of the various properties of water quality and 
meteorological variables was tested (by running multiple CART analyses in CART 6.0).  The 
data set included means, minima and maxima for all variables.  We did not believe that it 
would be useful to include all variables as possible predictive variables, because the 
likelihood of correlations between the mean, minimum and maximum of a single variable 
was high (as was indicated by preliminary analyses).  By using each set of variables in turn, 
we established that the maxima had the highest predictive capacity, so these variables were 
included, while the minima and means were omitted.  For flow, water quality and salinity 
variables, a more complex set of variables was included (including lagged variables, 
variances and flow within particular sets of months).  This made it difficult to identify in 
advance which variables were likely to be inter-correlated, so correlations amongst 
predictive variables were undertaken after models had been constructed.  Where similar 
variables were measured by more than one technique (e.g. conductivity and electrical 
conductivity (EC) were both measured and salinity was modelled), the source with the most-
complete data was used and the others excluded (i.e. modelled salinity was included 
because conductivity and EC were measured quarterly at best).  Where two significant 
predictor variables that were identified by the CART model were significantly correlated, the 
variable that explained the smaller proportion of the variance was excluded and the model 
re-run, until no predictor variables retained within a model were significantly correlated. 

Twoing splitting was used during the CART analysis because it is the most likely criterion for 
creating child nodes of relatively equal sizes (Steinberg and Golovnya, 2007).  The best tree 
was selected using the One Standard Error (1SE) rule (Breiman et al., 1984), and only cases 
for which a preliminary state was identified were included in the analysis.  Cross-validation 
occurred with seven folds, as this was the size of the cluster with the smallest number of 
cases.  The minimum number of cases allowed was set to five for a parent node and two for 
a child node.  To penalise variables with missing values, β was set to 0.6 (Steinberg and 
Golovnya, 2007).   

For the long-term data set (n = 85), a three-node tree was produced at a relative cost of 
0.348 (with lower relative costs being more favourable; Steinberg and Golovnya, 2007).  The 
two splitting variables were the average annual modelled salinity and the average annual 
depth from the previous year.  This model correctly classified 95% of the cases in the 
learning data file, and 86% of the cross-validated cases.  ANOSIM analyses in PRIMER 6.0 
of the biotic data set confirmed that the cases in the three terminal nodes were, in fact, 
biologically distinct (Step 4; Global R = 0.796, p = 0.001; all pair-wise comparisons had p = 
0.001).   

Cases that had been excluded from the cluster analysis step due to some missing data (at 
Step 1; n = 23) were used to validate the predictive capacity of the CART model (Step 5).  
The terminal node for each of these cases was predicted using the CART decision tree.  For 
each terminal node, the biological assemblage for the original complete cases used in Step 
3 was compared with these new cases that had previously been excluded from the model 
development process (at Step 1). 

In order to compare the biological assemblages, two nested subsets of the long-term 
biological data were created.  This involved separating the CPUE data for the commercial 
fishery (which included all 108 cases) and then the CPUE data with the bird abundance data 
(which included 96 of 108 cases).  The data relating to Ruppia cover had the fewest cases, 
so they were excluded from this step.  ANOSIM analyses (in PRIMER 6.0) were used on the 
terminal node membership of each case, with pair-wise comparisons indicating whether the 
biota of cases from the original terminal node were statistically different from that of the new 
cases.  Identifying a significant difference in one of the two ANOSIM analyses (on the two 
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data sets) was considered sufficient to confirm a distinct biotic community.  No significant 
differences were identified between new and original cases for any of the three terminal 
nodes in either analysis.  The long-term CART decision tree was therefore considered 
sufficiently predictive with respect to predicting the biotic community of a site-year based on 
its environmental conditions. 

As touched upon earlier, this model adequately described the spatial distribution of 
communities in the Coorong over the nine-year period, but it did not show the decline in 
condition that was observed by CLLAMMecology researchers in the latter years (2005 
onwards; Lester and Fairweather, in press; Noell et al., 2009).  In order to adequately assess 
the ecological condition of the Coorong, and the likely response to management scenarios, it 
was important that we could accurately predict abrupt temporal changes in the ecosystem 
function.  For this reason, the short-term analysis was also conducted.   

Using the combined group-average cluster results as the preliminary states with the short-
term biological data set (as described above), we repeated the CART analyses to identify 
the environmental variables driving these preliminary states in CART 6.0 (Step 3). 

The same predictive variables were used for the short-term CART analysis as for the long-
term analysis (although the values were re-calculated for the quarterly time-step).   Twoing 
splitting was again used, with the 1SE rule used to select the best tree.  Cross-validation 
occurred with four folds, as this was the size of the cluster with the smallest number of 
cases.  The same parameters governed the minimum size of parent and child nodes and the 
penalty for missing values.  

CART identified a tree with nine terminal nodes and a relative cost of 0.428.  The splitting 
variables were the average daily range in modelled water levels (mostly due to tides), the 
maximum number of days without flow over the barrages, the average modelled water level, 
the average annual modelled salinity from the previous year, the average modelled water 
depth from the previous year and finally the average modelled water level from the previous 
year.  This model correctly predicted 87% of cases in the learning data set and 66% of cases 
in the cross-validation. 

The patchiness of the biological data set made testing the distinctness of these eight 
terminal nodes somewhat complex (Step 4).  The short-term data set was divided into a 
number of (mostly) nested subsets (i.e. including CPUE from commercially-fished species, 
CPUE and bird abundances, CPUE and bird and juvenile invertebrate abundances and 
finally CPUE and bird and fisheries-independent fish abundances).  The first subset (CPUE 
only) included all 144 cases, but of course had a very limited subset of the available 
biological data.  The final two subsets (CPUE with bird and juvenile invertebrate abundances 
(n = 62) and CPUE with bird and fisheries-independent fish abundances (n = 49)) had the 
greatest range of available biological data, but smaller numbers of cases each.  ANOSIM-
analyses were undertaken in PRIMER 6.0 on each subset in turn.  Where evidence existed 
that the cases grouped into a terminal node did constitute a biologically-distinct community 
(by having a significant difference in a pair-wise comparison, with some consideration given 
to small samples sizes), those terminal nodes were considered distinct.  Where no ANOSIM 
analysis indicated that terminal nodes were significantly different, they were combined.   

This process resulted in the combination of two terminal nodes from the short-term model, 
leaving a model including eight terminal nodes.  The terminal nodes combined represented 
the last split on the existing short-term classification tree (with a splitting variable of the 
average modelled water depth from the previous year), so the existing short-term tree could 
be pruned, and constructing a new tree was not necessary.  The pruned tree correctly 
predicted the preliminary state of 79% of the training data set and 64% of the test data set 
under cross-validation. 

As for the long-term model, the cases excluded at Step 1 (n = 48) were used to assess the 
ability of the CART model to predict the biological community of a site-season, using 
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ANOSIM analyses in PRIMER 6.  The short-term CART model (in CART 6.0) was used to 
predict terminal nodes for each of the new cases based on its environmental characteristics.  
The various subsets of the short-term biological data described in Step 4 (with the exception 
of the two including the juvenile invertebrate and fisheries-independent fish abundances) 
were used to compare the biotic assemblages present in the new set of cases for each 
terminal node with the original cases used to define that node.  All terminal nodes showed 
non-significant differences between the biota of the new and old cases except for one.  This 
node was not the final split in the CART model (as occurred during Step 4), so was not easy 
to identify an additional splitting variable to separate the new cases from the original cases.  
There were also relatively few cases upon which to base such a decision (56 possible 
permutations in the ANOSIM analysis).  At this point in the model development process, the 
node was left as it stood, with a flag that it may in fact represent more than one ecosystem 
state in the system. 

Combining the long- and short-term models 

Developing a single ecosystem model for the Coorong was the objective of the CLLAMM 
Futures project, so the long-term and short-term models were combined into a single model 
spanning both time-steps. 

ANOSIM analyses were undertaken in PRIMER 6.0 on all cases from both the data-sets 
(long-term and the short-term) to identify the states that were biologically distinct.  This 
necessarily involved including some data more than once within the analyses (as 2005 to 
2007 occurred in both data sets), although the time-steps analysed, and hence the 
averages, were different.  However, the goal of the exercise was to combine states that 
occurred in both models, so these repeated data were less likely than independent data to 
be in significantly-different states across the two models. 

Catch per unit effort data for the commercial fishery was the only data set that was collected 
in a consistent manner across both the long-term and short-term data sets.  CPUE is also a 
method that is standardised for differences in effort levels, so it adjusted for the difference in 
time-step between the two data sets.  An ANOSIM analysis was undertaken on all cases 
from both the data sets, assessing pair-wise differences between the terminal nodes 
identified in Step 3 (and confirmed through Steps 4 and 5, Figure 2.2) for each of the long-
term and short-term models.  This analysis indicated that the biotic assemblages for cases in 
two of the three terminal nodes from the long-term model were not significantly different from 
the biota of the cases from a number of the terminal nodes in the short-term model.  This 
suggested that the variation in the long-term model for those terminal nodes was partitioned 
across several short-term terminal nodes (which in fact, represented variation that was the 
rationale for constructing the short-term model in the first instance).  One of the long-term 
terminal nodes, however, had cases where the biotic assemblage was significantly different 
from all cases associated with short-term nodes.   

Cases from the distinct long-term node were combined in an environmental data set with all 
of the short-term cases (n = 213).  A number of variables were excluded from the data set, 
because the difference in time-step affected their relative values.  These included the total 
precipitation over the time-step and a number of flow variables that were based on total flow 
over the time-step.   

Step 3 was repeated using this combined long- and short-term environmental data set to 
develop a combined CART model in CART 6.0.  The same set of options governed the 
choice of tree, cross-validation and penalty for the proportion of missing values in predictive 
variables.  The response variable to be predicted was the terminal node identified in either 
the long-term or the short-term CART model (whichever was relevant).  Where significant 
predictive variables were correlated with each other, the variable explaining a lower 
proportion of the variance in the model was excluded, and the model was re-run. 
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A combined model with 10 terminal nodes was identified at a relative cost of 0.361.  The 
predictive variables for the model included the average daily tidal range, the maximum 
number of days without flow over the barrages, the average modelled water level, the 
maximum daily precipitation, modelled water depth in the previous year, average modelled 
salinity and the variance in average modelled salinity.  This model correctly predicted the 
original terminal node for 53% of the training data set and 58% of the test data set under 
cross-validation. 

When the various terminal nodes were tested for the distinctiveness of their biological 
communities (Step 4), ANOSIM analyses were conducted on two subsets of the combined 
long- and short-term data sets.  The first included the presence/absence of bird and 
commercial fish species (n = 175).  The second looked at the CPUE of commercially-fished 
species only (n = 223).  These analyses, conducted in PRIMER 6.0 suggested that several 
of the terminal nodes did not support unique biological communities, with no significant 
difference between two pairs of terminal nodes.  These nodes were then combined, and the 
resulting biota re-assessed using ANOSIM again.  The remaining eight terminal nodes did, in 
fact, represent significantly-different biotic assemblages.  As occurred for the short-term 
model, the two pairs of nodes that were combined were the last two split off from the 
combined CART model, so creating a model describing the eight (as opposed to 10) terminal 
nodes was simply a matter of pruning the existing tree, rather than creating a new model.  
The final model is presented in the results below.  

An assessment of the full predictive capacity of the combined ecosystem state model was 
not straightforward.  The misclassification rates reported for the CART analyses apply to the 
most recent step in the analysis, as they indicate the proportion of cases misclassified with 
respect to the response variable.  For example, in the combined model, this response 
variable was the state identified either through the long-term or the short-term CART model.  
This is hardly an independent assessment of the variance in the original environmental and 
biological data sets, given that it included a mixture of short- and long-term data, and not all 
sites were included for all years/seasons (depending on the terminal nodes that each were 
assigned to).  In order to provide some information about how well the variance in the 
environmental and biological data sets could be used to predict the ecosystem state of the 
Coorong, we undertook a CAP analysis on each of the long- and short-term biological and 
environmental data sets.  CAP analysis allows an assessment of how well values of a 
response variable (here, ecosystem state) can be predicted using a multivariate data set 
(here either the biological or the environmental data sets) (Anderson et al., 2008).  The 
analysis has been done from this perspective (rather than using the state to predict the biota 
or the environmental conditions), as this is the manner in which the model was constructed.  
CAP analysis was undertaken in PRIMER 6 with the PERMANOVA+ add-on package 
(Anderson et al., 2008) 

The stability of the ecosystem state model was tested using a bagging procedure for the 
CART tree in CART 6.0 (Steinberg and Golovnya, 2007).  This was done using the same 
variable input predictors as the ecosystem state model presented below, with no cross-
validation, but a 0.3 proportion of the data used as a reserve (or holdout) for testing the 
committee of trees.  As occurred for the original model development, cases that had been 
excluded from the initial clustering due to missing values (at Step 1) were excluded from the 
bagging routine.  The initial tree produced was somewhat different from the model presented 
here, using the maximum number of days without flow as the initial splitting variable.  This 
initial tree had a prediction success rate of 0.73, with the committee of trees correctly 
predicting 63% of cases.  The committee of trees included 100 trees overall.  While the 
bagging did not produce identical results to the model used here as the ecosystem state 
model, the committee of trees repeatedly used the same variables included in the ecosystem 
state model.  The most common variation was for the maximum number of days since flow 
to be the first splitting variable, with the tidal range as the second variable, effectively 
splitting the data into the same four segments as occurs via the first two splits in the actual 
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model.  Overall, the results of the bagging procedure indicate the structure of the model is 
quite stable, and that the predictive success of the ecosystem state model is reasonable 
(53% versus 63% for the committee of trees). 

Characterisation of the ecosystem states (Step 6) 

Each of the eight identified ecosystem states was characterised based on the biological 
community they supported and the environmental conditions under which they occurred.  
These eight ecosystem states were divided into two basins; a marine basin and a 
hypersaline basin, based on the tidal range which they included.  Non-parametric multi-
dimensional scaling plots were created from Bray-Curtis similarity matrices of standardised, 
log(x+1)-transformed abundance data for the biological data sets, and Euclidean-distance 
similarity matrices based on normalised data for the environmental data sets.  A maximum of 
25 runs was used for each.  ANOSIM analyses were used to test for differences among 
ecosystem states, and SIMPER to identify species typifying ecosystem states, or 
distinguishing between them.  These analyses were conducted in PRIMER 6. 

Mapping the ecosystem states  

The ecosystem states of the Coorong were mapped for each of the years over which the 
model was constructed (1999 to 2007).  This involved colour-coding maps of the Coorong 
according to the identified ecosystem states.  Areas between focal sites were coloured to a 
point half-way between the current site and the next site, with no attempt to identify any zone 
of transition.  This was due to the discrete nature of the ecosystem states (a site can only 
occur in one at a time), and the lack of data between focal sites to allow a better model to be 
developed to weight the distance over which each state was likely to occur. 

2.1.4. Developing a predictive model 

The intention behind developing an ecosystem state model for the Coorong was that it be 
used as a tool to predict the likely ecological consequences of a variety of management 
strategies under a range of climate change conditions.  As such, it was necessary to turn the 
ecosystem model into a predictive S&T model suitable for assessing a range of scenarios.   

The various management levers and forcing factors (such as climate) were manipulated to 
create a number of scenarios (see below for a detailed list).  These formed the inputs into 
the predictive model and drove the physical conditions to determine the ecosystem states at 
each site for each time step.  Analyses of the outcomes of the model runs were then used to 
assess the likelihood of the water benefit objectives being met for that scenario. This 
process is illustrated in Figure 2.3. 

 

Figure 2.3. Scenario modelling using the synthesised model  
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By happenstance, all of the drivers of ecosystem condition were ones that could be derived 
from the output of the hydrodynamic model for the Coorong (Webster 2006).  This meant 
that the largest challenge in predicting the ecosystem states of the Coorong existed for sites 
outside the domain of the hydrodynamic model.  Because of the complexity of the system, 
and the focus sites of CLLAMMecology as a whole, the hydrodynamic model began at the 
Murray Mouth and extended in a south-westerly direction (Webster 2006).  As such, two of 
the twelve CLLAMMecology focal were outside the model domain (Monument Road and 
Mundoo Channel; see Figure 1) and a third was on the edge of the model within the cell 
simulating the Murray Mouth (Barkers Knoll; Figure 1.1). 

For these three sites, it was necessary to extrapolate from the modelled water levels and 
salinities of nearby cells to predict the environmental conditions occurring at each site.  In 
order to do this, we explored correlations between measured data for each driving variable 
(e.g. tidal range) for the site of interest with other sites that were wholly within the model 
domain.  The Solver add-in to Microsoft Excel 2007 was used to maximise linear 
relationships between the variables, exploring uni- and multivariate relationships for the 
closest site within the model domain (Ewe Island) and several others nearby.  This was done 
by minimising the sum of squared residuals for each relationships through changes to the 
slope and intercept values.  The relationship with the minimum sum of squares over the 
available data was selected for use in extrapolating modelled data during the scenario 
analyses.  A separate relationship was developed for each variable at each location. 

Once the relationships were established, the ecosystem state model was coded as a 
decision tree in Python 2.6.1 (Python Software Foundation, 2008).  The code simply 
assigned each site in each year in a given scenario to an ecosystem state, based on the 
values of the variables identified by the model.  A time series of ecosystem states along the 
Coorong was produced as output from the model, which was then post-processed to assess 
the relative effects of each scenario.   

2.1.5. Creating a model independent of barrage flows 

Several of the scenarios of interest (see below for full list), included investigating 
interventions that were intended to have ecological benefits for the Coorong via mechanisms 
other than changing the flow regime over the barrages.  The structure of the ecosystem 
model (with the maximum number of days without flow over the barrages as the second 
splitting variable on both sides of the model) meant that any assessment of changes in the 
distribution of ecosystem states arising from those interventions was unlikely to adequately 
capture the full extent of change.   

To create an alternative model that was independent of flows over the barrages, we used the 
same eight ecosystem states identified in the original model.  We then re-applied the model 
development procedure without any of the environmental parameters relating directly to 
barrage flows.  This meant that the environmental data set now included data on modelled 
salinities, water levels, depths and meteorological conditions within the Coorong.  The new 
model was constructed using the combined data set for both long- and short-term 
environmental data that was used to combine the long- and short-term models above. 

The best results were obtained when the two basins identified in the original model were 
modelled separately.  This resulted in two alternative models, one for the marine basin and 
one for the hypersaline basin.  This would diminish the accuracy of the model over the 
longer term, as it requires an a priori assessment of the likely tidal influence at each location, 
but the interventions designed to mimic the ecological benefit of barrage flows tend to be 
short-term responses to drought, in particular, so this was not seen as a major problem. 
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As for the original ecosystem state model, all of the parameters identified as driving the 
ecosystem states of the Coorong in the alternative model could be calculated from output 
from the hydrodynamic model.  Hourly water levels and salinities along the length of the 
Coorong that are the output of the hydrodynamic model were used to calculate the average 
water levels, depths and salinities as required by the ecosystem response models.  This 
allowed us to predict the mixture of ecosystem states present in the Coorong each year for 
the duration of the model run at each of the 12 focal sites, as occurred for the original model.   

In order to test the concordance of the predictions based on the alternative model with those 
based on the original model, the Baseline scenario (Historic climate with current extraction 
levels, average inflows from USED and no dredging, see the Scenario Analyses section for 
additional detail) was run for each over 114 years for each of the 12 focal sites.  The 
proportion of site-years predicted to be in each state was calculated, as was the proportion 
of degraded states (i.e. those where the number of days without flow has exceeded 339 
days) versus the proportion of healthy states (i.e. those with more recent flow over the 
barrages).  The number of states allocated to the marine versus hypersaline basins for the 
original model was compared with those of the alternative model (where the division 
between basins was selected a priori based on location).  The overall concordance of 
predictions for all site-years was also calculated. 

2.1.6. Creating spatial and temporal links in ecosystem states 

The initial intention for the ecosystem state model was to incorporate spatial and temporal 
links between the ecosystem states.  We intended to do this by constraining the transitions 
that were possible in the system through use of an allowable transition matrix.  The rationale 
for this was that the sites would be more likely to occur in a state if that state occurred 
nearby, either in space or time.  This is due to the proximity of propagules, colonists and 
other refugia making it more likely that the biota associated with a new state would be able 
to migrate to the location in question.  A second reason for incorporating such a matrix was 
that we considered it likely that some transitions may take longer to occur than others.  For 
example, recovery of ecosystems after degradation would be dependent on the re-
colonisation of areas from nearby refugia (e.g. for macrophytes like Ruppia tuberosa).  This 
may mean that transitions from more-degraded to less-degraded states may require 
environmental conditions to be favourable for some time before the change in biota is 
obvious. 

We attempted to constrain the model to only include transitions that had occurred previously 
(based on a Markov Chain), in the relative proportions that were observed over both the 
long- and short-term data sets.  This was problematic, because the period over which the 
model was constructed was a period of decline in ecosystem condition, with no recovery 
occurring.  This meant that the probability of recovery ever within the system, according to 
our modelling, would be zero; a situation that was likely to be incorrect, unnecessarily 
alarming and not very useful. 

As a result, we abandoned the idea of including a transition matrix in the modelling at this 
stage.  It remains an aspect of the modelling approach that we would like to revisit, when 
additional data are available, particularly regarding emerging recovery pathways. 

