Coorong, Lower Lakes and Murray Mouth Recovery Project – Vegetation Program Seed Germination and Propagation Research Project

**Final Report** 



## May 2016 SOUTH AUSTRALIAN SEED CONSERVATION CENTRE



Department of Environment, Water and Natural Resources





**Australian Government** 

# Table of Contents

| Summary                                                                     |
|-----------------------------------------------------------------------------|
| Background                                                                  |
| Methods                                                                     |
| Seed Collection, Cleaning and Quantification4                               |
| Seed Viability Testing                                                      |
| Germination Experiments5                                                    |
| Vegetative Propagation9                                                     |
| Information Sharing9                                                        |
| Seed Collections and Seed Viability10                                       |
| Germination Experiments19                                                   |
| Interpretation of Germination Results21                                     |
| Vegetative Propagation of Astroloma conostephioides and Astroloma humifusum |
| Discussion                                                                  |
| Seed Viability                                                              |
| Germination29                                                               |
| Propagation                                                                 |
| Information Sharing                                                         |
| Future Work                                                                 |
| References                                                                  |
| Acknowledgements                                                            |
| Appendix 1                                                                  |
| Appendix 2                                                                  |

## Summary

This report is from the South Australian Seed Conservation Centre for the project to undertake seed germination and propagation research for plant species to be utilised in the Vegetation Program, a revegetation and habitat restoration program funded as part of the Coorong, Lower Lakes and Murray Mouth Recovery Project by the Commonwealth and South Australian governments. The time frame for this project is from February 2013 to May 2016. The project aim was to find suitable propagation methods for at least 24 plant species that were identified as priority species for the region.

Collections of viable seed were obtained from 27 plant species. The majority of collections had high viability and 22 out of 27 were found to be greater than 50% viable. Germination experiments were conducted on all the species. Maximum germination rates were between 38% and 100% and were above 50% for 21 species.

Data presented in this report has also been incorporated in the Seeds of South Australia website (www.saseedbank.com.au), which is freely accessible to the public. To facilitate the propagation of these plants by future practitioners, a page has been loaded for each species with photographic images of plants, flowers and seeds as well as information on seed collection and germination.

## Background

The purpose of this project was to investigate the germination and/or propagation requirements of key species identified by the Coorong Lower Lakes and Murray Mouth (CLLMM) Recovery Project by the Commonwealth and South Australian Governments. The priority species for this project were selected because they were reported to be difficult to propagate by restoration practitioners. Research into the germination requirements and propagation methods for these species is required in order to increase the number of species available for revegetation programs. This will expand the diversity of species able to be used in revegetation, and increase the likelihood of reconstructing ecologically functional habitats.

The South Australian Seed Conservation Centre (SASCC) is well equipped to identify plant species, collect seeds and investigate their germination requirements. Seeds are routinely tested for viability and germination as part of the regimen of the seed bank curation. The SASCC has equipment for incubating seeds under a variety of temperatures and moisture levels, designed to mimic the conditions seeds would experience in their natural habitat. A range of chemical and physical treatments are also used that can increase germination in difficult seeds. These include plant hormones, heat and smoke treatments that simulate fire cues and stratification or after ripening treatments that can be used to alleviate dormancy and enhance germination levels. In addition to this equipment, staff at the SASCC have experience with germinating seed from a wide range of habitats and across many genera. Information for designing germination experiments is drawn from scientific articles and text books (Langkamp 1987; Baskin and Baskin 1998; Bonney 2003), data from the Tasmanian Seed Conservation Centre (http://gardens.rtbg.tas.gov.au/tscc-germination-database/) and the Millennium Seed Bank seed information database (http://data.kew.org/sid/). Observation, practical experience and knowledge of the local growing conditions also provide clues to environmental cues for germination, for example, disturbance, fires, flooding, arid environments etc.

The SASCC also works closely with the staff at the Mount Lofty Botanic Gardens Nursery when setting up propagation experiments to investigate methods for obtaining rooted cuttings and growing plants from seed in tube stocks ready for planting.