2.1.7. Model evaluation 

We attempted to evaluate the model predictions by comparing the biota from the ecosystem 
states predicted in the past with the available data for those locations and years.  The 
rationale for this comparison was, if the ecosystem state model can adequately predict all 
the ecosystem states for the Coorong, we should be able to predict the biotic assemblage of 
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particular locations and times with accuracy.  This is the equivalent of comparing the 
predictions from a deterministic model to measured data for times outside the calibration 
period (as was done for the hydrodynamic model; Webster, 2006).  The specific hypothesis 
being tested was that there was no difference between the biota found in any ecosystem 
state for the years in the training data set (1999-2007) when compared with the biota in the 
same ecosystem state for data collected prior to 1999. 

There was relatively little biological data available with which to evaluate the predictions of 
the ecosystem state model.  Fisheries catch per unit effort data was available from 1984 to 
2007.  Five years‟ worth of invertebrate sampling had been undertaken in the early 1980s 
and repeated in the early 2000s on a presence/absence basis (Geddes and Butler, 1984; 
Geddes, 1987).  This sampling also noted the presences of aquatic macrophytes (including 
Ruppia megacarpa and Zostera sp., for example), where relevant.  Ruppia tuberosa 
sampling (1984, 1990-1993), along with sampling for bird abundance (1984 and 1985) was 
undertaken in the South Lagoon of the Coorong (Paton et al., in press).  Independent bird 
sampling was undertaken along the length of the Coorong for 1981, 1982 and 1987 (Gosbell 
and Christie, 2004). 

Based on these data, we compiled data files describing the biological condition of the 
Coorong for each taxonomic group (birds, fish, aquatic macrophytes and invertebrates) 
separately across the years covered by the available data.  We used the Baseline scenario 
(Historic climate with current extraction levels, average inflows from USED and no dredging, 
see Scenario Analyses section below for additional detail) to approximate the environmental 
conditions at the relevant points in time, and to predict the ecosystem state of each 
site/region (as appropriate).  Where the data were collected at regions spanning more than 
one CLLAMM focal site (see Figure 1.1), the most commonly-occurring ecosystem state was 
used as the predicted ecosystem state for that region for that point in time.  nMDS ordination 
plots were constructed based on Bray-Curtis similarity matrices for each taxonomic group.  
Data had been log-transformed (and standardised if a mixture of sampling methods were 
used), except for the invertebrate data which were collected as presence/absence only.  
Ecosystem states identified in the 1980s or in the 1990s were compared with those that 
were collected during the training data set for the model (1999-2007) using specified 
contrasts in PERMANOVA (Anderson et al., 2008).  The model was structured with 
ecosystem state as a fixed factor and year as a random factor nested in state.  The contrasts 
investigated were all years from the 1980s compared with years from the training data set 
(1999-2007), and all years from the 1990s (excluding 1999) compared to the years from the 
training data set (the latter comparison was only included where data from the 1990s 
existed).  SIMPER analyses identified the taxa contributing most to differences between 
states or years, and PERMANOVA tested the differences between factors.  All analyses 
were conducted in PRIMER 6 with the PERMANOVA+ add-on software (Anderson et al., 
2008). 

Separate treatment of each taxonomic did not result in good agreement between data from 
the 1980s and 1990s and the model predictions, but neither did it provide good agreement 
between model predictions and the training data set (see below in the Results section).  That 
is, we expected to see clear groupings for each ecosystem state, regardless of the year in 
which the data were collected, which was largely not observed.  This was in contrast to 
results obtained when combining taxonomic groups, as occurred during the model 
development.  As a result, we also investigated the data available from the 1980s for 
multiple taxonomic groups where there was overlap between the data sets.  This resulted in 
a very limited number of samples, but we were able to construct nMDS plots for a 
combination of commercial fish CPUE, aquatic macrophytes and invertebrates, one for a 
combination of fish CPUE and aquatic macrophytes and one combining fish CPUE and bird 
data (all based on Bray-Curtis similarity matrices constructed from presence/absence data).  
PERMANOVA was used to test differences between ecosystem states overall in each 
comparison, as well as testing the difference between states occurring in the 1980s and 
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those occurring in the training data set.  No multi-taxonomic-group comparisons were 
possible for the 1990s because commercial fisheries and Ruppia data were the only data 
available. 

There were also little data that had been collected more recently than the construction of the 
model (i.e. in 2008).  Fisheries-independent fish abundance data had been collected during 
2008 (Noell et al., 2009), but no other data were available.  As only a single year was 
collected, this data was treated using the quarterly time-step, and was assessed against the 
training data set and model predictions as occurred for the 1980s. 

2.1.8. Evidence for additional ecosystem states within the Coorong 

While the ecosystem state performs well in describing the ecosystem states that have 
occurred in the nine years for which we had sufficient data, we acknowledge that other 
states are likely to (at least potentially) exist that are not adequately represented within this 
time frame.  One that we have identified as likely to occur is an estuarine state, potentially 
requiring significant, ongoing freshwater inputs, such as have not occurred during the 
previous decade.  Another is a state even less speciose than the degraded hypersaline state 
in the hypersaline basin, or than the degraded marine state in the marine basin.  The 
existence of both of these states is hinted at in anecdotal accounts of the system, either from 
the general community or researchers who have worked in the system for many years, and 
from the trends in data collected after the development of these models, particularly in the 
South Lagoon.  The possible existence of other states that fall outside the bounds of the 
data set is important to keep in mind when interpreting these results with a view to 
management of the system. 

During the model verification process, a number of PERMANOVA results indicated that there 
were significant differences between ecosystem states in the 1980s and their counterparts in 
the training data set.   For this time, most of the ecosystem states were only represented in 
one or the other time period, and often by a single case.  However, the Estuarine/Marine 
state was one that was predicted for several regions in both the 1980s and in the training 
data (from 1999-2007).  The Estuarine/Marine state was one that we suspected would prove 
to be a composite of multiple ecosystem states if additional data were available. 

We used the three biological data sets that were developed for model verification using 
multiple taxonomic groups to assess the likelihood that the Estuarine/Marine state as it 
appears in the ecosystem state model was, in fact, more than one distinct state 
(presence/absences of commercial fish species and birds, presence/absence of aquatic 
macrophytes and commercial fish species and presence/absence of aquatic macrophytes, 
commercial fish species and invertebrates).  We cluster analysed each using group-average 
clustering with a SIMPROF test to identify significant clusters using PRIMER 6.  Three 
significant clusters were identified in both the macrophytes and fish, and macrophytes, fish 
and invertebrate data sets.  Two significant clusters were identified in the fish and birds data 
set, however, a third cluster could also be identified, and membership within the three was 
significant when assessed using ANOSIM.  The three-cluster solutions for the first two data 
sets were also significant when tested using ANOSIM.    

An environmental data set was compiled from modelled water level and salinity data, 
modelled flows over the barrages and measured meteorological data.  This included all of 
the same variables that were constructed from the same sources for the original 
environmental data set during the ecosystem state model development process.  The three 
different cluster solutions were also combined in a similar manner to that used for the short-
term data set in the original model development process.  There was no overlap between 
two of the clusters, so four groups were finally allocated (under the assumption that CART 
and ANOSIM analyses would detect non-significant groups in the response variable).  Each 
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of the cases was assigned to a terminal node based on the CART model, and then the 
biological community for each was tested using ANOSIM.   

2.2. Sensitivity analyses 

Several steps within the model development were identified as critical.  These were steps 
where a high degree of sensitivity could dramatically affect the model produced, as well as 
the interpretation of the condition of the Coorong.  The steps identified as critical to the 
model development process were the: 

 initial clustering; 

 choice of thresholds; and 

 the probability of transitions from one state to another (Lester and Fairweather, 

2009b). 

The possibility of additional states that may exist for the Coorong, but not be represented in 
the training data set, was also highlighted as a possible area in which the model may be 
sensitive to the initial data set (Lester and Fairweather, 2009b).  

2.2.1. Assessing sensitivity to initial clustering  

The initial clustering step was identified as the most critical step within the model 
development process (Lester and Fairweather, 2009b).  High levels of sensitivity to this step 
had the potential to dramatically alter the model as a whole, because this was the first point 
at which the preliminary states were identified.  There was the possibility that the model may 
be sensitive to the method of clustering that was selected, that the clustering may be 
sensitive to small changes in the measured abundance of various biota, or that these 
changes may propagate through the model to affect the selection of predictive variables and 
the threshold values within the CART analysis. 

The clustering in the model development process used group-average linkage with no 
predetermined number of clusters to be assigned.  An alternative choice at this stage would 
have been to use k-means clustering, thus to specify the number of clusters produced.  We 
assessed the degree of sensitivity of the long-term and short-term data sets to the use of 
group-average linkage clustering versus k-means clustering by undertaking both analyses 
on each data set and identifying the level of concordance in the case membership of clusters 
produced by each method.  For the k-means analysis of each data set, we set k equal to the 
number of clusters identified in the original model development (that is, k = 3 for the long 
term data set, k = 4 for the short term data including juvenile macroinvertebrate abundances 
and k = 5 for the short term data including fisheries-independent fish CPUE).  The k-means 
analyses were undertaken in SYSTAT 11, while the group average clustering was 
undertaken in PRIMER 6.  The level of concordance for random numbers generated with the 
same number of possible groups was also produced for comparison. 

In order to assess the effect of small changes in the abundances of biota on the 
configuration of the clusters identified, we systematically changed increasing proportions of 
the original biological data sets.  In sequence, we randomly replaced 1%, 2%, 5%, 7%, 10%, 
15%, 20%, 30%, 40% and 50% of the original data and ran a k-means cluster analysis on 
each new data set, assessing the concordance between the case-membership of the original 
clusters and that of the altered data sets.  This was achieved by replacing a randomly-
selected value with a new value, sampled at random from a normal distribution with the 
same mean and standard deviation as the variable that was being altered.  This was 
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repeated until the desired proportion of the original data had been replaced.  Data were then 
log(x+1)-transformed and a Bray-Curtis dissimilarity matrix was produced.  K-means 
clustering was chosen to avoid problems comparing analyses with different numbers of 
clusters.  Each data set was investigated separately (long term, short term with juvenile 
macroinvertebrate abundances, and short term with fisheries-independent fish CPUE), and 
the analysis was repeated 1000 times. These analyses were undertaken using R 2.8.1 
(www.r-project.org). 

A random selection of five runs with 20% substitution and 50% substitution within the long-
term data set were reserved in order to assess the sensitivity of the CART analysis to small 
changes in the original clusters.  The k-means solution for the long-term data set was also 
used for this purpose, and compared with the original long-term model using the group-
average clusters.  For each cluster solution, a CART analysis was run, using the same 
methods as described in the original model development.  The resultant terminal nodes were 
used as factors in ANOSIM analyses in PRIMER 6 to test for biological differences and 
where there was no significant difference, the nodes were combined.  A final CART analysis 
was run for the resultant states from the k-means clustering and one of the five clusters 
where 20% of the biological data had been randomly changed.  These models were then 
used to run the Baseline scenario (Historic climate with current extraction levels, average 
inflows from USED and no dredging, see the Scenario Analyses section for additional detail) 
to predict the states for each site-year in that scenario.  The proportion of site-years with 
concordant states was then calculated. 

A second alternative would have been to base the initial clusters on the environmental data 
sets, instead of the biological data set.  For the long-term data set we analysed the 
environmental data using group-average clustering in PRIMER 6.  This produced a large 
number of significant clusters according to the SIMPROF test in PRIMER 6, so we also 
clustered the long-term data using k-means clustering in SYSTAT 11.  For the short-term 
data set, we compared k-means clustering (k = 7) of the environmental data to the 
amalgamated clusters in the biological data to assess the concordance in the cases 
assigned to each cluster. 

2.2.2. Assessing sensitivity to threshold values 

For the predictive model, sensitivity to the exact values identified for each threshold had the 
potential to affect the results and interpretation of scenario analyses.  We assessed the 
likelihood that the exact value chosen for each of the thresholds was a result of chance 
alone.  In order to do this, we replaced the value of each threshold with a random number 
drawn from a normal distribution with the same mean and standard deviation as the variable 
in question from the Baseline scenario.  We compared the states predicted for each site-year 
under the Baseline scenario to a uniform distribution of states.  This was done for each 
threshold in turn and for all thresholds simultaneously, with each repeated 1000 times.  
Histograms of the resulting distributions were plotted, and the number of runs where the 
result was as extreme as, or more extreme than, the observed outcome was calculated.  
Dividing this by the number of runs gave the probability that the observed outcome could be 
attributed to chance alone. 

We also tested the resultant state distribution relative to the distribution observed under the 
ecosystem state model.  We again replaced each threshold with a random number drawn 
from the distribution of that variable.  This time, we calculated the change in the number of 
site-years predicted to be in each state relative to the original model as a proportion.  This 
analysis was again repeated 1000 times for each threshold individually, and also for all 
thresholds changing together.  The mean proportion of site-years predicted to be in a 
different state and the coefficient of variation were calculated to give an understanding of 
how sensitive the resultant states were to the exact values for the thresholds. 
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2.3. Scenario analyses 

In order to assess the likely ecological outcomes of climate change and to potential 
management actions, the predictive model was applied to a set of 20 possible future 
scenarios for the Coorong.  The selected scenarios were based on a series of workshops, 
meetings and discussions with natural resource managers and other stakeholders.  These 
meetings included the second CLLAMM Futures workshop in which possible options were 
prioritised to produce a short list (Lester and Fairweather, 2008a).  This short list was then 
circulated for comment and finally adopted for CLLAMM Futures.  Resource and time 
constraints dictated that 20 was the maximum number of scenarios that could be attempted 
during CLLAMM Futures.  The 20 that were selected were designed to cover as many key 
decisions and areas of uncertainty as possible, including the effect of climate change, 
extraction levels and sea level rise, the effect of The Living Murray initiative, the ecological 
benefits associated with the Murray Mouth dredging program in times of low flow and the 
maximum potential benefit of an enhance Upper South East Drainage (USED) scheme.  A 
list of these scenarios is presented below in Table 2.3 and the results of these scenario 
analyses are presented in (Lester et al. 2009). 
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No. Scenario Climate 
Extraction 

levels 
Flow over 
barrages 

USED inflows 
Mouth 

dredging 
Sea level rise 

TLM 
infrastructure 

Benchmark conditions       

1 Baseline historic (MDB 
SY Scenario A) 

+ + + - - - 

2 Historic Natural historic - + + - - - 

Effects of climate change to 2030       

3 Median Future median (MDB 
SY Scenario B) 

+ possible + - - - 

4 Dry Future dry (MDB SY 
Scenario C) 

+ possible + - - - 

5 Median Natural median - possible + - - - 

6 Dry Natural dry - possible + - - - 

Effects of sea level rise       

7 Median Future, -10 
cm SLR 

median + possible + - minimum (10 cm 
decrease) 

- 

8 Medium Future, +20 
cm SLR 

median + possible + - median (20 cm rise) - 

9 Median Future, +40 
cm SLR 

median + possible + - high (40 cm rise) - 

10 Dry Future, -10 cm 
SLR 

dry + possible + - minimum (10 cm 
decrease) 

- 

11 Dry Future, +20 cm 
SLR 

dry + possible + - median (20 cm rise) - 

12 Dry Future, +40 cm 
SLR 

dry + possible + - high (40 cm rise) - 

Table 2.3. Summary of scenarios investigated as a part of CLLAMM Futures and presented in this report 

Note:  „+‟ denotes current levels or present in the scenario and „-„ indicates none or not present in the scenario 
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No. Scenario Climate 
Extraction 

levels 
Flow over 
barrages 

USED inflows 
Mouth 

dredging 
Sea level rise 

TLM 
infrastructure 

Effects of TLM initiative       

13 Historic TLM off historic + + + - - present but no 
added 500 GL 

14 Historic TLM on historic + + + - - present, 500 GL 
flows 

15 Median TLM off median + possible + - - present but no 
added 500 GL 

16 Median TLM on median  + possible + - - present, 500 GL 
flows 

17 Dry TLM off dry + possible + - - present but no 
added 500 GL 

18 Dry TLM on dry + possible + - - present, 500 GL 
flows 

Effects of other management interventions       

19 MM Dredging historic + + + +           
(-2m 

depth) 

- - 

20 Max USED Flows historic + + maximum 
possible 

+ - - 

Table 2.3 cont. Summary of scenarios investigated as a part of CLLAMM Futures and presented in this report 

Note:  „+‟ denotes current levels or present in the scenario and „-„ indicates none or not present in the scenario 
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The data available for use during the modelling exercise was a consideration during the 
development of the list of scenarios.  In particular, we wished to align this modelling with that 
undertaken elsewhere in the Murray-Darling Basin, and so were keen to make use of the 
CSIRO Murray-Darling Basin Sustainable Yields (MDB SY) project (CSIRO, 2008).  The 
MDB SY project included climate and river modelling for three scenarios that were of interest 
within CLLAMM Futures.  Scenario A was the historic climate sequence with current levels of 
extraction applied for the duration of the model run.  Scenario B included a median 
projection of 2030 climate, again with current extraction levels operating over the entire 
model run.  Scenario C was the equivalent with a dry climate projection.  These scenarios 
had been modified slightly by the MDBA in order to take into account more-recent climate 
projections for Victorian rivers for use during the modelling of The Living Murray scenarios 
(J. Davis, MDBA, pers. comm.).  Flows at the barrages based on the modified version of 
each scenario were used as the input data for modelling the ecosystem states of the 
Coorong.  This information was converted into the maximum number of days without flow by 
creating a counter that reset each day that flow occurred over the barrages.  The maximum 
for each time step was the highest number that was reached during that period, without 
resetting the value to 0 at the beginning of each (and so, could therefore be higher than 365 
for the annual time step, for example). 

Parameters other than flow were derived from the hydrodynamic model of the Coorong 
(Webster, 2006).  The hydrodynamic model produced a time series of water levels and 
salinities along the length of the Coorong at a daily time step.  For each day, maximum, 
minimum and average water levels, as well as average salinities were produced for each 
cell.  These were then converted to daily averages for the water level (m AHD) and water 
depth (m) and salinity (g L-1).  Tidal range (m) was calculated for each day by subtracting the 
minimum water level from the maximum.  This means that not all of the variation in water 
level is due to tidal movement, wind seiching and other factors may also play a part, but the 
variable is referred to as „tidal range‟ for simplicity.  An annual (or a seasonal) average of the 
daily values was then calculated for each variable and used as input for the scenario 
modelling. 

The ecosystem response model produced a time series of ecosystem states for each of the 
12 CLLAMMecology focal sites (Figure 1.1).  This time series was analysed in a number of 
ways to elucidate the ecological response of the Coorong to each of the scenarios 
investigated.  The 114-year time series was chosen as it used all the available river-flow 
data that was simulated by MDBA. 

For each scenario, a number of analyses were undertaken to elucidate the hydrodynamic 
and ecosystem state characteristics of the output.  Boxplots were constructed for each 
hydrodynamic variable driving ecosystem states (i.e. tidal range, maximum number of days 
without barrage flow, water level, water depth from the previous year and salinity for the 
original model).  These displays were undertaken using SYSTAT 11.   

Threshold analysis was also undertaken for each driving hydrodynamic variable for each 
scenario.  The years in which each site exceeded the threshold for each variable were 
selected, and the return time and duration of exceedance were calculated.  The return time 
was calculated as the number of years between when a site fell below the threshold and 
when the site exceeded the threshold once again.  The exceedance duration was simply the 
number of years for which a site exceeded a particular threshold for each event, and was 
averaged when the threshold was crossed multiple times.  These values were calculated for 
each site and basin.   

The proportion of site-years exceeding salinity of 100 g L-1 was also calculated for each 
scenario.  A salinity of 100 g L-1 is considered to be important by many experts as an upper 
tolerance limit for key species in the region (D. Paton, M Geddes, University of Adelaide, 
pers. comm.; Lester et al., 2008).   



 

Predicting future ecological condition of the Coorong Page 29 

A Gini coefficient was calculated for each driving hydrodynamic variable for each scenario.  
Gini coefficients have only recently been applied to ecological problems (Naeem, 2009; 
Wittebolle et al., 2009) but are more commonly used in economic analyses, as a measure of 
the evenness of incomes within a population.  The Gini coefficient is thus a measure of 
evenness of dispersion of a variable.  It is calculated by finding difference in the area under a 
curve based on a cumulative distribution (here, of a hydrodynamic variable) and a Lorenz 
curve.  Values vary between 0 and 1, with 0 representing a perfectly evenly-dispersed 
distribution and 1 representing a completely unevenly-dispersed distribution.   

The deviation from the Baseline scenario was calculated for four driving hydrodynamic 
variables in each of 20 scenarios.  Scenarios were divided into site-years falling above or 
below the tidal range threshold.  For those site-years below the tidal range threshold, the 
sum of the deviance of each site-year from the Baseline scenario was calculated for the 
water level and days without barrage flow variables.  For site-years over the tidal threshold, 
the sum of deviance was calculated for salinity and days without barrage flows.  These 
variables were based on the ecosystem state model being used.  For the marine basin, 
depth in the previous year was also a driving variable, but inspection of scenario results 
indicated that it was only exceeded in a limited number of sites, so for ease of presentation 
and interpretation, the analysis was limited to two variables per basin.  Analyses were 
conducted in the R statistical environment (www.r-project.org).   

The prevalence of each ecosystem state in each scenario was calculated as the proportion 
of site-years predicted to be in each state.  A Markov Chain matrix was also assembled for 
each scenario, investigating the frequency with which site-years changed between each set 
of ecosystem states (Horn, 1975).  This was used to calculate the frequency of different 
transitions, including the frequency of transitions between basins, to more-degraded states, 
or to less-degraded states.  States were defined as degraded if they were only present when 
the Coorong had not received any barrage flows in 339 or more days.   

Runs analyses tested the sequence of states appearing at each site in each scenario (Zar, 
1999).  A runs analysis assesses the significance of a given time series of categorical 
variables, and compares it to a random time series of the same number of categories.  
Analyses were conducted in the R statistical environment.   

Finally, the ecosystem states of the Coorong were mapped for a set of seminal years 
(including wet and dry years and the year of Ramsar listing; thus 1902, 1956, 1974, 1985, 
2005 and 2008).  This involved colour-coding a map of the Coorong according to the state 
predicted for each of the CLLAMMecology focal sites.  Areas between the sites were 
coloured according to the state of the nearest focal site.  No attempt was made to establish 
zones of transition or to weight by distance the interpolation between sites. 

All results for the various scenarios are presented in Lester et al. (2009) and Langley et al. 
(2009), along with comparisons between scenarios and management implications. 
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3. Results 

3.1. An ecosystem state model for the Coorong 

The final ecosystem state model for the Coorong identified eight distinct ecosystem states 
(Figure 3.1).   

 

 

 

Figure 3.1.  Ecosystem states model for the Coorong as a whole 

The states are presented as a logic tree, where each box should be read as a logic statement.  For a 
given site-year, if the condition in the box is true, the tree should be followed to the left-hand side.  If 
the condition is false, the tree proceeds to the right, until a shaded terminal node is reached.   This 
terminal node determines which state the Coorong is in at any given location and time, based on its 
environmental characteristics.   

 

The variables from the environmental data set that predicted the ecosystem state of the 
Coorong were a combination of water quality, quantity and flow variables.  They were 
average daily tidal range, maximum number of days since flow has crossed the barrages, 
average water level and salinity, and average depth of water from the previous year.  The 
model was effectively divided into two basins by the appearance of average tidal range as 
the first split variable.  This divided the Coorong into a basin with a moderate to high degree 
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of tidal influence (called a „marine‟ basin) and a basin with little tidal influence (called a 
„hypersaline‟ basin).  The marine basin extended from around the Murray Mouth estuary 
down the northern part of the North Lagoon, to about Noonameena (see Figure 1.1), where 
the states were influenced by their connection to the Murray Mouth, so they were considered 
more marine in character (on the right side of Figure 3.1).  The hypersaline basin, which 
included the southernmost part of the North Lagoon and the entire South Lagoon, had four 
hypersaline states (shown on the left side of Figure 3).   

For ease of interpretation, we have given each of the eight states a name (Figure 3.1).  The 
names chosen were based on the environmental conditions under which each state exists, 
and the range of biota supported by each.  The values for each of the thresholds that were 
significant in the model (and the length of time without water over the barrages, in particular) 
along with an observed trend of declining biotic richness across a number of the states led 
us to believe that the ecosystem states represent a continuum from a healthy ecosystem to 
a degraded ecosystem in each basin.  Thus we have named the states accordingly.  The 
names, however, are not intended to identify a single state (e.g. the „healthy‟ state) that 
should occur within a basin.  It is not even necessarily possible that such a condition could 
occur.  One of the unique characteristics of the Coorong is that it has always supported a 
wide range of biota (Phillips and Muller, 2006).  The ideal condition for the system as a 
whole is therefore likely to include a mixture of these states.  In addition, the definition of a 
state used by this modelling approach means that these states may either be transitional 
states, which would exist for a period of time before changing into another state, or be stable 
over longer periods.  Within the data set available, it is not possible to identify which states 
are stable over the long term and which are not.  Finally, despite the labelling of „unhealthy‟ 
and „degraded‟ for several states, this is not to say that no biota exists therein.  As is 
described below, each state continues to support a range of biota that is available as food 
and habitat resources. 

The marine basin consisted of four states, including those named Estuarine/Marine, 
Marine, Unhealthy Marine and Degraded Marine.  By definition, these states had greater 
tidal ranges than those four of the hypersaline basin: Healthy, Average, Unhealthy and 
Degraded Hypersaline.  For each, their long-term biological and environmental 
characteristics have been compiled (Tables 3.1 and 3.2), as have the short-term 
characteristics of each state (Tables 3.3 and 3.4).   
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 Marine states Hypersaline states 

Species 
Estuarine/ 

marine 
Marine† 

Unhealthy 
Marine 

Degraded 
Marine‡ 

Healthy 
Hypersaline 

Average 
Hypersaline 

Unhealthy 
Hypersaline 

Degraded 
Hypersaline 

Macrophyte (% cores containing Ruppia)       

Ruppia tuberosa 0.02 0.00 0.21 NA NA 51.97 22.69 NA 

Fish (Average CPUE (net days))       

Yellow-eyed mullet 6.08 6.62 8.47 9.45 NA 3.90 0.00 NA 

Bony bream 0.70 0.03 1.28 0.00 NA 0.53 0.00 NA 

Mulloway 1.02 0.69 0.89 0.11 NA 0.13 0.00 NA 

Greenback flounder 0.40 0.07 0.32 0.52 NA 0.09 0.00 NA 

Bronze whaler shark 0.22 0.41 0.35 0.00 NA 0.00 0.00 NA 

Australian salmon 0.84 1.06 1.23 0.00 NA 0.03 0.00 NA 

Birds (Average abundance)       

Australian shelduck 383 0 286 13922 NA 1023 905 NA 

Red-necked avocet 160 18 61 1260 NA 506 613 NA 

Hoary-headed grebe 147 0 265 497 NA 686 904 NA 

Curlew sandpiper 283 21 711 238 NA 288 5 NA 

Chestnut teal 1047 3 655 5593 NA 1341 373 NA 

Banded stilt 529 0 159 15487 NA 2418 20270 NA 

Table 3.1.  Summary of long-term biological characteristics of Coorong ecosystem states 

Note: Biota included are based on the results of SIMPER analyses outlining the species that drove the similarities within states and the differences between states for the 
long-term analysis.  Several SIMPER analyses were undertaken on various subsets of the data due to missing values.  The species included here are those that most 
commonly and significantly differentiate between two ecosystem states.   
†
While the marine state has few of the bird species listed here, it supported more abundant populations of other species.  

‡
 Caution should be used in interpreting these 

results, because only one case for the degraded marine state exists.  Figures are presented as indicative only.  NA = No sites were categorised as healthy hypersaline or 
degraded hypersaline in the long-term analyses. 
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 Marine states Hypersaline states 

Parameter 
Estuarine/ 

marine 
Marine 

Unhealthy 
Marine 

Degraded 
Marine‡ 

Healthy 
Hypersaline 

Average 
Hypersaline 

Unhealthy 
Hypersaline 

Degraded 
Hypersaline 

Flow         

Maximum number of days since 
flow (days) 

127 376 376 376 NA 152 376 NA 

Water quantity         

Average daily tidal range (m AHD) 0.11 0.38 0.19 0.00 NA 0.03 0.03 NA 

Variance of average water level  0.03 0.02 0.02 0.02 NA 0.08 0.03 NA 

Water quality         

Maximum salinity (g L-1) 57.56 48.11 61.64 88.24 NA 123.28 176.47 NA 

Average [total phosphate] (mg L-1) 0.14 0.05 0.12 0.35 NA 0.27 0.50 NA 

Average [ammonia] (mg L-1) 0.04 0.05 0.05 0.04 NA 0.20 0.30 NA 

Average [Chlorophyll b] (µg L-1) 2.38 0.45 2.33 4.20 NA 10.39 7.11 NA 

Average turbidity (NTU) 14.59 1.68 11.14 35.00 NA 17.55 23.53 NA 

Average [TKN] (mg L-1) 1.85 0.61 1.22 6.57 NA 5.61 6.90 NA 

Meteorological*         

Maximum daily minimum 
temperature (oC) 

24.06 28.75 28.73 29.00 NA 24.11 28.75 NA 

Average annual rainfall (mm 
annum-1) 

467.46 300.95 301.35 295.80 NA 476.10 300.95 NA 

Table 3.2.  Summary of long-term environmental characteristics of Coorong ecosystem states 

Note: Parameters included are based on the results of SIMPER analyses outlining the variables that drove the similarities within states and the differences between states 
for the long-term analysis.  Several SIMPER analyses were undertaken on various subsets of the data due to missing values.  The parameters included here are those that 
most commonly and significantly differentiate between two ecosystem states.  

‡
 Caution should be used in interpreting these results, as only one case for the degraded 

marine state exists.  Figures are presented as indicative only. * Meteorological parameters were calculated from data collected at Meningie weather station (see Figure 1). 
NA = No sites were categorised as healthy hypersaline or degraded hypersaline in the long-term analyses. 
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 Marine states Hypersaline states 

Species 
Estuarine/ 

marine 
Marine 

Unhealthy 
Marine 

Degraded 
Marine‡ 

Healthy 
Hypersaline 

Average 
Hypersaline 

Unhealthy 
Hypersaline 

Degraded 
Hypersaline 

Fish (Average CPUE (net days))       

Small-mouthed 
hardyhead 

NA 132.30 962.57 708.00 ND ND 406.40 79.60 

Yellow-eyed mullet NA 477.40 211.87 171.00 ND ND 0.00 0.00 

Australian salmon NA 118.00 48.57 15.00 ND ND 0.00 0.00 

Sandy sprat* NA 294.40 155.74 49.00 ND ND 0.00 0.00 

Birds (Average abundance)       

Chestnut teal 36 10 37 16 96 92 71 36 

Hoary-headed grebe 31 11 1 0 295 199 416 3 

Banded stilt 6 0 1 54 406 868 1361 1894 

Red-necked stint 62 152 78 86 23 499 119 211 

Grey teal 106 113 67 35 292 157 176 0 

Whiskered tern 34 58 72 1545 2 75 600 3 

Invertebrates (Average abundance)†       

Capitella 8084 3619 10775 ND 0 0 ND ND 

Arthritica 2439 1561 4500 ND 0 0 ND ND 

Simplesetia 1264 1327 3424 ND 0 0 ND ND 

Insect larvae 319 336 177 ND 740 34 ND ND 

Table 3.3.  Summary of short-term biological characteristics of Coorong ecosystem states 

Note: Biota included are based on the results of SIMPER analyses outlining the species that drove the similarities within states and the differences between states for the 
long-term analysis.  Several SIMPER analyses were undertaken on various subsets of the data due to missing values.  The species included here are those that most 
commonly and significantly differentiate between two ecosystem states.   

‡
 Caution should be used in interpreting these results, as only one case for the degraded marine 

state exists.  Figures are presented as indicative only. 
†
 All invertebrate abundances reported here are for juveniles.  * Hyperlophus vittatus.  ND = indicates that no data 

were available for that species for that particular state. 
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 Marine states Hypersaline states 

Variables 
Estuarine/ 

marine 
Marine 

Unhealthy 
Marine 

Degraded 
Marine‡ 

Healthy 
Hypersaline 

Average 
Hypersaline 

Unhealthy 
Hypersaline 

Degraded 
Hypersaline 

Flow         

Maximum number of days since flow 
(days) 

141 540 536 652 2 166 559 505 

Average flow volume from previous 
year (GL) 

47.70 55.56 57.48 0.00 56.89 45.81 85.48 0.00 

Water quantity         

Average maximum water level (m AHD) 0.34 0.39 0.22 ND 0.42 0.15 -0.03 -0.25 

Maximum water level (m AHD) 0.69 0.78 0.56 ND 0.58 0.43 0.33 -0.07 

Minimum water level (m AHD) -0.12 -0.27 -0.25 ND 0.21 -0.11 -0.35 -0.40 

Average minimum water level (m AHD) 0.13 -0.01 0.02 ND 0.38 0.12 -0.08 -0.29 

Average water level (m AHD)  0.22 0.15 0.12 0.04 0.40 0.13 0.04 -0.25 

Average daily tidal range (m) 0.21 0.39 0.20 ND 0.03 0.02 0.03 0.03 

Change in water level over quarter (m) 0.81 1.05 0.81 ND 0.38 0.53 0.68 0.32 

Water quality         

Average maximum salinity (g L-1) 49.82 44.12 52.11 71.60 113.03 123.73 128.87 178.87 

Average minimum salinity (g L-1)  32.05 34.72 39.45 55.20 99.63 95.22 97.39 120.53 

Average salinity (g L-1)  41.46 37.98 45.04 64.62 105.94 110.78 112.56 151.37 

Table 3.4.  Summary of short-term environmental characteristics of Coorong ecosystem states 

Note: Variables included are based on the results of SIMPER analyses outlining the factors that drove the similarities within states and the differences between states for 
the long-term analysis.  Several SIMPER analyses were undertaken on various subsets of the data due to missing values.  The parameters included here are those that most 
commonly and significantly differentiate between two ecosystem states.   

‡
 Caution should be used in interpreting these results, as only one case for the degraded marine state exists.  Figures are presented as indicative only.  ND = indicates that 

no data were available for that species for that particular state.  
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For five of the eight states, the long-term differences in multivariate displays of either 
community composition and environmental parameters are shown in Figures 3.2 and 3.3, 
respectively.  Only five states are shown because of missing values excluding a sixth state, 
and two states did not appear within the long-term analyses.  For these five shown, however, 
there were significant differences in the community composition between states (ANOSIM 
Global R = 0.402, p = 0.001), based on the macrophyte, bird and commercial fish 
abundances found, and in the environmental parameters found (ANOSIM Global R = 0.536 
p = 0.001).   

State

Estuarine/Marine

Marine

Unhealthy Marine

Average Hypersaline

Unhealthy Hypersaline

2D Stress: 0.15

 
Figure 3.2.  nMDS plot of long-term biological characteristics for the ecosystem states 
of the Coorong. 

Note: The following figure is based on a Bray-Curtis similarity matrix of standardised, log(x+1)-transformed 
abundance data for macrophytes, birds and commercial fish for 12 sites between 1999 and 2007 (minus cases 
with missing values, n = 80).  A maximum of 25 runs were used. 

This figure shows a non-parametric multi-dimensional scaling plot that give a two-dimensional representation 
of the similarity between the samples analysed.  Each point on the figure represents a single site-year within 
the Coorong data set.  The position of each point is based on its relative similarity to all the other site-years 
represented.  Points that are close together are more similar than points that are further apart.  The stress 
value given in the upper right-hand corner indicates the relative stress associated with representing the multi-
dimensional data as a two-dimensional plot.  Values of less than 0.2 are widely considered to be acceptable 
(Clarke, 1993).  The points are coded to show the state that each site-year was allocated to, with states within 
the marine basin shown as solid shapes and states within the hypersaline basin shown as open shapes.   

 

The difference between the biotic composition of each state supports the notion that the 
model is describing distinct ecosystem states.  There is a large distinction between the 
marine and the hypersaline states, with the closed and open symbols clearly differentiated.  
The distinctions within these two groups are smaller, with several groups overlapping, 
indicating that, although statistically significant, there are more similarities within the groups 
of states.  The Estuarine/Marine state, in particular, appears not to be particularly well-
grouped.  This is not supported by the results of a dispersion analysis using PERMDISP, a 
test of the dispersion of points within a group (Anderson et al., 2008).  There was no 
significant difference in the dispersion (or relative spread of the points) for the various states.  
The Marine state was the most dispersed, with the Unhealthy Marine and the Unhealthy 
Hypersaline state the least dispersed.  Pair-wise comparisons showed that the Marine state 
was significantly more dispersed than the Unhealthy Marine or the Average Hypersaline 
states (t = 4.01, p = 0.001 for the Marine state compared to the Unhealthy Marine state and t 
= 2.84, p = 0.034 for the Marine state compared to the Average Hypersaline state). 
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State

Estuarine/Marine

Unhealthy Marine

Degraded Marine

Average Hypersaline

Unhealthy Hypersaline

2D Stress: 0.14

 

Figure 3.3.  nMDS plot of long-term environmental characteristics for the ecosystem 
states of the Coorong. 

Note: The following figure is based on a Euclidean similarity matrix of normalised data for modelled salinity, 
depth and water levels, flow characteristics, meteorological and water quality data  for 12 sites between 1999 
and 2007 (minus cases with missing values, n = 55).  A maximum of 25 runs were used. 

 

The environmental characteristics of all states were much more distinct, with very little 
overlap between any of the states.  This was supported by the pair-wise ANOSIM, which 
showed that all states were significantly different with the exception of those where only one 
or two site-years represented that state (Unhealthy Marine and Degraded Marine).  
Dispersion of points was significantly different for the environmental parameters of each 
state (F = 13.36, p = 0.001 overall).   Where pair-wise tests were possible (i.e. more than two 
cases per state), only the Estuarine/Marine and Average Hypersaline states did not have 
significantly different degrees of dispersion, with these two having the highest overall level of 
dispersion among the states.   The greater level of distinction between the states with 
respect to their environmental characteristics may be a reflection of the more complete 
environmental data upon which these analyses is based, and additional biological data may 
better illustrate the distinction between the various marine and hypersaline states. 

The environmental variables performed well in predicting the ecosystem state of the system.  
CAP analysis on the long-term environmental data resulted in the choice of 11 principal 
coordinates analysis (PCO) axes (Figure 3.4).  Figure 3.4 looks similar to the nMDS plots 
presented in Figure 3.2 and 3.3, but includes an explicit hypothesis test (that is, that the 
environmental data set can be used to predict the ecosystem state), rather than simply 
representing the similarity between individual cases in two-dimensions.  In this figure, the 
position of each point is determined by the value of each case against the first two PCs.   
The analysis of the long-term environmental data, based on those 11 axes, incorporated 
97% of the variance in the original resemblance matrix.  Cross-validation based on this 
analysis correctly predicted the ecosystem state for 93% of cases excluded from the model 
in turn.  Indeed all of the misclassified cases belonged to the Average Hypersaline state 
being misclassified as Estuarine/Marine.  Permutation testing confirmed that the differences 
among ecosystem states in multivariate space were significant (tr(Q_m’HQ_m) =  1.98308, p 
= 0.001).   
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Figure 3.4.  Constrained ordination to assess the capacity of the long-term 
environmental data to predict the ecosystem state of the Coorong 

 

In CAP analyses of the short-term environmental data set, 18 PCO axes were identified, 
explaining 99% of the original resemblance matrix (Figure 3.5).  Here, cross-validation 
correctly classified 92% of cases excluded sequentially from the analysis.  Here, cases were 
more likely to be misclassified if they belonged to states with few representatives (e.g. 
Healthy Hypersaline and Degraded Hypersaline).  Again, permutation testing confirmed that 
the differences between groups was statistically significant (tr(Q_m’HQ_m) =  4.2356, p = 
0.001). 
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Figure 3.5.  Constrained ordination to assess the capacity of the short-term 
environmental data to predict the ecosystem state of the Coorong 

 

Assessing the ability of the biological data set to predict the ecosystem state (effectively 
what was done when using the biological data set to identify preliminary states through 
cluster analysis) had more variable results.  For the long-term biological data set, there was 
a clear ability to predict the relative basin for each case, but less-distinct differences within 
each basin (Figure 3.6).  This was reflected by the misclassification rate (44%) for the 
selected number of 12 PCOs.  The 12 PCOs accounted for 95% of the variation in the 
original resemblance matrix.  Misclassification rates were highest for the Unhealthy Marine 
and Marine states (66% and 75%, respectively), but there were also relatively few cases 
(particularly for the Marine state).  The analysis had the most difficulty distinguishing 
between the Unhealthy Marine state and the Estuarine/Marine state, with cases 
misclassified in both directions.  Despite this, permutation testing still identified the 
differences between states as significant (tr(Q_m’HQ_m) =  1.65098, p = 0.001).   

Using the short-term biological data set to predict ecosystem states was more successful.  
Using either the data set including juvenile invertebrate abundances or fisheries-independent 
fish abundances greatly assisted in resolving the differences between the Estuarine/Marine 
state and the Unhealthy Marine state.   

The CAP analysis including juvenile invertebrate abundances identified 6 significant PCOs, 
explaining 78% of the variation in the resemblance matrix.  This model correctly classified 
82% of cases under cross-validation, with Healthy Hypersaline having the highest 
misclassification rate, but with few cases to classify (n = 5).  Permutation testing indicated 
that differences between ecosystem states were significant (tr(Q_m’HQ_m) =  2.128382, p = 
0.001). 
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For the analysis including fisheries-independent fish abundances, 14 PCOs were identified, 
incorporating 96% of the variance in the resemblance matrix (Figure 3.7).  This analysis 
correctly classified 86% of cases under cross-validation, and permutation testing again 
confirmed the differences between states as significant (tr(Q_m’HQ_m) =  2.55216, p = 
0.001). 
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Figure 3.6.  Constrained ordination to assess the capacity of the long-term biological 
data to predict the ecosystem state of the Coorong 
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Figure 3.7.  Constrained ordination of the to assess the capacity of the short-term 
biological data to predict the ecosystem state of the Coorong (based on data 
including fisheries-independent fish abundances) 

 

3.1.1. Characterising each of the ecosystem states 

Each of the eight ecosystem states have been described in terms of their biological and 
environmental characteristics.  These narrative descriptions are a combination of the 
characteristics apparent from both the long- and short-term data sets. 

Estuarine/Marine 

Affected by tidal influences from the Murray Mouth, the Estuarine/Marine state was 
characterised by lower average salinities and a shorter period since flow occurred over the 
barrages than other states.  This input of both marine and fresh water also led to the state 
having the highest average water depths and water levels and high variability in water levels 
across the time period (quarterly for shorter-term analyses and annually for longer-term 
analyses).  In addition, the water quality characteristics of this state may also have reflected 
both tidal (i.e. via the Murray Mouth) and freshwater (i.e. via the barrages) influences, with 
low nutrient concentrations (e.g. ammonia and TKN), low chlorophyll (a and b) 
concentrations and low turbidity.  This state supported large numbers of marine and 
estuarine fish (e.g. yellow-eyed mullet Aldrichetta forsteri, mulloway Argyrosomus japonicus, 
greenback flounder Rhombosolea tapirina, black bream Acanthopagrus butcheri and 
Australian salmon Arripis truttaceus), which were characteristic of this state.  The presence 
of a variety of fish species and tidal influence was reflected in the birds that were present, 
with the state dominated by piscivores (e.g. several cormorant species Phalacrocorax spp. 
and Australian white ibis Threskiornis molucca).  There were also other bird groups 
associated with this state, including waterfowl (e.g. Australian shelduck, Tadorna 
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tadornoides) and migratory waders (e.g. curlew sandpiper) present.  The aquatic 
macrophyte, Ruppia tuberosa, a potential food source for some bird species, was also 
associated with this state, although it was limited in distribution.  There were also large 
numbers of invertebrates that characterised this state, with high abundances of amphipods, 
Simplisetia aequisetis (a polychaete), and adult and juvenile Capitella spp. (polychaete 
taxa). 