The project aim was to find suitable propagation methods for at least 24 plant species that were identified as priority species for the region. In this report we present data for 27 species that were tested for seed viability and germination. In the interests of sharing information with the wider community, data from this project has been loaded onto the Seeds of South Australia website, which is freely accessible to the public.

## Methods

### Seed Collection, Cleaning and Quantification.

Plant populations with adequate seed set were located and mature seed was collected for 27 species. The seeds were left to dry and cleaned using a combination of sieves and aspiration to remove other plant material. Species with seeds encased in fleshy fruits (*Astroloma conostephioides, Astroloma humifusum, Leucopogon parviflorus, Nitraria billardierei*) were treated with a solution of pectinase (1% (w/v)) for approximately 24 hours, then the flesh of the fruit was washed away by rubbing through a sieve. Dry seeds were stored in a controlled environment room maintained at 15°C and 15% relative humidity before germination experiments were commenced. Loss of seed viability is minimised when seeds are kept in cool, dry conditions.

The seeds were quantified by weighing out 100 seeds (5 replicates of 20 seeds), and then calculating the average weight of one seed. The number of seeds in the seed lot was estimated by dividing the weight of the seed lot (g) by the weight of one seed (g). The number of seeds per gram was determined by the formula:

1 ÷ weight of 1 seed (g) = number of seeds/g.

Two species were added to the original target list:

*Spyridium fontis woodii* is endemic to South Australia and currently known from a single extant roadside population near Woods Well. It grows in shallow sands over calcrete with *Eucalyptus diversifolia* and coastal heath plants.

*Hibbertia riparia* is a common plant species growing throughout the CLLMM area and more research is required into the germination of this and other *Hibbertia* species.

### **Seed Viability Testing**

Seed viability was estimated by x-raying 50 seeds or cut testing 20 seeds to determine the percent of seeds that are filled. Seeds were also dissected to examine the condition of the embryo and endosperm. Seed dissection is a readily available tool for estimating seed quality and correlates to the expected germination percentage in the sample. This can be done in the field or in a laboratory using small snips or other similar tools. Cut seeds can be viewed with a hand lens or dissecting microscope. Images of viable cut seeds were taken to assist seed collectors to examine the quality of seeds in the field before collection.

## **Germination Experiments**

Seed germination was tested using a variety of methods depending on the plant species. The protocols for the germination tests vary depending on the predicted requirements for each species. The specific methods were derived from several sources including previous experiments within the seed bank, background information from textbooks or practitioners and published articles.

Table 1 lists the treatments that were applied to seeds and the conditions of the incubation periods when germination was scored. For each species a number of different treatments were tested. Each treatment was applied to 50 seeds which were then plated into 90mm glass petri dishes on a supporting media such as agar (1% (w/v)) or moist sand. Germination was recorded on a weekly basis when the radicle had emerged from the seed and had grown at least half the width of the seed. The rationale for each treatment is listed in Table 1. A combination of treatments were used in several experiments and these are described in sequential order in Appendix 1.