Marine 

The Marine state had the lowest average salinity of all the states (although it was not 
significantly lower than for the Estuarine/Marine state).  Like the Estuarine/Marine state, it 
also had low average water levels, but had the highest variability in water levels across the 
time period.   Compared with the Estuarine/Marine state, this state was characterised by 
greater time between water inputs, and more days since flow occurred over the barrages.  
The water quality may have reflected mostly marine inputs, with the lowest average 
concentrations of total phosphate, TKN and turbidity across all states.  Biologically, this state 
was dominated by marine and estuarine fish species, including the Australian salmon, 
bronze whaler shark (Carcharhinus brachyurus) and black bream, with fewer yellow-eyed 
mullet and greenback flounder than the other marine basin states.  Fewer piscivorous birds 
were present (in comparison to other marine basin states), with greater numbers of 
waterfowl species (e.g. musk duck Biziura lobata and pacific black duck Anas superciliosa) 
present.  There were also fewer amphipods and capitellids (a family of polychaetes), but 
greater numbers of Nephtys australiensis (another polychaete) and Arthritica helmsi (a 
bivalve). 

Unhealthy Marine 

As occurred for the Estuarine/Marine and Marine states, the Unhealthy Marine state also 
had relatively low average salinities (but slightly higher than Estuarine/Marine).  The average 
water levels were still high, but there was greater variability in the average water levels 
across the time period for this state.  As for the Marine state, the average maximum number 
of days since flow occurred over the barrages was higher than for the Estuarine/Marine 
state, indicating greater time between inputs of freshwater.  This lack of freshwater may be 
reflected by this state having low average depths compared with other states in the marine 
basin.  Average water quality characteristics such as nutrient concentrations (e.g. ammonia, 
total phosphate and TKN) and turbidity values were low.  The Unhealthy Marine state still 
maintained a diverse fish population, with high abundances of yellow-eye mullet and bony 
bream (Nematolosa erebi).  The bird species for this state were dominated by piscivores, 
including great, little black and little pied cormorant species (Phalacrocorax carbo, 
Phalacrocorax sulcirostris and Phalacrocorax melanoleucos, respectively) and hoary-headed 
grebes (Poliocephalus poliocephalus).  Other prominent species included curlew sandpiper 
(a migratory wader) and black swan (Cygnus atratus, a waterfowl), which may be attracted 
by the presence of Ruppia tuberosa and by the high abundances of adult and juvenile 
invertebrates, including capitellids, Simplisetia aequisetis (both polychaetes) and Arthritica 
helmsi (a bivalve). 

Degraded Marine 

The Degraded Marine state was represented by only a single case in each of the short- and 
long-term data sets used in the determination of this model (located at Noonameena in the 
short-term and Parnka Point in the long-term analyses).  As a result, we have provided little 
detail for the characteristics of this state, simply giving some direction as to what this state 
may represent.   It appears that this state had higher average salinity with lower water levels 
and inputs.  Water quality, although only collected for the long-term data set, appeared to 
remain low for concentrations of some nutrients (e.g. ammonia) but may be degrading with 
higher values for others (e.g. TKN concentrations and turbidity).  The fauna that was 
associated with this state included a mix of piscivorous and wading birds, few fish species 
and chironomid larvae as the only benthic macroinvertebrates present. 
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Healthy Hypersaline 

In the hypersaline basin, the Healthy Hypersaline state had higher average salinity values 
than for the states of the marine basin.  This state was characterised by low average 
variability in water levels across the time period, and with a high average water level.  The 
Healthy Hypersaline state also had high average depths (only lower than the 
Estuarine/Marine and marine states in the marine basin) and the lowest average maximum 
number of days since flow occurred over the barrages.  Thus, the Healthy Hypersaline state 
featured frequent freshwater flows, with the average maximum interval between flows being 
only 11 days; much lower than for all other states.  Frequent freshwater inputs were also 
reflected by this state having the highest average days with flow and the highest average 
flow volume of all states.  With such frequent freshwater inputs, the water quality of this state 
was characterised by the highest concentrations of nutrients (e.g. ammonia and TKN) and 
highest turbidity of all states. The Estuarine/Marine state also had high average chlorophyll 
concentrations.  The absence of estuarine and marine fish species (e.g. black bream, 
greenback flounder and yellow-eyed mullet) may have been due to the higher salinities of 
this state compared with the northern states, or to high nutrient concentrations, some of 
which are potentially toxic to fish.  The bird fauna was dominated by large numbers of 
waders and waterfowl, including the grey teal (Anas gracilis), black swan, chestnut teal 
(Anas castanea) and red-necked avocet (Recurvirostra novaehollandiae).  Compared to 
other states, there were smaller numbers of other wader species and piscivores, including 
the red-capped plover (Charadrius ruficapillus), red-necked stint and whiskered tern 
(Chlidonias hybridus).  There were also lower numbers of invertebrates associated with this 
state, particularly juvenile capitellids, Simplisetia aequisetis and Arthritica helmsi.  However, 
there were higher numbers of juvenile insects (other than chironomids) compared with all of 
the other states. 

Average Hypersaline 

Like the Healthy Hypersaline state, the Average Hypersaline state was characterised by 
higher average salinities than the marine basin.  It had moderate change in water levels 
across the time period analysed (that is, quarterly for the short-term and annually for the 
long-term analyses).  This state had low average depths and received freshwater influences 
from flow over the barrages reasonably often, with few days between flows.  Consistent with 
freshwater inputs, the water quality indicated high nutrient concentrations (e.g. TKN and 
ammonia) and the presence of algae and diatoms, with high concentrations of both 
chlorophyll a and b and high turbidity.  The high values of potentially undesirable water 
qualities (e.g. salinity and ammonia levels) may have been responsible for the lower 
abundances or absence of various fish species.  There were very few fish species 
associated with this state, with very low numbers of greenback flounder and mulloway and 
no black bream.  Corresponding with the lower numbers of fish, there was also a lack of 
piscivorous birds associated with this state (with the exception of the Australian pelican, 
Pelecanus conspicillatus).  Instead, the bird species associated with this state included other 
functional groups, including waders (e.g. banded stilt Cladorhynchus leucocephalus, red-
necked stint and red-necked avocet) and waterfowl (e.g. grey teal).  Ruppia tuberosa was 
also more dominant within this state, with greater coverage than any other state (although no 
data was available for the Healthy Hypersaline state).  There were also very few invertebrate 
taxa associated with this state (e.g. Capitella spp., Nephtys australiensis and their juvenile 
equivalents), but chironomid larvae and amphipod species were present in higher numbers 
than were found at other states. 

Unhealthy Hypersaline 

The Unhealthy Hypersaline state had higher average salinities than the Healthy or Average 
Hypersaline states.  It was also characterised by low average water levels.  Despite average 
depths being mid-range compared with other states, the maximum was relatively low with 
only 0.4 m difference between the average and maximum depths.  Thus, this state was also 
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characterised with low variability in water levels across the time period.  The Unhealthy 
Hypersaline state had a high average maximum number of days since flow occurred over 
the barrage, indicating low freshwater flows influencing the state.  Like other hypersaline 
basin states, the water quality indicated high average nutrient concentrations (e.g. ammonia 
and total phosphate) and high turbidity.  Like the Healthy Hypersaline state, such high 
nutrient levels may have been responsible for the low numbers of fish present, except for the 
high numbers of small-mouthed hardyhead Atherinosoma microstoma present within this 
state, although high salinities would also significantly affect fish diversity.  The low numbers 
of fish species also led to the relatively low abundances of some piscivorous bird species, 
including great cormorant and fairy tern (Sterna nereis).  Some piscivorous species still 
occurred within the state in reasonable numbers, including the hoary-headed grebe and 
Australian pelican.  Other characteristic bird taxa included banded stilt and Australian 
shelduck.  The state supported a very small diversity of invertebrates (e.g. a few Simplisetia 
aequisetis, Capitella spp. and Arthritica helmsi), but still had high numbers of chironomid 
larvae.   

Degraded Hypersaline 

Like the previous hypersaline basin states, the Degraded Hypersaline state had a high 
average salinity, the highest of all states detected for the Coorong.  It also had the lowest 
average water levels, with a maximum water level of only -0.10 m AHD during the time 
period.  With such low water levels, this state was also characterised by having the lowest 
average change in water levels over the time period and the lowest average depths.  This 
was likely to be due to the low input of freshwater received from the flow over the barrages, 
given that this state had the highest minimum number of days since flow (excluding the 
Degraded Marine state).  Attributes of the water quality for this state were variable, with low 
average ammonia concentrations, but high average total phosphate concentrations and high 
turbidity (similar to the Average Hypersaline state) and higher average TKN.  This state was 
therefore characterised by more variability in nutrient concentrations, compared with others 
in the hypersaline basin.  The state supported relatively few fish species and was dominated 
by the presence of small-mouthed hardyhead, which are tolerant of high salinity.  Similarly, 
there was also a lack of invertebrate species, including those known to be more salinity-
tolerant (e.g. chironomids).  The bird taxa characterising this state were waders and 
waterfowl, with high numbers of banded stilt and red-necked stint, also with silver gull (Larus 
novaehollandiae), masked lapwing (Vanellus miles) and Australian shelduck.  Similarly to the 
other hypersaline states, there were lower numbers of piscivorous species, including the 
Australian pelican and whiskered tern, and the waterfowl grey teal. 

3.1.2. Mapping the ecosystem states in space and time 

One example of an application for the ecosystem model that has been developed is that it 
can be used to investigate changes in ecosystem states in space and over time.   

One of the unique features of the Coorong is the range of conditions that it supports at any 
one time along its 110-km length.  This was one of the reasons for its listing on the Ramsar 
Convention for Wetlands, and its status as a Murray-Darling Basin Icon Site (Murray-Darling 
Basin Commission 2006).  The Murray Mouth region has a tidal influence that is determined 
by the size of the estuarine mouth opening.  The barrages, also toward the north of the 
system, can provide some freshwater flows, potentially creating estuarine conditions.  
Further south in the system, the distance from these two sources of water increases, and so 
the water becomes more saline due to evaporation, and the South Lagoon is often 
disconnected from (or poorly connected to) the North Lagoon, limiting the source of water to 
that lagoon.  This range of physical conditions has always supported a wide range of 
biological communities, making a mix of ecosystem states the normal condition for the 
Coorong.  It is important that our modelling reflect that mix.  We mapped the changes in 
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ecosystem state for the Coorong (Figure 3.8), and describe the observed changes in 
ecosystem response that have occurred over the last 10 years by focussing on the 
beginning (2000) and the end (2007) of the time series. 

State of the Coorong in 2000 

Near the beginning of our time series, during 2000, two ecosystem states were observed 
along the length of the Coorong.  These are illustrated in Figure 3.8a.  The Murray Mouth 
region and the North Lagoon existed in the Estuarine/Marine state (characterised by 
relatively low average salinities, recent freshwater flow over the barrages, high average 
water depths and high variability of water levels throughout the year).  This state supported a 
diverse fish community, with both estuarine and marine species present, many piscivorous 
fish and a diverse adult and juvenile benthic invertebrate community.  The South Lagoon, 
however, existed at this time in the Average Hypersaline state (characterised by a less 
diverse fish fauna, few piscivorous birds, but high numbers of waders and waterfowl).  
Ruppia tuberosa, a key macrophyte for the Coorong, was also widespread, and some 
salinity-tolerant invertebrate species persisted.  For the Average Hypersaline state, the 
characteristic environmental conditions include higher average salinities than found in the 
marine basin states, low average depths, but recent freshwater flows over the barrages.  
Water quality parameters indicated high nutrient concentrations and high phytoplankton 
abundances.   

Pair-wise comparison between the two states suggests that the main differences between 
the bird faunas were higher abundances of waders (e.g. banded stilt, red-necked avocet, 
sharp-tailed sandpiper and red-necked stint) and higher waterfowl abundances (e.g. 
chestnut teal, grey teal, Australian shelduck) in the Average Hypersaline state than the 
Estuarine/Marine state (see Tables 3.1 and 3.3).  The Estuarine/Marine state, on the other 
hand, supported higher numbers of piscivorous birds (e.g. great cormorant, Caspian tern 
Sterna caspia, Australian white ibis and Australian pelican) than the more hypersaline state.  
The Estuarine/Marine state also supported higher numbers of adult polychaete worms, 
juvenile capitellids, and adult Arthritica helmsi (a bivalve) while the Average Hypersaline 
state supported higher numbers of chironomid larvae and a much greater coverage of 
Ruppia tuberosa.  The Estuarine/Marine state had a greater abundance and diversity of fish 
taxa, including mulloway, Australian salmon, bony and black bream, bronze whaler and 
gummy sharks (Mustelus antarcticus) and European carp (Cyprinus carpio). 

In 2000, the Coorong could have been considered to be in reasonable condition, although it 
was probably degraded with respect to conditions during the 1980s.  While 1997, 1998 and 
1999 had relatively small freshwater flows over the barrages, there had been good flows in 
the years prior to 1997 and, as a result, the Murray Mouth maintained its natural connection 
to the ocean.  For 2000, the Coorong supported a total of 113,500 waterbirds (compared to 
an average of 153,000 for 2000 to 2007) across 50 species (compared to an average of only 
53.25 for 2000 to 2007).  The commercial fishery was also reasonably productive (although 
below average) for that year, with a total of 2.56 kilograms of fish caught per net day (i.e. 
catch per unit effort, compared to an average of 2.92 for the period of 2000 to 2007) across 
14 target species (compared with an average of 13 species for 2000 to 2007).   

Along the length of the Coorong, the average water level was 0.37 m AHD at the channel 
midpoint (as opposed to the thalweg).  The average salinity for the system for the year was 
48.4 g L-1 (compared to approximately 35 g L-1 for seawater), with average annual salinity 
varying along the length of the system from a minimum of 21.3 g L-1 near the largest 
barrage, to 96.8 g L-1 at Salt Creek in the South Lagoon.  Nutrient concentrations were only 
measured for the locations south of Pelican Point in 2000, but total phosphate 
concentrations varied at all those sites between 0.13 and 0.50 mg L-1 and total Kjeldahl 
nitrogen (TKN) concentrations varied between 2.1 and 6.1 mg L-1, with higher readings 
tending to occur in the South Lagoon.   
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Figure 3.8.  Distribution of ecosystem states along the Coorong 

a) In 1999 to 2001, b) In 2002, c) In 2003, d) In 2004 to 2005, e) In 2006, f) In 2007 
Note: Dotted lines indicate boundaries between the three regions.  Dots indicate the locations of the focal sites (see Figure 1.1 for names).  Names of regions are only listed 
on panel a, but apply to all other panels as well. 
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It is interesting to note that there is no distinction in the model between conditions near the 
barrages, with their input of freshwater, and further down the North Lagoon, where this 
influence is likely to be diminished.  This could either be the result of estuarine conditions 
occurring throughout the northern section of the system, biota occurring in the estuary that 
was not significantly different from that occurring in the more marine conditions further south, 
or a biota that varied to the extent that any distinction was not detected statistically.  The 
relatively dry conditions for the three years preceding 2000 (three-year average annual flow 
of only 2,362 GL per annum compared with the long-term average of 5,050 GL per annum, 
as calculated from data provided by MDBA) may suggest that the first option is not likely to 
be the case.  This may indicate that conditions in 2000 were not pristine, or that the 
estuarine biota supported by the system was similar to that supported at somewhat higher 
salinities. 

State of the Coorong in 2007 

In addition to varying along the length of the Coorong, the environmental conditions, and the 
corresponding mix of ecosystem states, have also changed through time.  As the drought 
has continued, and worsened, the more natural states of the Coorong have gradually been 
replaced by more degraded states.  A lack of freshwater has led to a loss of estuarine 
conditions from the system.  With seawater now the only source of water replacing 
evaporative losses, the salt loads within the system have increased over time, with the South 
Lagoon becoming extremely hypersaline (up to a measured maximum of 220 g L-1 in 2007).  
These changing environmental conditions have resulted in changes in the biological 
conditions, with the replacement of the original ecosystem states with new ones. 

The mix of states observed in 2007 illustrates these changing conditions (Figure 3.8f).  
Three ecosystem states existed along the length of the Coorong, all of which were different 
from the ones that were present in 2000.  The northern part of the Coorong, including the 
Murray Mouth region, was predominantly in the Unhealthy Marine state (7 sites), with two 
sites existing in a Marine state.  The Marine state had the lowest average salinity of any 
state (at 37.4 g L-1), but low average water levels and a long time since flow had passed 
over the barrages.  The water quality of the state reflected the marine inputs through the 
Murray Mouth, with low values of both nutrient concentrations and turbidity.  Biologically, the 
Marine state supported a relatively diverse marine fish fauna, with some estuarine species 
(e.g. black bream) also present.  It had relatively few piscivorous birds, but many waterfowl 
and several species of polychaete worms, amongst other invertebrate taxa.  Compared with 
the Marine state, salinity for the Unhealthy Marine state was high, but nutrient concentrations 
and turbidity remained relatively low.  The biota of the Unhealthy Marine state was 
characterised by high abundances of yellow-eyed mullet in particular, although other marine 
species were also present in reasonable numbers. 

A pair-wise SIMPER comparison between the Marine and Unhealthy Marine states shows 
that they were distinguished best by the Unhealthy Marine state having twice the abundance 
of yellow-eyed mullet and small-mouthed hardyhead.  The Unhealthy Marine state also had 
higher abundances of mulloway, European carp, greenback flounder and bony bream, but 
the Marine state supported more black bream.  Differences in bird fauna were most striking 
in the high abundance of duck species supported by the Unhealthy Marine state (including 
chestnut teal and Australian shelduck), whereas the Marine state supported higher numbers 
of Australian white ibis, Eurasian coot (Fulica atra) and pied oystercatcher (Haematopus 
longirostris).  The benthic invertebrate communities also differed, with the Marine state 
supporting substantially higher abundances of the polychaetes, Nephtys australiensis and 
Australonereis ehlersi, the bivalve Arthritica helmsi and the pulmonate gastropod Salinator 
fragilis, while the Unhealthy Marine state had higher numbers of capitellids.   

In 2007, the South Lagoon was in the Unhealthy Hypersaline state (Figure 3.8f).  This 
corresponds to higher average salinities than for either of the marine states present in the 
North Lagoon, and lower average water levels, with little annual variability in water levels.  
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The water quality was characterised by high nutrient concentrations and high turbidity.  For 
the Unhealthy Hypersaline state, the biotic community was characterised by a low diversity 
of fish, low numbers of piscivorous birds, but high abundances of banded stilt and Australian 
shelduck.  The invertebrate diversity was low, but chironomid larvae abundances were high.   

A pair-wise SIMPER comparison with the Unhealthy Marine state showed that the Unhealthy 
Hypersaline state supported significantly more banded stilt, hoary-headed grebe, red-necked 
avocet and teal.  On the other hand, the Unhealthy Marine state supported more great and 
pied cormorants (Phalacrocorax varius), crested tern (Sterna bergii), curlew sandpiper and 
Australian pelican.  The Unhealthy Marine state had a more diverse invertebrate fauna, 
supporting more capitellids, Simplesetia aequisetis, amphipods and Arthritica helmsi than 
the Unhealthy Hypersaline state.  The Unhealthy Marine state supported yellow-eyed mullet, 
Australian salmon, mulloway, bony and black bream and greenback flounder, all of which 
were absent from the Unhealthy Hypersaline state. 

Like the Unhealthy Marine state, the Marine state supported significantly more fish species 
than the Unhealthy Hypersaline state, including most of those listed above.  The Unhealthy 
Hypersaline state, on the other hand, supported three times the abundance of small-
mouthed hardyhead compared with the Marine state.  Banded stilt and Australian shelduck 
were absent from the Marine state, but present in large numbers in the Unhealthy 
Hypersaline state, while chestnut and grey teal and red-necked avocet were also more 
abundant in the latter.  Little pied cormorant, Australian white ibis  and crested tern were all 
present in higher numbers in the Marine state, as were the invertebrate taxa Nephtys 
australiensis, Simplesetia aequisetis, Australonereis ehlersi (all polychaetes) and Arthritica 
helmsi. 

In 2007, average water level along the length of system varied between 0.22 m AHD and 
0.24 m AHD at its cross-channel midpoint.  The average salinity for the system had 
increased from an average of 38.1 g L-1 at the northern end of the system to an average of 
170.4 g L-1 at Salt Creek, with none of the Coorong sites being below average seawater 
salinities (overall the average for the system was 77.9 g L-1).  Nutrient concentrations had 
also increased, particularly in the South Lagoon, where the maximum TKN concentration 
recorded was 10.2 mg L-1 and the maximal total phosphate concentration was 1.49 mg L-1, 
both at Salt Creek. 

The biota present in the system had also undergone some dramatic changes.  The total 
number of waterbirds supported in the Coorong remained high at around 153,000, with 55 
species represented.  However, 42% of these individuals (almost 65,000 birds) were banded 
stilt, which are more typical of inland salt lakes and feed on brine shrimp.  This compared 
with fewer than 2,500 banded stilt during 2000.  Of the remaining population, species of 
waterfowl like chestnut teal (declined 60%), grey teal (declined 53%) and Australian 
shelduck (declined 44%) and some iconic species, including fairy tern (declined 56%) and 
Australian pelican (declined 32%) were amongst the worst-affected.  The commercial fishery 
remained very productive, with 4.71 kilograms per net day caught in the Coorong across 14 
species.  However, yellow-eyed mullet (Aldrichetta forsteri) made up 78% of the total catch, 
compared with only 40% in 2000, indicating that this species was supporting the vast 
majority of the local fishing pressure.  Changes had also occurred in the benthic 
macroinvertebrate community.  While benthic surveys were not begun until 2004, the South 
Lagoon then deteriorated from supporting seven taxa at healthy abundances in 2005 to 
supporting no macroinvertebrate benthos in 2007.  Salt-tolerant chironomid larvae were 
found the furthest south, at Parnka Point (see Figure 1.1). 
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3.2. Developing a predictive model 

The main task associated with developing a predictive model was in extrapolating data 
modelled in the hydrodynamic model to the three sites that were outside (or on the border of) 
the model domain.  Table 3.5 presents the equations that were developed for each variable 
from the ecosystem state model for each of the three sites which needed extrapolated data. 

Strong correlations were found between water levels and tidal ranges at Ewe Island and the 
sites outside the model domain.  Only poor relationships were found for salinity, and those 
presented were the strongest that were identified.  Salinity drove the division between 
Unhealthy Marine and Degraded Marine, which were rarely predicted for any of the northern-
most sites, so this was not seen as an issue (see results of scenario analyses). 
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Variable Site 
Extrapolated 

from 
Equation 

Sum of 
Squares 

Simple regressions    

Average water 
level 

Monument Road Ewe Island 

y = 1.008 x Average water level 

0.801 

 Mundoo 
Channel 

Ewe Island 

y = 0.939 x Average water level 

0.648 

 Barkers Knoll Ewe Island y = 1.413 x Average water level 0.878 

Average tidal 
range 

Monument Road Ewe Island y =  1.714 x Average tidal range 0.712 

 Mundoo 
Channel 

Ewe Island y =  1.014 x Average tidal range 0.986 

 Barkers Knoll Ewe Island y =  0.923 x Average tidal range 0.990 

Multiple regressions    

Average salinity Monument Road Ewe Island y = 1.261 x Average salinity - 0.000045 x (Average monthly flow + 1) 0.495 

 Mundoo 
Channel 

Ewe Island y = 1.156 x Average salinity - 0.000029 x (Average monthly flow (month -
1) + 1) 

0.231 

 Barkers Knoll Ewe Island y = 1.240758 Average salinity - 0.000015 x (Average monthly flow + 1) 0.145 

Table 3.5.  Equations developed to extrapolate modelled data from Ewe Island and Pelican Point to the sites outside the domain of 
the hydrodynamic model for the alternative ecosystem state model 

Note that other relevant variables in the models (e.g. water level from the previous year) were calculated from these values.  Unless specified, all averages 
are annual averages. 
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3.3. Alternative models independent of barrage flows 

One of the key driving parameters for the ecosystem model described above was the 
occurrence of freshwater flows over the barrages.  This meant that only limited changes in 
ecological conditions could be modelled unless such flows were present.  Given several of 
the scenarios to be investigated were designed to be alternatives to having freshwater flows 
in the short term, we developed an alternative set of new models to describe the behaviour 
of the system without reference to the flows over the barrages. 

As mentioned above, the best results for the alternative model was produced when the 
marine and hypersaline basins were modelled independently.  The model for the marine 
basin (assumed to occur in the North Lagoon under the current conditions) is shown in 
Figure 3.9.  It describes the ecosystem state of the Coorong relative to the water level, the 
previous year‟s water level and depth from two years ago.  This model correctly classified 
72% of the training data set used and 70% of the test data set, indicating that it discriminated 
well between the marine ecosystem states. 

The hypersaline basin model (used to describe current South Lagoon states) identified a 
combination of average water level, water level from the previous year, the range in water 
levels over the year (i.e. change between the maximum and minimum water level over the 
year) and the maximum salinity for the year as driving the ecosystem state of the basin 
(Figure 3.10).  The hypersaline basin model correctly classified 87% of the training data set 
and 80% of the test data set under cross-validation.  This is quite a high degree of predictive 
success given the variability inherent in ecological data sets. 

 

Figure 3.9 Marine (or northern) basin model for the Coorong excluding flow 
parameters as predictive variables. 
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Figure 3.10 Hypersaline (southern) basin model for the Coorong excluding flow 
parameters as predictive variables. 

Note: The Unhealthy Hypersaline state appears in the model twice, indicating that there are two 
distinct pathways to reach that state. 

 

When the Baseline scenario was assessed using both the original and alternative models, 
the biggest differences was in the proportion of site-years predicted to be in the Marine state 
(Figure 3.11).  For the original model, this was small (1%) while for the alternative model it 
was much higher (24%).  However, the proportion of site-years predicted to be in either the 
Estuarine/Marine state or the Marine state was the same for both models (72%).  This 
difference also affected the proportion of site-years predicted to be in a degraded state (32% 
for the alternative model versus 6% in the original model) as the Marine state is considered 
degraded by the definition used (relating to the length of time since barrage flows).  The 
proportion of site-years predicted to be in the remaining states was quite consistent across 
the two models.  The other noticeable discrepancy was that the alternative model tended to 
predict more site-years as being in the Degraded Hypersaline state (3% versus less than 1% 
in the original model).  Overall the concordance in the predictions for individual site-years 
was relatively modest at 56%. 
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Figure 3.11.  Proportion of site-years predicted to be in each state for the Baseline 
scenario assessed with the original ecosystem state model compared with the 
alternative ecosystem state model over 114 years for 12 focal sites. 

Note: EM = Estuarine/Marine, M = Marine, UM = Unhealthy Marine, DM = Degraded Marine, HH = 
Healthy Hypersaline, AH = Average Hypersaline, UH = Unhealthy Hypersaline, DM = Degraded 
Hypersaline. 

 

As for the original model, variables for three northernmost sites were extrapolated from the 
modelled data for Ewe Island (Figure 1.1).  Table 3.6 gives the equations that were 
developed for each of the variables for each site. 

Water levels and depths were able to be extrapolated with a high degree of accuracy, but 
maximum salinities and ranges in water levels had poor relationships.  Fortunately, both of 
these variables were part of the hypersaline model (rather than the marine model) which was 
not applied to the three northern-most sites in the Coorong, so these poor relationships did 
not affect the predicted ecosystem states under the alternative model. 
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Variable Site 
Extrapolated 

from 
Equation R2 

Simple regressions    

Average water 
level 

Monument Road Ewe Island y = 1.001 x Average water level 0.801 

 Mundoo 
Channel 

Pelican Point y = 0.894 x Average water level 0.502 

 Barkers Knoll Pelican Point y = 1.414 x Average water level 0.878 

Multiple regressions    

Range in water 
level 

Monument Road Ewe Island y = 0.891 x Range in water level + (0.713 x Maximum tidal 
range) 

0.337 

 Mundoo 
Channel 

Ewe Island y = 0.588 x Range in water level  + (1.006 x Maximum tidal 
range) 

0.271 

 Barkers Knoll Ewe Island y = 0.490 x Range in water level + (1.009 x Maximum tidal 
range) 

0.976 

Average water 
depth (Year -2) 

Monument Road Ewe Island y = 0.782 x Average depth (Year -2) + (1.366 x Average 
depth) 

0.933 

 Mundoo 
Channel 

Ewe Island y = 0.844 x Average depth (Year -2) + (0.461 x Average 
depth) 

0.993 

 Barkers Knoll Ewe Island y = 1.923 x Average depth (Year -2) + (0.830 x Average 
depth) 

0.715 

Maximum 
salinity 

Monument Road Ewe Island y = 1.261 x Maximum salinity 1 (0.000045 x Average flow) 0.287 

Table 3.6.  Equations developed to extrapolate modelled data from Ewe Island and Pelican Point to the sites outside the domain of 
the hydrodynamic model for the alternative ecosystem state model 

Note that no useful relationships were identified for maximum salinity for either Mundoo Channel or Barkers Knoll, but as maximum salinity was a variable 
from the hypersaline basin model (see Figure 3.10) while both sites were allocated to the marine basin, this did not pose a problem for predicting ecosystem 
states at these sites.  Other relevant variables in the models (e.g. water level from the previous year) were derived from these values (e.g. water level from 
the previous year is water level with one-year lag, so a separate regression is not required). 
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3.4. Model evaluation 

3.4.1. Comparing model predictions for 1980s to available data 

An attempt was made to evaluate the model predictions by comparing the biota from the 
predicted ecosystem state to the available data for the 1980s and 1990s.  When the available 
data for individual taxonomic groups from the 1980s and 1990s were compared with the 
equivalent data for the years within the training data set (1999-2007), results were mixed.   

For commercial CPUE for fish species, there was a significant interaction between states and 
years, with significant differences between states (Pseudo-F = 5.2397, p = 0.001; Figure 3.12), 
but also significant differences between years (Pseudo-F = 1.986, p = 0.001, with years nested 
within states).  Contrasts between states from the 1980s and 1999-2007 and between the 
1990s and 1999-2007 were also significant (Pseudo-F = 6.2731, p = 0.001 for the 1980s and 
Pseudo-F = 2.5275, p = 0.012 for the 1990s) indicating that the same state showed different in 
biotic composition between decades.  The dispersion within states also varied significantly 
between states (F = 4.2206, p = 0.019). 
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Figure 3.12.  nMDS plot of catch per unit effort for  commercial fish species between 1984  
and 2007 

a) Coded to show differences by state, b) Coded to show differences by year 

Note: The figure is based on a Bray-Curtis similarity matrix of standardised, log(x+1)-transformed 
abundance data for commercial fish CPUE for 12 sites between 1984 and 2007 (minus cases with 
missing values, n = 250).  A maximum of 25 runs were used. 

 

Macroinvertebrate assemblages in 1982 at Parnka Point were distinctly different from those at 
remainder of the sites across the rest of the years sampled (Figure 3.13a).  These differences 
drove significant differences between the states (Pseudo-F = 3.4844, p = 0.018, Figure 3.13b), 
and across the years (Pseudo-F = 5.5604, p = 0.001, Figure 3.13c).  The invertebrate 
assemblages from the 1980s were significantly different from those in the 2000s (Pseudo-F = 
14.034, p = 0.001).  Again, there were significant differences in the level of dispersion within 
states (F = 12.754, p = 0.003). 
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Figure 3.13.  nMDS plot based on the presence/absence of invertebrate species for 1981 
to 1985 and 2003 to 2005 

a) Whole plot, b) Subset of centre of plot shown in a (n = 169), coded by state, c) Subset of plot shown in 
a (n = 169), coded by year (both excluded points were from 1982) 

Note: The figure is based on a Bray-Curtis similarity matrix of presence/absence data for invertebrate 
species for seven sites in 1981 to 1985 and 2003 to 2005 (minus cases with missing values, n = 169).  A 
maximum of 25 runs were used. 
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Two comparisons were possible from the available bird data.  The first involved a limited 
number of species over four regions in the Coorong from 1982, 1984-85, 1987 and 2000-2007 
(Figure 3.14).  Differences between states were significant (Pseudo-F = 2.3734, p = 0.039, 
Figure 3.14a), but differences between years were not (Pseudo-F = 0.71881, p = 0.899, Figure 
3.14b).  A direct comparison between states occurring in the 1980s and those in the 2000s was 
also not significant (Pseudo-F = 1.5376, p = 0.197), nor were differences in dispersion within 
states found.   
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Figure 3.14.  nMDS plot based on bird abundance for particular species for 1982, 1984, 
1985, 1987 and 2000 to 2007 

a) Coded to show differences by state, b) Coded to show differences by year 

Note: The figure is based on a Bray-Curtis similarity matrix of standardised, log(x+1)-transformed 
abundance data for a limited number of bird species in the years mentioned over four regions (Murray 
Mouth, North Lagoon, around Parnka Point, South Lagoon) in the Coorong (minus cases with missing 
values, n = 42).  A maximum of 25 runs were used. 

 

A second analysis was done using a wider range of bird species (all that were present) for a 
smaller number of years (1984-1985, 2000-2007).  The nMDS for this data (Figure 3.15) 
seemed to show better grouping by state than any of the previous analyses (Figures 3.12 to 
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3.14), however, neither states (Pseudo-F = 1.5751, p = 0.144, Figure 3.15a) nor years (Pseudo-
F = 0.60276, p = 0.98, Figure 3.15b) proved significantly different.  A comparison between the 
states observed in the 1980s and those in the 2000s, did however reveal significant differences 
(Pseudo-F = 2.8873, p = 0.031) and there were significant differences in the level of dispersion 
within states (F = 7.2408, p = 0.024). 
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Figure 3.15.  nMDS plot based on bird abundance for 1984, 1985 and 2000 to 2007 

a) Coded to show differences by state, b) Coded to show differences by year 

Note: The figure is based on a Bray-Curtis similarity matrix of standardised, log(x+1)-transformed 
abundance data for bird species in the years mentioned over four regions (Murray Mouth, North Lagoon, 
around Parnka Point, South Lagoon) in the Coorong (minus cases with missing values, n = 42).  A 
maximum of 25 runs were used. 

 

Ruppia tuberosa shoot and turion coverage in the Coorong was compared for 1985, 1990-1993 
and 2000-2007 (Figure 3.16).  This analysis did not detect significant differences due to 
ecosystem state (Pseudo-F = 0.80401, p = 0.542, Figure 3.16a), nor by year (Pseudo-F = 
0.94206, p = 0.561, Figure 3.16b).  Neither the ecosystem states in the 1980s nor those in the 
1990s differed from their counterparts in the 2000s (Pseudo-F = 2.6274, p = 0.120 for the 1980s 
and Pseudo-F = 2.0657, p = 0.190 for the 1990s).  There was, however, a significant difference 
in the dispersion within ecosystem states (F = 3.1443, p = 0.039). 
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Figure 3.16.  nMDS plot based on Ruppia tuberosa shoot and propagule coverage for 
1985, 1990-1993 and 2000 to 2007 

a) Coded to show differences by state, b) Coded to show differences by year 

Note: The figure is based on a Bray-Curtis similarity matrix of standardised, log (x+1)-transformed 
coverage data for Ruppia tuberosa shoots and propagules at five sites in the Coorong (minus cases with 
missing values, n = 45).  A maximum of 25 runs were used. 

 

In summary, based on these analyses, the commercial fish, invertebrate and the bird analysis 
based on a limited number of species suggested that the biota found in each ecosystem state 
was significantly different.  In contrast, the analysis based on a more extensive list of bird 
species (but for fewer years) and on Ruppia tuberosa did not detect differences between 
ecosystem states, perhaps suggesting that birds and macrophytes occurred more extensively 
(or more consistently) throughout the Coorong. 

Analyses based on the commercial fish, invertebrates and the more extensive bird abundances 
indicated that states from previous decades were biologically distinct from their counterparts in 
the training period for the ecosystem state model (1999-2007).  This was not the case for the 
more limited bird abundance analysis nor that based on Ruppia tuberosa. 

These results are somewhat contradictory given that there are differences between states and 
between years, or significant interactions between the two for some taxa, but not others.  Thus, 
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it is difficult to gain a clear understanding of whether a) the ecosystem state support distinct 
biota across the range of taxonomic groups, and b) whether there is evidence that the biota 
from the 1980s (and the 1990s) differed from that found during the 1999-2007 period on which 
this model is based.  To resolve these issues, we attempted several multi-group analyses for 
the Coorong.  A summary of all single-taxonomic group comparisons are given in Table 3.7, 
showing the data included, the sample size, comparisons made and the outcomes of each 
comparison. 

Of the analyses involving multiple taxonomic groups, the most comprehensive in terms of the 
number of groups included the presence/absence of aquatic macrophytes, commercial fish 
species and invertebrates.  This also had the fewest cases (n = 8).  No significant differences 
was detected between the two ecosystem states present (i.e Estuarine/Marine and Average 
Hypersaline) in the data set (Pseudo-F = 2.1971, p = 0.099, Figure 3.17a), but ecosystem 
states from the 1980s did differ from those in the 2000s (Pseudo-F = 4.9393, p = 0.044; Figure 
3.17b).  The dispersion of cases for the two states were significantly different (F = 22.593, p = 
0.023). 

The average similarity between cases in the Estuarine/Marine state was only 50.80%.  The top 
three species contributing to that similarity were mulloway, yellow-eye mullet and chironomid sp.  
No other macroinvertebrate species were identified as typifying the state.  For the Average 
Hypersaline state, the average similarity between cases was 91.23%.  Eleven fish species and 
thirteen invertebrate species were identified as all contributing slightly (and equally) to the 
similarity between cases. 

The average dissimilarity between the Estuarine/Marine and Average Hypersaline states was 
44.61%.  The Average Hypersaline state tended to have a higher likelihood that most species 
would be present, including bronze-whaler sharks, Amarinus lacustris (a species of crab) and 
Phyllodoce novohollandiae (a polychaete).  The Estuarine/Marine state, however, was more 
likely to have the dipteran Ephydrella sp. and Capitella sp. present.   
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Taxa included Sample Size (n) Factors Outcome Figure Number 

Commercial Fish 250 Years:  

1984-89; 1990-1998; 
1999-2007 

States 

Dispersion 

Significant interaction between 
states & years (p = 0.001) 

Significant difference between 
years nested in states (p = 0.001) 

Significant contrast 80s vs 1999-
2007 (p = 0.001) 

Significant contrast 90s vs 1999-
2007 (p = 0.012) 

Significant dispersion within states 
(p = 0.019) 

Figure 3.12a 

 

Figure 3.12b 

Macroinvertebrates 169 Years: 

1981-1985; 2003-2005 

States 

Dispersion 

Significant difference for 1982, 
Parnka Point from rest sites & years 

Significant difference between 
states (p = 0.018) 

Significant difference across years 
nested in states (p = 0.001) 

Significant contrast 80s vs 2000s  

(p = 0.001) 

Significant dispersion within states 
(p = 0.003) 

Figure 3.13a 

 

Figure 3.13b 

 

Figure 3.13c 

 

Birds 42 Years: 

1982; 1984-85; 1987; 
2000-2007 

States 

Dispersion 

Significant difference between 
states (p = 0.039) 

No significant difference between 
years nested in states (p = 0.899) 

 

Figure 3.14a 

 

Figure 3.14b 

Table 3.7.  Summary of comparisons made between biotic compositions of predicted ecosystem states in the 1980s and 1990s to those of 
the training data set (1999-2007) 



 

Predicting future ecological condition of the Coorong Page 63 

 

Taxa included Sample Size (n) Factors Outcome Figure Number 

Birds 42 Years: 

1982; 1984-85; 1987; 
2000-2007 

States 

Dispersion 

No significant contrast between 80s 
& 2000s states (p = 0.197) 

No significant dispersion within 
states 

 

Birds 42 Years: 

1984-85; 2000-2007 

States 

Dispersion 

No significant difference between 
states (p = 0.144) 

No significant difference between 
years nested in states (p = 0.98) 

Significant contrast between 80s 
and 2000s states (p = 0.031) 

Significant dispersion within states 
(p = 0.024) 

Figure 3.15a 

 

Figure 3.15b 

Macrophytes 

(R.tuberosa shoots 
& turions) 

45 Years: 

1985; 1990-93; 2000-2007 

States 

Dispersion 

No significant difference between 
states (p = 0.542) 

No significant difference across 
years nested in states (p = 0.561) 

No significant contrast 80s vs 
2000s (p = 0.120) 

No significant contrast 90s vs 
2000s (p = 0.190) 

Significant dispersion within states 
(p = 0.039) 

Figure 3.16a 

 

Figure 3.16b 

Table 3.7 cont.  Summary of comparisons made between biotic compositions of predicted ecosystem states in the 1980s and 1990s to 
those of the training data set (1999-2007) 
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Figure 3.17.  nMDS plot based on presence/absence data for aquatic macrophytes, 
commercial fish and invertebrate species for 1984, 1985 and 2003 to 2005 

a) Coded to show differences by state, b) Coded to show differences by year 

Note: The figure is based on a Bray-Curtis similarity matrix of presence/absence data for aquatic 
macrophytes, commercial fish species and invertebrate species for four regions (Murray Mouth, North 
Lagoon, around Parnka Point, South Lagoon) in the Coorong for the years mentioned (minus cases with 
missing values, n = 8).  A maximum of 25 runs were used. 

 

When aquatic macrophytes and commercial fish species presence/absence data (n = 30) were 
analysed, significant differences were identified in the biotic assemblages between states 
(Pseudo-F = 7.0083, p = 0.001; Figure 3.18a).  No differences were detected between years, 
nor between states comparing those found in the 1980s with those in the 2000s (Pseudo-F = 
0.671, p = 0.825 and Pseudo-F = 2.0994, p = 0.120, respectively, Figure 3.18b).  PERMDISP 
indicated that there were significant differences in the amount of dispersion within states (F = 
8.1406, p = 0.001). 

Fish species contributed the bulk of the similarity between cases in the Estuarine/Marine state.  
Average similarity for this state was 78.13%, with Australian salmon, black bream and flounder 
the top three species typifying the state.  The Average Hypersaline state had an average 
similarity of 50.35%.  Ruppia tuberosa contributed 47% of the similarity between cases, with 
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yellow-eyed mullet, mulloway and black bream also typifying the state.  No species could be 
identified as typical for the Marine, Healthy Hypersaline and Unhealthy Hypersaline as each was 
represented by a single case. 