**Table 1** List of treatments used for germination experiments and the rationale behind each treatment.

| Treatment                        | Method                                                            | Rationale                                                     |
|----------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|
| Aerosol smoke                    | Seeds were placed in a tent connected to a metal drum via a       | Chemicals present in smoke have been shown to trigger         |
|                                  | pipe. Smoke from burning clean straw passed through the           | germination in some species that are fire responsive.         |
|                                  | pipe into the tent for 15 min.                                    |                                                               |
| After Ripening (AR)              | Seeds were placed in Petri dishes with dry washed sterile sand    | Storing seeds at different temperatures in a dry environment  |
|                                  | and incubated in ovens or incubators set to specified             | is known as after ripening. This treatment has been shown to  |
|                                  | temperatures for a period of time.                                | alleviate dormancy in some species.                           |
| Constant temperature             | Incubator set at constant temperature with a 12 h                 | Used as an alternative to diurnal cycling, embryos may grow   |
| incubator                        | photoperiod                                                       | faster at one optimal temperature.                            |
| Control                          | No treatment.                                                     | The control shows the germination response of untreated       |
|                                  |                                                                   | seeds.                                                        |
| Dry Heat                         | Dry seeds were placed in a temperature controlled oven for        | Used to mimic extreme hot conditions that is required by      |
|                                  | a set period of time.                                             | some species to germinate eg, baking sand or bushfire.        |
| Fruit removal                    | The fruit portion was removed from <i>Exocarpos</i> seeds in some | Fruit removal reduces the chance of fungal contamination of   |
|                                  | experiments.                                                      | seeds and mimics part of the process of animal ingestion.     |
| Gibberellic Acid (GA)            | Seeds soaked in a solution of GA dissolved in water.              | GA is a plant hormone and is available as a powder or liquid  |
|                                  | Concentration and duration of soaking may vary for                | solution. GA is used to alleviate physiological dormancy      |
|                                  | different species.                                                | and promote germination in seeds.                             |
|                                  | Continuous application of GA was delivered by adding GA to        |                                                               |
|                                  | agar before pouring into plates.                                  |                                                               |
| Hydrogen Peroxide                | Seeds soaked in hydrogen peroxide 30% (v/v) for 15 mins           | Hydrogen peroxide is a strong oxidizer and is often used as a |
| (H <sub>2</sub> O <sub>2</sub> ) | with gentle agitation, then rinsed 3 times with water.            | bleach or cleaning agent to sterilize the seed coat of any    |
|                                  |                                                                   | fungus or bacterial agents. The treatment may also            |
|                                  |                                                                   | breakdown chemicals in the seed coat that inhibit             |
|                                  |                                                                   | germination.                                                  |
| Leaching                         | Seeds were placed into a solution of water with gentle            | Leaching is used to mimic conditions where seeds are          |
|                                  | agitation to continuously mix the solution. Water was             | soaked by flooding or heavy rains. This process may leach     |
|                                  | refreshed daily.                                                  | out inhibitors present within the seed or seed coat which     |
|                                  |                                                                   | prevent or delay germination.                                 |

| Treatment                   | Method                                                                                                                                                                                                                                                                                        | Rationale                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nicked seed coat            | The outer layer of the seed coat was carefully nicked using<br>a sharp scalpel to disrupt the water impermeable layers<br>surrounding seeds with physical dormancy.                                                                                                                           | This process alleviates physical dormancy by allowing<br>water to enter the seed. Another method to break<br>physical dormancy is to pour boiling water onto seeds<br>and let it cool. This is easier for bulk treating seeds.                                                                                                                                   |
| Pectinase treatment         | Seeds were soaked in a solution of Pectinase (1%) for several<br>hours then fruit tissue was cleaned away by gentle rubbing<br>through a sieve.                                                                                                                                               | Pectinase is an enzyme which breaks down the cell walls in<br>fruits and is used to soften the fruit tissue so it can be washed<br>off the seeds. This process removes material that may<br>promote fungal growth on the seeds and also mimics the seed<br>cleaning that occurs through animal ingestion.                                                        |
| Potassium nitrate<br>(KNO₃) | Seeds were soaked in a solution of Potassium Nitrate<br>prepared by dissolving in water to a concentration of 100<br>mg/L. Soaking times may vary for different species.<br>Continuous application of KNO <sub>3</sub> was delivered by adding<br>KNO <sub>3</sub> (100 mg/L) to agar plates. | Potassium Nitrate is used to stimulate germination of seeds<br>with physiological dormancy. The increased amount of<br>nitrate signals a lack of plant competition for soil nutrients<br>e.g., conditions after a fire. This mechanism of 'gap sensing'<br>can indicate a positive germination response to other fire<br>cues such as heat and smoke treatments. |
| Smoke water                 | Smoke water was prepared by connecting a container of<br>water to a metal drum via a pipe. The smoke from burning<br>clean straw was piped through water for 15-30 mins. This<br>concentrated smoke water was stored at -20 °C until use and<br>was diluted before treating seeds.            | Chemicals present in smoke have been shown to trigger<br>germination in some species that are fire responsive. Smoke-<br>water is available commercially.                                                                                                                                                                                                        |
| Spring/autumn<br>incubator  | Incubator set to 10°C for 12 h followed by 22°C for 12 h with 12 h photoperiod                                                                                                                                                                                                                | Used to mimic temperature and day light hours of an average South Australian spring/autumn.                                                                                                                                                                                                                                                                      |
| Stratification (STRAT)      | Seeds were incubated in moist conditions in incubators set to specified temperatures for a period of time.                                                                                                                                                                                    | Storing seeds at different temperatures in a moist<br>environment is known as stratification. This treatment has<br>been shown to alleviate dormancy in some species.                                                                                                                                                                                            |
| Summer incubator            | Incubator set to 15°C for 10 h followed by 30°C for 14 h with a 14 h photoperiod                                                                                                                                                                                                              | Used to mimic temperature and day light hours of an average South Australian summer.                                                                                                                                                                                                                                                                             |
| Wet heat                    | Seeds were placed in a tea strainer and exposed to hot water.<br>Temperatures and times may vary for each species.                                                                                                                                                                            | Hot water treatments may alleviate physical dormancy by disrupting the water impermeable outer layers of the seed coat.                                                                                                                                                                                                                                          |