The Estuarine/Marine state and the Average Hypersaline state had an average dissimilarity of 
63.49%.  The Estuarine/Marine state was more likely to support Australian salmon, black 
bream, flounder and mulloway, while the Average Hypersaline state was more likely to support 
Ruppia tuberosa.  Species contributing to the dissimilarity between the other states have not 
been presented due to the presence of only a single case for the remaining states. 
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Figure 3.18.  nMDS plot based on presence/absence data for aquatic macrophytes and 
commercial fish species for 1984, 1985 and 2000 to 2006 

a) Coded to show differences by state, b) Coded to show differences by year 

Note: The figure is based on a Bray-Curtis similarity matrix of presence/absence data for aquatic 
macrophytes and commercial fish species for four regions (Murray Mouth, North Lagoon, around Parnka 
Point, South Lagoon) in the Coorong for the years mentioned (minus cases with missing values, n = 30).  
A maximum of 25 runs were used. 

 

The final multi-taxonomic-group comparison investigated differences between commercial fish 
species and the limited number of bird species presence or absence (Figure 3.19).  No 
significant difference was detected between states (Pseudo-F = 1.8865, p = 0.085, Figure 
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3.19a, b) or years (Pseudo-F = 0.41629, p = 0.988, Figure 3.19c), but there was a significant 
interaction between states and years, with 1980s states being significantly different from those 
in the 2000s (Pseudo-F = 27.474, p = 0.001). 

The average similarity within the Estuarine/Marine state was 78.47%, with the top three species 
typifying those cases being mulloway, yellow-eye mullet and black-winged stilts.  Other species 
with the same contribution to similarity included curlew sandpiper, common greenshank, red-
capped plover, red-necked stint and sharp-tailed sandpiper.  The average similarity within the 
Average Hypersaline state was 78.23%.  Here the top species typifying the state included 
banded stilt, curlew sandpiper, common greenshank, pied oystercatcher, red-capped plover, 
red-necked avocet, red-necked stint and sharp-tailed sandpiper.  Other states had fewer than 
two cases, so species contributing to similarity could not be calculated.   
 
The average dissimilarity between the Estuarine/Marine and the Average Hypersaline states 
was 23.40%.  The Estuarine/Marine state was more likely to support fish species like black 
bream, flounder and Australian salmon, while the Average Hypersaline species supported 
masked lapwing, great-crested grebe and black-faced cormorant more frequently.     
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Figure 3.19.  nMDS plot based on presence/absence data for commercial fish species and 
a limited number of bird species for 1984, 1987 and 2000 to 2006 

a) Whole plot, b) Subset of centre of plot shown in a (n = 34), coded by state, c) Subset of plot shown in a 
(n = 34), coded by year (all three excluded points were from 1987) 

Note: The figure is based on a Bray-Curtis similarity matrix of presence/absence data for commercial fish 
and a limited number of bird species for four regions in the Coorong for the years mentioned (minus 
cases with missing values, n = 37).  A maximum of 25 runs were used. 
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3.4.2. Comparing model predictions for 2008 to available data 

The only data set that was available for 2008 suitable for comparison with the training data set 
was fisheries-independent fish data collected across 11 sites.  These data were analysed 
quarterly due to the limited number of years available (Figure 3.20).  PERMANOVA indicated 
that there was no significant difference between the fish biota occurring across states (Pseudo-
F = 3.386, p = 0.130, Figure 3.20a, b), but that years were significantly different (Pseudo-F = 
2.006, p = 0.008, Figure 3.20c) and there was a significant interaction between state and years, 
with fish assemblages per state in 2008 differed significantly from those in 2006-2007 (Pseudo-
F = 2.006, p = 0.008).  There was also a significant difference in the level of dispersion found 
within states (F = 7.2097, p = 0.001). 
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Figure 3.20.  nMDS plot based on the fisheries-independent abundance of fish species 
for 2006 to 2008 based on a quarterly time-step 

a) Whole plot, b) Subset of centre of plot shown in a (n = 76), coded by state, c) Subset of plot shown in a 
(n = 76), coded by year (two of the six excluded points were from 2008 (the isolated Marine and 
Degraded Hypersaline points), the others were from 2007) 

Note: The figure is based on a Bray-Curtis similarity matrix of log-transformed(x+1) fish abundance data 
for 11 sites in 2006 to 2008 (minus cases with missing values, n = 82).  A maximum of 25 runs were 
used. 
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3.5. Evidence for any additional ecosystem states within the 
Coorong 

Cluster analysis indicated that the Estuarine/Marine state could be divided into at least three 
significant clusters.  This was based on group-average cluster analysis using a SIMPROF test 
on the available (albeit scant) data from all years (i.e. 1980s through to 2000s) that were 
predicted to be in an Estuarine/Marine state.  This analysis was designed to indicate any 
extension to the current ecosystem state model that may be possible, by attempting to split 
cases in the terminal node for Estuarine/Marine further, rather than replace the current model 
(Figure 3.1). 

Three terminal nodes were identified during CART analysis on the combined cluster solution (of 
four preliminary states, see Methods for additional detail, Figure 3.21).  The relative cost of the 
model was 0.579, and the predictive success was 61% for both the learning and test data sets 
under cross-validation.  The splitting variables for the model were the maximum daily tidal range 
and the minimum average water level.   

 

 

Figure 3.21.  Classification tree based on four clusters identified amongst cases 
identified as Estuarine/Marine in the 1980s or the 1999-2007 data sets 

 

ANOSIM analysis of the biological data for the cases within each terminal node was not 
significantly different for the data set including aquatic macrophytes and fish species 
presence/absence, nor for the data set including presence/absence data for aquatic 
macrophyte, commercial fish and invertebrate species.  For the data set including bird and 
commercial fish species presence/absence, the overall ANOSIM result was non-significant 
(Global R = 0.168, p = 0.086), but pair-wise comparisons showed a significant difference 
between the first and second terminal nodes (R = 0.302, p = 0.029).  Based on these analyses, 
there is no evidence that the CART model shown above adequately captures real differences 
identified in the biological communities of cases in the Estuarine/Marine state.  This may be due 
to small sample sizes (given the p-value of 0.09 and the sample size of 18), to a lack of 
appropriate explanatory variables in the environmental data set available or be due to over-
fitting of the biological data. 
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3.6. Sensitivity analyses 

3.6.1. Sensitivity to initial clustering 

Sensitivity to clustering technique 

The clusters identified were somewhat sensitive to the method used to cluster the biological 
data set.  For the long-term data set, three clusters were originally identified using the group-
average clustering technique.  When the membership of these clusters, was compared with 
those produced using k-means clustering of the same data (k = 3), the concordance was 85%.   

The short-term data set including the fisheries-independent fish abundances was divided into 
four clusters using the original group-average clustering.  The four k-means clusters identified 
had cases that were 84% concordant with those original clusters.  For the second short-term 
data set (that including juvenile invertebrate abundances), there were originally five clusters 
identified. When the cases included in each cluster were compared with those calculated using 
the k-means clustering, the level of concordance was only 52%. 

The effect of this sensitivity was then propagated through the CART analysis to determine the 
effect on the driving variables and thresholds identified.  The k-means clusters did not produce 
the same original CART model as that obtained for the group-average clusters used in the 
original long-term model.  The original long-term model had three terminal nodes, with average 
annual salinity and water depth from the previous year as the two splitting variables (Figure 
3.22).  The relative cost of the model was 0.384 and the predictive success under cross-
validation of test samples was 81%.  The model produced by the k-means clusters, however, 
had five terminal nodes at a relative cost of 0.181 (Figure 3.23).  The first splitting variable 
remained the average annual salinity, but the second splitting variable was maximum turbidity, 
and subsequent splitting variables were the annual fluctuation in water level (annual maximum 
minus the annual minimum) and the annual maximum water depth.  This model had a predictive 
success of 88% for the test sample under cross-validation.  Neither maximum turbidity nor the 
annual fluctuation in water level was correlated with water depth from the previous year, but 
there was a strong correlation between the water depth from the previous year and the 
maximum depth (r = 0.924).  Agreement between the cases assigned to each terminal node for 
the original group-average-based model and the k-means-based model was relatively high at 
84%, with most of the discrepancy being due to the different number of terminal nodes identified 
by the two models. 
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Figure 3.22.  Classification tree based on group-average cluster analysis in the original 
long-term model development 
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Figure 3.23.  Classification tree based on k-means cluster analysis as an alternative to 
the original group-average clustering on the long-term data set 

 

ANOSIM analysis tested the biological data associated with each terminal node arising from the 
k-means clustering.  This indicated that there were only three distinct (i.e. statistically-
significant) biotic groups described by the five terminal nodes.  Re-assigning cases to these 
groups, and then re-analysing the environmental data using CART yielded a tree with four 
terminal nodes, determined by thresholds in the average annual salinity and the maximum 
turbidity and maximum water depth for each case.  This model had a relative cost of 0.105 and 
a predictive success of 90% under cross-validation.  Removing the maximum turbidity variable, 
along with other water quality parameters that were not able to be predicted, resulted in a tree 
with three terminal nodes at a relative cost of 0.271 (Figure 3.24).  For this tree, the predictive 
success was 73% and the splitting variables were average annual salinity and maximum tidal 
range.  Maximum tidal range was not significantly correlated with depth from the previous year 
(r = 0.442).  Despite the differences in the resultant CART tree, the cases assigned to each 
state were 91% concordant between those produced using the k-means and group average 
clustering techniques. 
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Figure 3.24.  Classification tree based on k-means cluster analysis after combination of 
non-significantly different terminal nodes as an alternative to the original group-average 
clustering on the long-term data set 

 

When the site-years in the Baseline scenario were assessed with the original group-average 
long-term model, 10% of site-years were predicted to be in State 1, 70% in State 2 and 20% in 
State 3.  The model produced using the k-means clustering gave different proportions for States 
1 and 2 (28% and 51%, respectively) although the proportion in State 3 remained 20%.  Of the 
1130 site-years in the scenario, the two models predicted concordant states for 80%.   

Sensitivity to changes in the biological data set 

The sensitivity of the cluster analysis to random changes within the data set was relatively low.  
Sensitivity increased with the number of clusters.  For the long-term biological data, where three 
clusters were originally identified, changes of up to 50% of the original data set resulted in a 
high degree of concordance with the original clustering (mean > 82% for all proportions 
changed; Figure 3.25).  The short-term biological data set including fisheries-independent fish 
abundances was grouped into four significant clusters originally (using group-average 
clustering).  The relationship between the proportion of data changed at random and the 
percentage concordance with the original clustering was a negative linear relationship, with 
increasing standard deviation as the proportion altered increased (Figure 3.26).  The short-term 
biological data set including juvenile invertebrate abundances originally yielded five distinct 
clusters.  When this data set was altered and five new clusters were created, there was, in 
contrast, an exponential decay in the concordance of the new clusters with the original five 
(Figure 3.27).  By the time 50% of the original data set had been randomly replaced, the 
agreement between the clusters was 54% on average. 

These levels of concordance are all substantially higher than the theoretical minima for each 
number of clusters.  For a three-cluster solution, a completely random generation of three 
numbers yields an average concordance of 0.40 over 1000 runs (SD = 0.03).  A four-cluster 
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solution has a theoretical minimum of 38% concordance (based on 1000 runs of random 
numbers) with a standard deviation of 4%.  Finally, for a five-cluster solution, all 1000 runs using 
random numbers yielded a 38% concordance with the solution based on the k-means clusters.  
All runs had higher levels of concordance than these obtained using only random number 
generation, indicating that some integrity remains in the data set despite the high proportion of 
data randomly changed for the final runs (up to 50%). 

 

Figure 3.25.  Sensitivity of cluster analysis to random changes within the long-term 
biological data set  

Note: Points plotted are mean ± SE based on 1000 runs with increasing proportion of data set changed 
using resampling for negative values, calculated from a log(X+1) Bray-Curtis dissimilarity matrix.  The 
dotted line indicates the theoretical minimum based on a completely random data set. 
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Figure 3.26.  Sensitivity of cluster analysis to random changes within the short-term 
biological data set including fisheries-independent fish abundances  

Note: Points plotted are mean ± SE based on 1000 runs with increasing proportion of data set changed 
using resampling for negative values, calculated from a log(X+1) Bray-Curtis dissimilarity matrix.  The 
dotted line indicates the theoretical minimum based on a completely random data set. 
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Figure 3.27.  Sensitivity of cluster analysis to random changes within the short-term 
biological data set including juvenile invertebrate abundances  

Note: Points plotted are mean ± SE based on 1000 runs with increasing proportion of data set changed 
using resampling for negative values, calculated from a log(X+1) Bray-Curtis dissimilarity matrix.  The 
dotted line indicates the theoretical minimum based on a completely random data set. 

 

When a random 20% of the biological data had been randomly changed prior to cluster 
analysis, there was relatively little change in the observed CART results.  All five selected 
examples of 20% replacements had average annual salinity and maximum turbidity as their first 
two splitting variables.  The overall number of terminal nodes varied between three and five 
(with two of five analyses yielding five terminal nodes, and the other three with three terminal 
nodes).  The additional splitting variables were the annual fluctuation in water level and the 
maximum water depth (as was the case for the original k-means CART tree).  Surrogate 
variables to the primary splitters (i.e. the secondary variables used for splitting when the actual 
splitting variables had missing values) were also very similar across all models. 

For the five selected examples of a 50% substitution, the CART trees varied significantly from 
each other and from the original k-means tree produced.  In all instances, only three terminal 
nodes were identified but the splitting variables included average salinity from two years‟ 
previous, average annual salinity, minimum water level, minimum depth, average depth from the 
previous year and maximum salinity. 

The biotic assemblages for the terminal nodes of each model produced using substituted data 
were also analysed using ANOSIM.  For each of the ten runs (i.e. five random examples of 20% 
data replacement and five of 50% data replacement), three distinct biotic groups were identified, 
regardless of whether the CART analysis had identified three or five terminal nodes.  Once the 
relevant terminal nodes had been combined, the resultant states were 93% (SE = 2%) 
concordant with the original k-means states for the examples where 20% of the data had been 
substituted, and 83% (SE = 2%) concordant where 50% of the original data had been 
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substituted.  One of the five runs where 20% had been substituted was re-analysed using 
CART, yielding a tree with three terminal nodes using average annual salinity and minimum 
water level as the splitting variables.  The first of these splitters was identical to that identified by 
the original k-means analysis with identical thresholds for each, although minimum water level 
and depth from the previous year were not correlated significantly. 

One example of substituted biological data (20% substitution) was used to predict states for the 
Baseline scenario site-years.  This model predicted that 4% of site-years would be in State 1, 
76% in State 2 and 20% in State 3.  Both the k-means and the original group average-based 
models also predicted 20% of site-years in State 3, but the proportions for States 1 and 2 varied 
between models.  The model based on substituted biological data had concordant predictions 
for 71% of site-years when compared to the k-means model, and 87% compared with the 
original group-average-based model. 

Sensitivity to clustering environmental data instead of biological data 

Group-average cluster analysis on the long-term environmental data revealed 16 significant 
clusters, while the equivalent clustering on the biological data resulted in only four significant 
clusters (one of which had a single case and was thus excluded as an outlier).  If the group-
averaged clusters for the environmental data set were truncated at the first four clusters, 
however, there was a reasonable degree of concordance in the cases assigned to each cluster 
(69%).  K-means clustering (k = 3) on the environmental data set had a lower degree of 
concordance with the original group-averaged biological clusters, with only 58% of cases 
assigned to the same cluster.  The k-means clusters on the environmental data had slightly 
higher concordance with the k-means clusters on the biological data, at 61%. 

For the short-term data set, k-means clustering (k = 7) was used on the environmental data set 
and compared to the amalgamated clusters produced from group-average clustering of the two 
subsets of the short-term biological data (including juvenile invertebrate or fisheries-
independent fish abundances).  K was selected as 7 to correspond with the total number of 
clusters identified in the biological data set.  Despite the large number of clusters identified, 
there was quite a high degree of concordance between the cases assigned by the two methods.  
A total of 79% of cases were assigned to the same clusters when the environmental data was 
analysed compared with the biological data. 

3.6.2. Sensitivity to threshold values 

The first analysis of thresholds investigated whether the value of the threshold could be 
attributed to chance alone.  When all thresholds were changed simultaneously, between 0.21 
and 0.83 of site-years differed from the proportion expected in each state under a uniform 
distribution (Figure 3.28).  Changing all thresholds together resulted in changes in distribution 
relative to a uniform distribution of states that was as extreme as or more extreme than the 
observed distribution in only 65 of the 1000 runs.  This indicates that the observed distribution of 
states is not significantly different from the uniform distribution of states (p = 0.065), and that the 
distribution is relatively insensitive to the values of the thresholds. 
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Figure 3.28.  Histogram of change in state distribution relative to uniform with random 
changes to all thresholds  

The dotted line indicates the observed value relative to a uniform distribution for the ecosystem state 
model. 

    

The distribution of states predicted by the model was sensitive to the value of the threshold for 
tidal range (Figure 3.29).  The change in state proportions relative to a uniform distribution for 
the 1000 runs varied between 0.56 and 0.81.  Of these, however, 118 had distributions that 
were as extreme as or greater than that observed using the ecosystem model, meaning that the 
degree of sensitivity was not statistically significant (p = 0.118) 
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Figure 3.29.  Histogram of change in state distribution relative to uniform with random 
changes to the tidal range threshold  

The dotted line indicates the observed value relative to a uniform distribution for the ecosystem state 
model. 

 

The same threshold for the maximum number of days without flow occurred twice within the 
model.  We therefore tested changing the values for each separately and then both together.  
When the threshold for the maximum number of days without flow was varied for the marine 
basin only, the change in distribution of states was somewhat sensitive.  The difference in 
proportions relative to a uniform distribution varied between 0.41 and 0.68 across the 1000 
runs, with 122 runs showing a distribution as extreme as or more extreme than that observed 
using the ecosystem state model.  Again, this was not a statistically significant result (p = 
0.122).  Changing only the threshold for the hypersaline basin yielded similar results.  The 
difference in state proportions ranged between 0.60 and 0.68, and 169 runs resulted in a more 
extreme or equally extreme distribution (p = 0.169).  The sensitivity in the distribution of states 
was similar when the two thresholds were altered together (Figure 3.30).  The proportion 
changing varied between 0.40 and 0.70, and 107 of the 1000 runs resulted in more extreme or 
equally extreme distributions.  This was again a non-significant result (p = 0.107). 
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Figure 3.30.  Histogram of change in state distribution relative to uniform with random 
changes to the maximum days without barrage flow threshold (changing both thresholds 
simultaneously)  

The dotted line indicates the observed distribution relative to a uniform distribution for the ecosystem 
state model. 

 

The first water level threshold (0.37 m AHD) had some impact on the distribution of states 
compared to a uniform distribution (Figure 3.31).  The change in state proportions ranged from 
0.60 to 0.69 across the 1000 runs.  Of these 1000 runs, 304 had a distribution that was as 
extreme or more extreme than the observed distribution (p = 0.304), indicating that the 
observed value for the first water level threshold did not have a significant impact on the 
distribution of states predicted by the model. 
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Figure 3.31.  Histogram of change in state distribution relative to uniform with random 
changes to the water level threshold at 0.37 m AHD 

The dotted line indicates the observed value relative to a uniform distribution for the ecosystem state 
model. 

 

When the salinity threshold was replaced at random from the distribution of the salinity variable, 
there was no change in the proportion of site-years that differed from a uniform distribution 
across all states.  The same was true for the depth threshold and for the second water-level 
threshold (-0.09 m AHD).  This indicated that these thresholds were far enough down the 
decision tree to have no impact on the relative proportions of site-years attributed to each state 
compared with a uniform distribution. 

The second analysis into the sensitivity of the threshold values investigated the effect of random 
changes on the threshold value on the predicted states relative to that predicted under the 
ecosystem state model. 

When all thresholds were changed at random simultaneously, the average proportion of states 
that were different from the original model was 0.58 (Figure 3.32) (where 0 would be perfect 
concordance between the two sets of predictions and 1 would represent complete discordance).  
The coefficient of variation was 31%, indicating that there was a moderate degree of sensitivity 
in the number of site-years predicted to be in each state compared with the original model. 
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Figure 3.32.  Histogram of change in state distribution relative to ecosystem state model 
predictions with random changes to all thresholds 

 

The predictions for each site-year were sensitive to the value of the tidal threshold (Figure 3.33).  
Each run, on average 42% of site-years were allocated to a different state when the threshold 
was randomly changed (CV = 46%). 
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Figure 3.33.  Histogram of change in state distribution relative to ecosystem state model 
predictions with random changes to the tidal range threshold 

 

As before, the threshold for the maximum number of days without flow could be randomised for 
the marine basin, the hypersaline basin or both simultaneously.  When the threshold in the 
marine basin was altered, the average proportion of site-years predicted to be in a different 
state from the ecosystem state model was 25% (CV = 71%).  When the threshold in the 
hypersaline basin was changed independently, the resultant states were an average of only 
10% different from those predicted under the ecosystem state model (CV = 60%). Both 
thresholds altered together produced state predictions that differed for 35% of site-years, on 
average, with a coefficient of variation of 69% (Figure 3.34). 
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Figure 3.34.  Histogram of change in state distribution relative to ecosystem state model 
predictions with random changes to the threshold for the maximum number of days 
without barrage flow 

 

There was a small degree of sensitivity in the predicted states when the first water level 
threshold (0.37 m AHD) was randomly changed (Figure 3.35).  On average, 6% of site-years 
were predicted to be in a different state from those identified under the ecosystem state model 
(CV = 88%).  When the second water level threshold (-0.09 m AHD) was altered, however, 
there was very little change in the resulting predictions for each site-year (mean = 18%, CV = 
22%) 
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Figure 3.35.  Histogram of change in state distribution relative to ecosystem state model 
predictions with random changes to the water level threshold at 0.37 m AHD 

Note change in scale on x-axis from previous figures. 

 

The proportion of states predicted to be in each state was quite robust to changes in the salinity 
threshold.  Across the 1000 runs, the average change was 1% of site-years, with a coefficient of 
variation of 81%.  The model was similarly robust to changes in the depth threshold, with less 
than 1% of site-years changing on average (CV = 107%).   
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4. Discussion 

4.1. Model development 

CLLAMM Futures was originally tasked with developing a single, ecosystem-scale response 
model for the Coorong that was capable of predicting the ecological response of the system to 
options for changes in management actions and climate change.  We believe that we have 
been successful in fulfilling these requirements, overall.  The model that we have developed is 
based on a truly multivariate analysis.  Many other ecosystem response models in the past have 
been a collection of univariate responses (e.g. MFAT; Young et al., 2003 or are based largely 
on literature reviews and untested expert opinions (e.g. many state-and-transition models; 
Petraitis and Dudgeon, 2004).  The ecosystem state model described here is a data-driven, 
objective and multivariate approach to developing a state-and-transition model.  It is not 
influenced by the „pet‟ taxa of the scientists who constructed it, or by our preconceived notions 
of what is driving ecological change in the system (as far as is possible).   

Using such an ecosystem state approach has a number of advantages.  Firstly, there is 
significant interest amongst ecological scientists in alternative stable states (e.g. Petraitis and 
Dudgeon, 2005; van Nes and Scheffer, 2005 and in the identification of different ecosystem 
states (whether stable or not) and their ability to assist in the management of ecosystems (for 
example, Zweig and Kitchnes, in press; Suding and Hobbs, 2009);, and this approach provides 
another tool to pursue these goals.  Ecological changes in large, complex ecosystems, 
particularly given the uncertainty of climate change is also topical at the moment (for example in 
the west of the USA; Powell, 2008), and this approach provides a mechanism with which to 
predict these changes.  Secondly, the concept has proved to be one that resonates with both 
the managers of the system and the general public.  The notion that physico-chemical 
conditions are linked to the biotic communities that are found under those conditions, and that 
these change in space and time is intuitive and easy to explain to a non-technical audience.  As 
a result, we have had broad acceptance of the concept and have been approached multiple 
times by a variety of groups to predict ecological responses to a variety of additional 
management scenarios.  A major barrier to the adoption of many tools for managing 
ecosystems is the difficulty that can exist in conveying complex, and often highly 
mathematically-complex models to those stakeholders who the models are designed to assist 
(Zweig and Kitchnes, in press).  We have had no such issues in conveying the theory behind 
the ecosystem state model. 

The ecosystem state model, as developed for the Coorong, is extremely well matched to the 
existing river and hydrodynamic models that exist for the region.  The Murray-Darling Basin 
Authority has the capability to predict flows over the barrages under a wide range of past and 
possible future conditions.  These data, along with climate change predictions that have been 
made by CSIRO (CSIRO, 2008), provide the input for the hydrodynamic model of the Coorong 
that is described in (Webster, 2006).  All of the input variables required to use our model as a 
predictive tool can be constructed from the output of these two models.  This largely occurred 
via happenstance.  The model development process included many physico-chemical variables 
that could not be predicted by one of those two models (including water quality variables other 
than salinity and meteorological variables, for example), but these did not prove to be significant 
driving variables for the identified ecosystem states.  This makes scenario analyses relatively 
simple to carry out for a wide range of possible future conditions.  Another advantage of this 
occurrence is that, in the future, it will be relatively straightforward to monitor the potential 
ecological condition of the Coorong.  Water levels and salinities are already logged at multiple 
locations in the Coorong, so managers will be able to assess their level of success in 
maintaining the ecological condition of the Coorong, should these ecosystem states be adopted 
as the basis for targets in the system.  While we recommend ongoing biological monitoring to 
assist in the verification of model predictions, to identify causal links, and for the further 
refinement of the model, eventually this may not be necessary, and expensive biological 
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monitoring could be scaled back in favour of cheaper physico-chemical monitoring of the 
variables driving ecological responses.   

We consider the alternating use of biological and environmental data sets in the model 
development process to be a strength of the approach.  This allows for ongoing validation of the 
model as it is built, step by step.  By doing this, we were continually assessing the links between 
the two types of data (which, from a theoretical ecological perspective, we would expect to exist 
in some form).  It also provided a mechanism for detecting any trend towards over-fitting of any 
single component of the data, which is a tendency of CART modelling, in particular (Breiman et 
al., 1984).  This was apparent during the sensitivity analyses, where extraneous clusters or 
terminal nodes were detected and pruned, making the model quite robust. 

Another strength of the approach is the use of multiple time steps in the final model 
construction.  This means that both longer- and shorter-term changes are accounted for by the 
model, as was seen by the overall model‟s ability to capture the recent decline in the condition 
of the Coorong, which the initial annual model was unable to do.  We also observed regular 
changes in state at both the seasonal and annual time-steps, indicating that the scale at which 
the model was built, and the scenario analyses were undertaken (i.e. annual), was appropriate.   

The model development process was reasonably robust to missing and patchy data.  The initial 
clustering step was the most sensitive to missing data.  It was, however, possible to work 
around a certain amount of missing data.  Some cases that were missing large amounts of data 
were excluded from the initial clustering step but could be used later to test the predictiveness 
of the model.  We also used another approach during the short-term model development of 
conducting multiple cluster analyses and then aliasing the results across sub-sets of the data.  
Identifying environmental drivers of each biotic cluster provided an independent assessment of 
the success of this aliasing across analyses.   

The environmental data set was much more robust to missing data.  It was important however, 
during CART analysis to apply a penalty for the degree of missing data for each variable.  This 
was because CART analyses tend to favour predictive variables with high proportions of 
missing values, because they produce fewer errors in classifying cases (Steinberg and 
Golovnya, 2007).  In the end, the variables that were found to be driving ecosystem states 
tended to be ones that had sparse levels of missing data, but were also relatively easy to 
model. 

While we were unable to include explicit spatiotemporal links in the predictive model to govern 
the allowable transition, such links are likely to occur in the Coorong between ecosystem states.  
Additional data is needed to test predictions to identify those transitions that do occur (but have 
not yet been observed) and to get an idea of the time required for any transition to take place 
(e.g. length of time for colonists to arrive).  At the moment, all transitions are treated as possible 
and instantaneously occurring between time steps. 

The ecosystem state model, as it stands, is heavily dependent on the number of days with no 
flow over the barrages in predicting which ecosystem states are present in the Coorong.  For 
most scenarios, this is not a problem, because many managerial interventions and climate 
change are likely to affect the amount and duration of barrage flows.  In times of low flow, 
however, drought management of the Coorong is often intended to foster ecological condition 
by mechanisms other than flow over the barrages.  For example, the Murray Mouth is currently 
dredged to maintain a connection to the Southern Ocean (Murray-Darling Basin Commission, 
2006).  The original model was developed over a period of time where there were minimal 
engineering solutions occurring in the Coorong (i.e. Murray Mouth dredging was the only 
intervention, occurring from 2001 onwards), and so changes in ecological condition for the 
original model are closely linked to sources of fresh water.  The alternative ecosystem model 
was developed to remove this reliance on River Murray flows and to give a more realistic 
assessment of the ecosystem states likely under these engineering-type solutions, particularly 
over the short term (see Lester et al., 2009 for an application of this alternative model).   

Caution should be used in interpreting the results from the alternative model, particularly 
relating to differences between the proportion of site-years predicted to be in either the Marine 
or Estuarine/Marine states, and the proportion of site-years predicted as Degraded Hypersaline, 
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because the relative proportions of both were different when the Baseline scenario was 
analysed using both models.  Also, the predictions for individual site-years should not be 
emphasised, because there was quite a bit of variation in the prediction of the alternative model 
compared to the original model. 

4.2. Model evaluation 

Model evaluation was attempted by comparing model predictions for the 1980s and 1990s with 
patchy data collected during those time periods and assessing the similarities between the 
biotic assemblages for each ecosystem state between the earlier periods and the time-span 
over which the model was constructed (1999-2007, which is referred to as the 2000s for 
convenience despite the presence of 1999).  This was intended to assess how general the 
predictive model was, by comparing the predicted biota to the measured biota for a period 
outside the model domain.  Some data were available for aquatic macrophyte 
presence/absence (including Ruppia megacarpa), coverage data for Ruppia tuberosa, bird 
abundances, catch per unit effort for the commercial fishery, and presence/absence of 
invertebrates. The years, the scale and locations over which these data were collected varied 
widely between data sets.  Unfortunately there was very little overlap, making simultaneous 
comparisons involving multiple taxonomic groups (as was done during model development) very 
difficult due to limited sample sizes.  

When each taxonomic group was considered separately, the various groups gave mixed results.  
Analyses for some groups detected differences in biotic assemblages between states, but 
others did not.  Many analyses found significant differences between the biota supported by a 
given ecosystem state in the 1980s or the 1990s and the biota supported by the same state in 
the 2000s. The Estuarine/Marine state was the most common predicted for the Coorong in the 
1980s and 1990s.  Given the significant interaction between states and years across the various 
analyses, and the commonness of the Estuarine/Marine state compared with the other 
ecosystem states, the Estuarine/Marine state is the most likely to be significantly different 
between the 1980s and the 2000s.  Thus this state may not represent a single ecosystem unit 
for the Coorong, and may be an amalgamation of several „true‟ ecosystem states.   

Multi-group comparisons were more consistent with the approach used to build the model in the 
first place.  In comparing these groups, we expected that a good predictive ecosystem state 
model would produce significant differences between states, but not years, if the ecosystem 
states identified represented a complete set for the Coorong.  These analyses also produced 
somewhat mixed results, largely due to the lack of overlap between the available data sets.  
Biotic assemblages in 1987 appeared to vary dramatically from that observed in the 2000s 
(based on an assessment of bird and commercial fish species present).  Where there were data 
for more than one year in the 1980s, biotic assemblages tended to be grouped by ecosystem 
state, although, for the eight cases comparing aquatic macrophyte, invertebrate and fish 
assemblages, this was not statistically significant.  This comparison did also indicate that there 
were differences between the 1980s and the 2000s, although that was not observed for a 
comparison of only aquatic macrophytes and fish. 

Interpreting the trends from both the independent and combined taxonomic group comparisons, 
we believe that biotic assemblages do vary between ecosystem states, but that states present 
in the 1980s and 1990s may vary significantly from their counterparts in the 2000s.  This is likely 
due to the environmental conditions in the earlier decades being so different from those 
experienced during the years over which the model was developed.  As a result, we expect that 
the Estuarine/Marine state, in particular, is likely to vary widely in the biotic assemblages it 
supports. 

One of the reasons for comparing model predictions to the 1980s, in particular, is that the 
Coorong was Ramsar-listed in 1985.  This means that the ecological character of that time has 
been set as the de facto benchmark against which to measure current conditions within the 
wetland.  The official ecological character description (Phillips and Muller, 2006) was not written 
until 2006, however, by which time significant changes in ecological character had occurred, 
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some of which are due to the current drought, but others are also linked to management during 
the intervening years.  As such, there is not currently any reliable, detailed description of what 
the ecological character of the system was in 1985 at the time of Ramsar listing. 

In order to assist in the assessment of scenarios, and to give context for management within the 
region, we have compiled a list of species known to be present in the Coorong in 1984 and/or 
1985 (Appendix C).  The most striking differences between the species present in the Coorong 
at the time of Ramsar listing and today are the loss of species from lower trophic levels.  No bird 
or fish species that were recorded during 1984/85 have been lost from the system (although 
their distributions and abundances might be different now), but numerous macrophyte and 
invertebrate species have.  This may reflect the lower mobility of plant and invertebrate species, 
and suggests that birds and fish reliant on these species for food and habitat have found 
suitable alternatives.  This situation may not continue, however, with very few infaunal species 
remaining in the southern reaches of the Coorong (Rolston and Dittmann, 2009) and a sharp 
decline in the range and cover of the last remaining macrophyte, Ruppia tuberosa (Rogers and 
Paton, 2009). 

A description of an example food web from the early 1980s is given by Geddes and Francis 
(2008) for Pelican Point.  They indicate that the widespread presence of several macrophyte 
species (including Ruppia megacarpa, Lepilaena sp. and Zostera muelleri), along with beds of 
filamentous algae, would have been the basis for a large part of the food web.  At the time, 
phytoplankton, microphytobenthos and macrophytes would have all contributed to the organic 
carbon in the system (Geddes and Francis, 2008).  Today, however, the available organic 
carbon comes from largely planktonic sources (Geddes and Francis, 2008; Deegan et al., 
2009), particularly in the north of the system.  The loss of this diversity in primary producers is 
likely to have contributed to the loss of macroinvertebrate species in the region.  Species were 
lost from every macroinvertebrate class identified in the 1980s by the turn of the century, 
suggesting that the benchmark for ecological condition completed in 2006 (Phillips and Muller, 
2006) was already representative of a degraded system relative to the early 1980s and that 
more work needs to be done to compile early data sets to gain a fuller appreciation for the 
biodiversity present at the time of Ramsar listing. 

We also attempted to compare model predictions with data collected since the model has been 
developed.  Again, very little data were available, with fisheries-independent fish-assemblage 
data the only data set we were able to obtain for 2008.  Comparison of these data with data 
collected using the same method in 2006 and 2007 indicated that fish assemblages were 
significantly different again in 2008.  Anecdotal evidence and the continued drought suggest 
that the ecological condition of the Coorong has continued to decline since the model was 
developed.  Finding significant differences between the fish assemblages over such a short 
period of time may indicate that the ecosystem states of the Coorong have already moved 
outside the experience of the model.  As conditions continue to decline, additional further 
degraded states may be needed to adequately predict the biological communities and 
conditions found there now.  With the available data, however, such an extension of the 
ecosystem state model is not possible at this time. 

Comparisons of biotic assemblages in the 2000s with those of the 1980s and 1990s did suggest 
that additional states in the Coorong are likely, particularly within the current Estuarine/Marine 
state.  However, we did not successfully identify the environmental differences that drove these 
differences in biotic assemblage.  CART analysis of the available environmental data for sites-
years that were classified as Estuarine/Marine (across all years; 1981-2008) did not find driving 
variables and thresholds that resulted in biologically-distinct terminal nodes (which supports the 
ecosystem model as it stands).  So while we may believe that the Estuarine/Marine state as 
identified within the ecosystem state model is a composite of several states, we have insufficient 
data in hand to resolve these differences and include them in scenario analyses, due to the 
small amount of additional data on which to base the analyses.  As such, we have left the 
ecosystem model unchanged, with the caveat that the Estuarine/Marine state should be 
considered a conglomerate of states found in areas with a substantial tidal influence and with 
recent flows over the barrages. 
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4.3. Sensitivity analyses 

Sensitivity analyses were conducted to identify areas of the original ecosystem state model that 
were sensitive to changes in method, or to values within the data set.  These analyses allow an 
assessment of the robustness of the model, and highlight areas where future data gathering 
and model development efforts should be focused.  

Analysis of the clustering technique used to identify the preliminary states (Step 2; Figure 2.2) 
showed that the more clusters that were identified, the lower the level of concordance between 
cases assigned to individual clusters using different clustering techniques.  This is not an 
unexpected result.  The more clusters that were present, the more possibility there was for 
change.  Both the long-term (three clusters) and short-term (including fisheries-independent fish 
abundances; four clusters) data sets had quite high levels of concordance among clusters 
identified using group-average versus k-means clustering.  The short-term data including 
juvenile invertebrate abundances (five clusters) was much lower.   

The choice of clustering technique had little impact on the final ecosystem states developed by 
the model.  This was due to the independent assessment of biological distinctness undertaken 
using ANOSIM.  The CART models produced from the group-average and k-means clusters 
were quite different, but the models produced by the two methods were much more similar, 
once terminal nodes that did not have significantly-different biological communities associated 
with them had been identified using ANOSIM.  Then, there was a high proportion of shared 
cases allocated to terminal nodes. 

The degree of concordance between site-years assigned to each state dropped when the 
models were used to predict states for each site-year in the Baseline scenario.  Here the 
concordance was only around 80%.  A major source of error in the predictions for the site-years 
was our inability to predict turbidity (a variable that occurred consistently as a significant driver 
for k-means-based models).  The k-means model with maximum turbidity as a predictor had a 
predictive success rate of 90% during cross-validation, but this dropped to 73% when maximum 
turbidity was excluded and replaced by maximum tidal range (a variable that we are able to 
predict).   

It is impossible, therefore, to separate the loss of concordance under these Baseline scenario 
predictions that are due to the choice of clustering technique compared with that due to the drop 
in predictive accuracy due to the replacement of turbidity.  The cross-validation results suggest 
that a predictive model including maximum turbidity would perform better than the one used and 
that the degree of concordance may be higher but, because we aren‟t able to predict turbidity, 
this remains unresolved. 

The original rationale for using group-averaging clustering was to avoid making any a priori 
assessment of the number of ecosystem states that were likely to occur; however, if that 
number is high, then the clustering technique chosen will affect the cases assigned to each 
preliminary state.  We are satisfied with this choice, despite the impact that this may have on the 
preliminary states that are identified.  By happenstance, all of the predictive variables identified 
when group-average clusters were used were ones that could be predicted from the 
hydrodynamic model or inputs to the hydrodynamic model.  However, the effect of the small 
differences in concordance amongst terminal nodes requires further investigation for future 
models to untangle the differences due to clustering technique from the differences arising from 
the replacement of turbidity in the model based on k-means clustering.  This would be possible 
where models developed by the two clustering techniques involved only variables that were 
able to be predicted, so any differences would be due to the clustering technique, rather than 
variable substitution. 

Sensitivity of the model to random errors within the biological data set was also affected by the 
number of clusters identified in the data set.  As occurred for the choice of clustering technique, 
the greater the number of clusters, the more sensitive the model was to the proportion of error.  
All of the clusters investigated (three, four and five) were, however, significantly more robust to 
errors of even up to 50% than would be expected due to chance alone, indicating that the model 
overall is relatively insensitive to small numbers of random errors in the biological data set. 
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Another option for identifying preliminary states would have been to cluster the environmental 
data, rather than the biological data.  Sensitivity analyses of the degree of concordance of doing 
this, compared with the clusters obtained from the biological data, led to mixed results.  The 
long-term data set had a lower degree of concordance, despite a smaller number of clusters 
than the short-term data set.  Concordance across seven clusters for the short-term data was 
unexpectedly high. 

Clustering of the biological data set rather than the environmental data set was originally 
selected because we were primarily interested in the ecological entities rather than the physico-
chemical entities that existed within the system.  We would expect the biota to respond to the 
environment (rather than the other way around, most of the time), so we treated the biotic 
assemblages as the dependent variable for the CART analyses.  Also, management agencies 
tend to measure salinity, and other physico-chemical parameters, when assessing the 
environmental condition of systems like the Coorong, so it made sense to investigate them as 
drivers or indicators of ecosystem change.  The ecosystem state model as it stands, is also one 
that can be routinely modelled by MDBA (with the inclusion of the Coorong hydrodynamic model 
in BigMod), so approaching the modelling in this direction meant that the end result is one that 
is more likely to be of use to managers and other stakeholders. 

The distribution of states predicted by the ecosystem state model was most sensitive to 
threshold values for splits at the top of the decision tree.  This means that the model was more 
sensitive to the exact values of threshold for tides and maximum days without flow, but less 
sensitive to the exact value of the water level, depth or salinity thresholds.  Thresholds for 
variables near the bottom of the decision tree had very little impact on the overall distribution of 
states predicted by the model.  Overall, however, the distribution of states was not significantly 
different from a uniform distribution despite changes to all thresholds and each threshold 
individually.   

It was quite surprising that the model predictions were so insensitive to changes in the salinity 
threshold.  Salinity was the variable considered by most experts to be driving the ecological 
changes in the Coorong in recent years.  Our findings, however, suggest that this is only a small 
part of the overall story, with the lack of freshwater flows and water levels playing a much larger 
role in driving the identified ecosystem states.  This may be partly due to the close links 
between freshwater flows and changes in salinity.  Freshwater flows will freshen the Coorong, 
but will also bring inputs of particulate organic carbon and nutrients, amongst other things, 
which may be important for biogeochemistry in the Coorong (Cook et al., 2008), and barrage 
flows also play an important role in increasing water levels throughout the Coorong (Webster, 
2005).  This combination of benefits may be more important for driving the ecological condition 
of the Coorong than a simple dilution of salinity within the system. 

Another analysis that could be run would be to compare the existing model with one developed 
from a data set excluding rare species.  The opposite approach could also be taken, with a 
model developed from a data set of just the presence/absence of species, rather than 
abundance data.  Both of these analyses would test the generality and robustness of the model 
constructed and provide clues to the applicability of the model, as constructed, to other similar 
systems.  This may also point the way to how the routine collection of ecological data within the 
Coorong could be optimised, i.e. made more cost-effective and efficient, through streamlining, 
and hence more affordable. 

4.4. Limitations of the modelling 

The major limitation of the Coorong ecosystem states model is that it is biased towards 
describing declines in ecosystem condition, rather than any recovery that may occur.  The data 
set upon which the model was based (from 1999 to 2007) included only relatively dry years and 
low flow conditions.  Small barrage releases occurred towards the beginning of the time series, 
but for the last few years, only fishway flows, or no flows at all, were observed through the 
barrages.  This is a highly unusual occurrence for the Coorong, as is demonstrated by the 
scenario analyses undertaken (Lester et al., 2009).  As such, the ecosystem states that have 
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been identified, as well as the transitions that govern changes between them, are focused upon 
describing poor environmental conditions and ongoing decline of the ecosystem.  This is 
apparent when the fact that five of the eight identified ecosystem states appear in the Coorong 
only after 11 continuous months with no barrage flows – a situation that was largely unknown in 
the Coorong until recent years.  As a result, there is significant uncertainty about the ability of 
the model to predict any recovery within the system, or to categorise ecosystem states for more 
estuarine conditions.  This is highlighted by the analyses comparing the 1980s to the training 
data set, where the biota of states in the 1980s was frequently significantly different from the 
biota of the same state in the 2000s.   

It is likely that there will be hysteresis within the Coorong ecosystems, meaning that the 
pathways for recovery will differ from the pathways for decline.  There is also likely to be time 
lags inherent in the recovery of the ecosystem after flow return.  Recovery from drought is 
known to take significantly longer than recovery from flooding in freshwater systems (Lake, 
2000), and the same is likely to occur for estuaries.  These unknowns associated with recovery 
mean that we are unsure as to the ability of the ecosystem model to predict recovery accurately, 
both in terms of the timeframes required and the transitional stages along the way.  This will 
only be resolved if data are collected during recovery phases and the predictions of the model 
are able to be tested and refined accordingly. 

Despite this limitation, the ecosystem state model is still useful for predicting ecosystem 
responses to changes in management and climatic conditions.  The ecosystem states described 
can be thought of as being the worst case, and the „Healthy‟ and „Average‟ states identified 
should be considered the de facto baseline for ecosystem condition, with additional ecosystem 
states possible and likely beyond these.  The current condition of the Coorong is such that even 
reaching the healthier end of the spectrum of described states will take time and effort, so there 
should be adequate time to refine the model before those predictions are likely to be needed. 

It should be stressed that the model produced does not necessarily rely on having captured 
causal relationships.  The CART algorithm seeks the best variables and values thereof to split 
the cases into a series of end members that represent the identified states.  Thus the threshold 
values of the chosen variables are those that are associated with the various end members.  It 
is possible to arrive at more than one pathway to a given fate, as was seen in the alternative 
model for the South Lagoon.   

The use then of those splits in our state-and-transition model is our attempt to use 
environmental conditions to represent what is happening to the biota in the Coorong by 
association with key physico-chemical measures.  This was deliberately chosen because the 
managers of the Coorong (as for many waterbodies elsewhere) are able to routinely measure 
the waters for physico-chemical variables much more easily than for biological or ecological 
variables.  Our use of those variables chosen by the CART algorithm to indicate different 
ecosystem states was tested in the sense that the states had to represent different collections 
of biota and were shown to be robust to analytical decisions along the way by the re-testing 
steps, validation and evaluation done as part of the model development. As such we suggest 
that the key splitting variables and their threshold values be utilised as indicators of the 
ecosystem states that they are associated with in the model.    

It is a separate but interesting question as to whether the model does capture information about 
the states that could be interpreted causally.  That would require further testing that should be 
possible in the future under different environmental conditions and with judicious use of 
manipulative experiments.  The easiest way of testing the ideas encapsulated in the model is to 
predict the ecosystem states to be seen within the Coorong under a wider range of future 
conditions – essentially what has been done under the scenario modelling (Lester et al., 2009).  
But the test of those predictions will be to monitor not only the states of the future (i.e. the biotic 
elements of each site) but also the five or so key environmental variables shown in the model 
splits.  The test may be imperfect because of unknown (as yet) trajectories of recovery or further 
transitions to state not yet in the overall model (as discussed above). 

More direct testing will involve experiments but these may need to be set up the field rather than 
the laboratory.  Obviously in times of drought we cannot experiment with the release of water 
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across the barrages.  We had hoped during the formative stages of the CLLAMMecology 
Research Cluster in build some testing into the research program but alas there were no 
barrage releases during these years.  Instead experimental protocols were developed for when 
such releases might become possible sometime into the future.  We still need to derive explicit 
predictions as hypotheses from the model and the other themes within CLLAMMecology to 
make this a complete experimental design for future experiment and then the fieldwork teams 
need to be marshalled at that time and for some return times after the release (to check for 
delayed responses).  Apart from those large-scale management experiments, it may also be 
possible to set up mesocosms within the Coorong lagoons to test the effects of particular water 
depths or quality for the development of the different ecosystems and their biota.  Those 
smaller-scale experiments may be particularly worthwhile for determining how quickly transitions 
between states might occur and the relative ease of particular transitions that lead to recovery.  
This would need to be done in the field to maximise the chance of recruitment of biota to the 
experimental units but we would have to monitor the availability of propagules and other chance 
occurrences during the experiment to interpret the outcomes properly (Petraitis and Dudgeon, 
2004; Petraitis and Dudgeon, 2005). 

4.5. Management implications 

This approach of defining ecosystem states has significant implications for the research and 
management of estuaries and other large, complex ecosystems.  The multivariate data input 
and exploratory nature of the technique has the advantage of greatly simplifying the task of 
defining ecosystem condition and has the potential to revolutionise the setting of management 
targets.  This approach allows management of a system at an ecosystem scale.  Management 
could now use a mix of appropriate ecosystem states as a management objective, rather than 
using a few surrogate variables or indicator species that are often arbitrarily chosen or defined 
and may lack adequate testing.  The ecosystem states described here are combinations of 
environmental conditions and associated biota as determined by the data in hand, rather than 
any preconceptions of co-occurring focal variables.  By managing for a set of states, there is 
significantly more flexibility in the definitions of limits of acceptable change.  Another major 
advantage is that functional redundancy in an ecosystem, that is where multiple species could 
perform the same function, is recognised and incorporated into the ecosystem state model, so is 
accounted for in the management strategy, rather than being overlooked, or even penalised as 
inappropriate change.  Using a multivariate approach highlights the interconnectedness and 
complexity of the ecosystem as a whole and therefore discourages the temptation to search for 
a „magic bullet‟ solution to ecological problems (Lester et al., in prep).  This means that 
management focus is more likely to remain on finding feasible solutions to ecological problems, 
rather than chasing unlikely quick-fixes.   

An important role for management arises from the need to further validate the ecosystem state 
model predictions.  Tailored monitoring plans focused on the biota of the Coorong (particularly 
the fish, birds, macrophytes and invertebrates upon which this model is based), along with the 
hydrodynamic variables that the model suggests drive changes in biotic assemblages will 
provide additional data for the ongoing testing and refinement of these models.  This will be 
particularly important through any interventions that are carried out, with monitoring needed 
before, during and for several years after any actions designed to affect the ecological condition 
of the Coorong. 

In the interests of parsimony, we investigated whether any biotic groups could be excluded from 
biological modelling.  However, even looking at only the top five species distinguishing amongst 
ecosystem states (keeping in mind that multiple sub-sets of data were used), all taxonomic 
groups and a wide variety of species within each were important for distinguishing between 
ecosystem states.  The presence of macrophytes, bird abundances (including waders, 
waterfowl and fishing birds), both commercially-caught and small-bodied fish abundances (or 
CPUE) and invertebrate abundances (including polychaetes, amphipods and chironomids) were 
all useful indicators of the ecosystem state of the Coorong system.  This suggests that full 
biological surveys should continue, at least until model predictions have been validated further 
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and any necessary model refinement has occurred.  It does, however, also justify the 
multivariate nature of the ecosystem state model, indicating that constructing the model based 
on a single taxonomic group would not be as effective at identifying ecosystem states as 
including all available data, as was done here. 

In addition to monitoring the variables identified here as driving the ecosystem states of the 
Coorong, we also recommend that water quality variables continue to be measured, as often as 
possible.  One of the reasons for the lack of water quality variables identified as driving 
variables may be the resolution of the existing water quality data.  The best data on water 
quality (other than salinity) are collected by DEH as spot samples from a handful of locations at 
quarterly intervals.  Logged data on a daily time step, for example, may allow us to identify any 
additional relationships between these variables and any changes in biotic assemblages.  
Turbidity, for example, regularly appeared as a driving variable in the sensitivity analyses, and 
better data may a) allow us to resolve the role that turbidity does play, and b) develop the ability 
to predict turbidity in the Coorong in the future.  In addition, it is likely that ecological conditions 
have continued to decline since the model was developed (as is suggested by the comparison 
between fish abundances in 2008 to those in the training data set), and water quality variables 
may play an important role in defining those changes that were not apparent in the model to 
date.   

4.6. Applicability of ecosystem state modelling to other systems 

The development of ecosystem state models, such as this, should be possible for a wide range 
of aquatic systems.  Many systems have a tendency to experience stepped changes in 
condition (e.g. lakes, wetlands, estuaries; Folke et al., 2004).  For example, step changes occur 
where wetting and drying cycles are present, or where ecosystem-engineering species exist, 
whose presence or absence dramatically changes the ecological character of a system (Folke 
et al., 2004).  The basis for modelling our ecosystem states is the link between biotic 
assemblages and thresholds in the surrounding physico-chemical conditions.  This link occurs in 
the vast majority of aquatic systems, so the approach should be applicable in each.  Each new 
system, however, will need to be explicitly and empirically modelled until an understanding is 
gained about the generality of the relationships observed (and some assessment of causality).  
At this stage in its development, we believe it is certainly worth applying ecosystem state 
modelling elsewhere, if only to demonstrate its generality, or otherwise.  Should such modelling 
be as successful elsewhere as in the Coorong, it may prove to be a significant step forward in 
our understanding of, and ability to manage, environmental assets at an ecosystem scale. 
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5. Conclusions 

We were successful in building a single model that can describe the probable ecological 
responses of the Coorong to a range of „levers‟ including both management actions and likely 
consequences of climate change.  The model, as it stands, is intuitive and useful to managers, 
with its identified combination of water regime and salinity drivers. 

In building the ecosystem state model, there have been many innovations and extensions of 
previous ecological modelling approaches.  We modified the theory of alternative stable states 
to make it more practical and relevant to dynamic and degrading ecosystems.  We used a 
chain-of-methods approach on a broad, disparate aggregate data set that included multiple 
taxonomic groups and a plethora of possible physico-chemical variables (not simply limited to 
their means).  The tests that have been used to test the individual steps in the model 
development process, the sensitivity of the model and the validity of its predictions have not, to 
our knowledge, been applied in this manner before.  We have also spent an extensive amount 
of time and effort in the development of novel ways to display the outputs of the modelling and 
the scenario analyses in a manner that is comprehensible, we hope, for both scientific and lay 
audiences.    

We expect that this approach will lead to ongoing improvements in modelling of ecological 
responses in complex ecosystems, and in the management of these systems.  We believe that 
there are many exciting future directions arising from this work, including addressing some of 
the identified limitations of the current model, but also in applying this modelling approach to 
other ecosystems (both nearby and distant), and working with managers to apply the results to 
an adaptive management framework for the Coorong. 
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Appendix A – Road map to the outputs from the CLLAMM 
Futures theme 

The following diagrams illustrate the various outputs from the CLLAMM Futures theme.  They 
show the sequence in which they will be or have been prepared, their current stage of 
completion and the links between the various outputs (Figure A.1).  Figure A.2 also shows the 
intended audience and purpose of each output, to highlight the range of target audiences 
covered. 

 

 

Figure A.1 Road-map of CLLAMM Futures outputs 

*  The CLLAMM Futures final reporting is made up of three separate reports, including this document, a 
scenario analysis report and a supplementary report. 
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Figure A.2: Purpose and intended audience of CLLAMM Futures outputs 
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Appendix B – Summary of modelling and analysis techniques investigated 

The following table summarises the techniques explored in the modelling review that was undertaken (Lester and Fairweather, 2008b), listing their 
advantages, disadvantages and their applicability for CLLAMM Futures, as determined at the time.  
 
 

Advantages Disadvantages Applicability to Futures 

Hysteresis modelling  Leads to greater understanding of 
state change and system predictability  
 

Describes an outcome, rather than a 
particular technique  
 

Appropriate data to model hysteresis 
is unlikely to be available  
 

Alternative stable states  Leads to greater predictability of future 
states, as systems with alternative 
stable states show memory of 
previous states  
 

Difficult to adequately demonstrate 
true alternative stable states without 
experimentation 
 

The alternative state concept is useful, 
although it is unlikely that stability will 
be demonstrated  
 

Bifurcation plots from chaos theory  Able to describe the differences in 
parameter values across a threshold 
value  
 
Understanding one bifurcation can 
assist in predicting others so can 
make systems more predictable  
 

Requires data on the behaviour of 
systems both in the decline and 
recovery phase  
 
Largely limited to use in deterministic 
models  
 

Unlikely to be useful given Future‟s 
focus on statistical, rather than 
deterministic modelling  
 

State and transition modelling  Able to combine data from different 
sources to describe states and/or 
transitions  
 
Does not assume equilibrium in a 
system  
 
Can be linked to GIS to become 
spatially explicit  
 

Have limited ability to account for 
gradual change  
 
Are not able to incorporate 
evolutionary change  
 

Could be used as the structure for the 
various hypothesised ecosystem 
states, combining output from other 
techniques to define the various states 
and transitions  
 

Table B.1. Summary of the relative advantages, disadvantages and applicability of the techniques investigated  
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 Advantages Disadvantages Applicability to Futures 

Classification and regression trees  Are able to use a combination of 
categorical and continuous variables  
 
Are well suited to ecological data due 
to a lack of assumptions about 
distributions  
 
Have easy-to-understand graphical 
output  
 

A lack of consensus in algorithms 
mean that different programs can 
result in different output trees  
 
Tend to produce overly-complex trees 
unless pruned appropriately  
 

Could be used to parameterise the 
hypothesised alternative ecosystem 
states  
 
Able to identify threshold points 
between states  
 

Multiple regression trees  Extends CART analyses to situations 
that have multiple response variables  
 
Able to assess high-order, complex 
interactions between predictor 
variables  
 
Robust to patchy ecological data  
 

As per CART, is prone to over-fitting  
 
Can be sensitive to outliers and be 
biased towards variables with more 
potential split points.  
 

Is likely to be of use in predicting 
species composition under tested 
scenarios  
 
May be able to validate hypothesised 
ecosystem states  
 

 
Boosted regression trees  Greater predictive accuracy than 

CART because a combination of 
CART models are fitted to 
progressively re-weighted data  
 
Similar advantages to other tree-
based analyses, like the ability to 
incorporate both categorical and 
continuous variables 
 

The output is complex, with up to 
hundreds of simple trees combined in 
one analysis with individual trees 
unable to be examined individually  
 
Prone to over-fitting unless the output 
is carefully pruned  
 

Unlikely to be useful given the “black 

box‟ nature of the output that will 

preclude the results from being 
incorporated into other analyse 
 

Table B.1 cont. Summary of the relative advantages, disadvantages and applicability of the techniques investigated  
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Advantages Disadvantages Applicability to Futures 

Multivariate adaptive regression 
splines  

Able to detect global and linear 
structures within data sets  
 
Combination of regression equations 
leads to greater predictive power than 
traditional regression equations.  
 
Found to be effective in combination 
with other regression analysis 
techniques like GAM and GLM.  
 

Some contention regarding utility in 
ecological situations. The ability to 
incorporate output into other analyses 
is unclear and may vary between 
analytical packages.  
 
Has the potential to be over-influenced 
by local processes, making findings 
unstable  
 

The technique may be useful, but 
verification with CLLAMM Futures 
data is needed to confirm, given 
varying findings in the scientific 
literature.  
 

Structural equation modelling  Tests hypothesised relationships 
between variables  
 
Able to propagate error and 
uncertainty through the model  
 
Able to incorporate theoretical 
constructs, as well as measured 
variables  
 

Can be difficult to include spatial and 
temporal scales into the model  
 
Can be difficult to assess causality 
from co-variations and correlations  
 

Could be used to quantify the 
conceptual models used by managers 
of the CLLAMM region  
 

Bayesian belief networks  Represents a system as a series of 
interactions  
 
Able to combine a variety of data and 
analysis types  
 
New information can be incorporated 
as it becomes available  
 

Require a full probability structure to 
be specified  
 
Poor at incorporating spatial or 
temporal variability  
 
Continuous variables are not treated 
neatly  
 
Historically, tend to rely overly on 
expert opinion  
 

Could be used as the platform to tie 
various other analyses together  
 

Table B.1 cont. Summary of the relative advantages, disadvantages and applicability of the techniques investigated  
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 Advantages Disadvantages Applicability to Futures 

Gaussian error propagation  Enables detailed study of error 
sources within the model  
 
Computationally less expensive than 
techniques like Monte Carlo 
simulations  
 

Output variables must be expressed 
as functions of input variables  
 

CLLAMM models will not be able to be 
expressed as a single mathematical 
function  
 

 
Individual-based modelling  Scale consistent with evolutionary 

adaptation  
 
Findings are likely to be predictive 
because they are based on theory and 
are not empirical  
 

Highly data intensive  
 
Involves high-level programming skills  
 
Often involves studies over decades  
 
Can be difficult to communicate 
findings  
 

Appropriate data will not be available 
for CLLAMM  
 

Levels of evidence  Combines multiple studies to 
strengthen the evidence for or against 
a hypothesis  
 
Rigorous method of hypothesis 
falsification over several steps 
 
Identifies areas for further research  
 

Time-consuming technique  
 

Unlikely, but may be useful in 
identifying knowledge gaps for 
possible future work in the region  
 

Table B.1 cont. Summary of the relative advantages, disadvantages and applicability of the techniques investigated  
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Appendix C – Species list from 1984/85 

The following table gives the species that were recorded in 1984 and/or 1985 in data sets that 
were used in the evaluation of the model described here.  The sources of the data are given 
above in the text.  

Species Year 
 1984 1985 1999-2007 

Macrophytes    

Ruppia tuberosa X X X 
Ruppia megacarpa X X  
Lepilaena sp. X X  
Zostera muelleri X X  

Macroinvertebrates    

Crustaceans    
Amarinus lacustris*    
Macrobracium intermedium X X  
Melita zeylanica X X  
Paracorophium sp.* X X  
Megamphopus sp. X X  

Polychaetes    
Ceratonereis pseudoerythraensis X X X 
Nephtys australiensis X X X 
Prionospio sp. X X  
Ficopomatus enigmaticus* X X  
Boccardia sp. X X  
Capitella capitata X X X 
Capitellides X X X 
Fabiciinae sp. X X  
Phyllodoce novohollandiae    

Molluscs    
Hydrobia buccinoides X X X 
Notospisula trigonella X X  
Arthritica semen X X X 
Tellina sp.    
Tatea sp.    
Salinator fragilis X X X 

Insects    
Chironomid sp. X X X 
Ephydrella sp. X X  

Fish    

Australian Salmon (Arripis truttaceus) X X X 
Black Bream (Acanthopgarus butcheri) X X X 
Bony Bream (Nematalosa erebi) X X X 
Mulloway (Argyrosomus hololepidotus) X X X 
Yellow-eye Mullet (Aldrichetta forsteri) X X X 
Jumping Mullet (Liza argentea) X X X 

Table C.1. Species list for 1984 and 1985 

Note: Species annotated with an asterisk were not in the training data set but were observed in the 
system during CLLAMMecology by researchers involved in the Research Cluster. 
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Species Year 
 1984 1985 1999-2007 

Callop (Macquaria embigua) X X X 
Redfin Perch (Perca fluviatilis) X X X 
Greenback Flounder (Rhombosolea tapirina) X X X 
European Carp (Cyprinus carpio) X X X 
Bronze Whaler Shark (Carcharhinus brachyurus) X X X 
Gummy Shark (Mustelus antarcticus) X X X 
    

Birds    

Australian Pelican (Pelecanus conspicillatus) X X X 
Little-pied Cormorant (Phalacrocorax melanoleucos) X X X 
Pied Cormorant (Phalacrocorax varius) X X X 
Little Black Cormorant (Phalacrocorax sulcirostris) X X X 
Great Cormorant (Phalacrocorax carbo) X X X 
Black-faced Cormorant (Phalacrocorax fuscescens)  X X 
Black Swan (Cygnus atratus) X X X 
Australian Shelduck (Tadorna tadornoides) X X X 
Musk Duck (Biziura lobata) X X X 
Pacific Black Duck (Anas superciliosa) X X X 
Chestnut Teal (Anas castanea) X X X 
Grey Teal (Anas gracilis) X X X 
White-faced Heron (Ardea novaehollandiae) X X X 
Pied Oystercatcher (Haematopus longirostris)  X X 
Red-capped Plover (Charadrius ruficapillus) X X X 
Masked Lapwing (Vanellus miles) X X X 
Black-winged Stilt (Himantopus himantopus) X X X 
Banded Stilt (Cladorhynchus leucocephalus) X X X 
Red-necked Avocet (Recurvirostra novaehollandiae) X X X 
Fairy Tern (Sterna nereis) X X X 
Crested Tern (Sterna bergii) X X X 
Caspian Tern (Hydropogne caspia) X X X 
Whiskered Tern (Childonias hybridus) X X X 
Silver Gull (Larus novaehollandiae) X X X 
Sharp-tailed Sandpiper (Calidris acuminata) X X X 
Red-necked Stint (Calidris ruficollis) X X X 
Common Sandpiper (Actitis hypoleucos) X X X 
Common Greenshank (Tringa nebularia) X X X 
Great Crested Grebe (Podiceps cristatus) X X X 
Hoary-headed Grebe (Poliocephalus poliocephalus) X X X 

Table C.1 cont. Species list for 1984 and 1985 
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