| Treatment        | Method                                                       | Rationale                                                       |
|------------------|--------------------------------------------------------------|-----------------------------------------------------------------|
| Wet/Dry cycling  | Seeds were placed in Petri dishes with sterile sand at a     | Wetting and drying simulates the soil seed bank environment     |
|                  | specified temperature. During incubation seeds were wet on a | as episodes of rainfall will cause the seeds to undergo several |
|                  | weekly basis for 6 hours then allowed to dry out.            | wetting and drying cycles before germination.                   |
| Winter incubator | Incubator set to 5°C for 4 h followed by 15°C for 20 h with  | Used to mimic temperature and day light hours of an             |
|                  | a 10 h photoperiod                                           | average South Australian winter.                                |

## **Vegetative Propagation**

Vegetative propagation methods were tested for the *Astroloma* species as these were the most difficult to germinate and it was likely that alternative methods to germination would be needed to propagate these plants.

An initial experiment was set up at the Mount Lofty Botanic Gardens Nursery on 15<sup>th</sup> April 2014. Fresh cuttings were taken from Naracoorte Caves National Park on 14<sup>th</sup> April 2014. A total of 100 cuttings from each species were dipped into purple Clonex and placed into a media of Perlite : cocopeat at a ratio of 90:10. Cuttings were kept in a misting tent with bottom heat applied for approximately 7 months before they were examined for root growth. Another experiment was set up at the Adelaide Botanic Gardens Nursery in a shade house. The cuttings were dipped into Clonex purple and placed into the same media and the pots were put into foam boxes (with drainage holes) and covered with white shade cloth. Cuttings were misted daily but no bottom heat was applied.

### **Information Sharing**

The data gathered for each species has been summarised in a species sheet and posted on the Seeds of South Australia website (www.saseedbank.com.au). The data compiled on this website is freely available to the public. The website provides the following information for each species:

- Seed collection time
- Regions where the species has been recorded
- Latin name derivation
- Distribution and habitat
- Status
- Plant description
- Fruit type
- Seed type
- Embryo type
- Seed collecting notes
- Seed cleaning notes
- Germination results

## Results

## Seed Collections and Seed Viability

Sufficient quantities of viable seed for germination testing were collected from 27 species (Table 1). Seed viability was tested for all of the species collected and ranged from 14% to 100%. However, the majority of collections had high viability and 22 out of 27 species were found to have greater than 50% viability.

Seeds collected from *Leucopogon parviflorus* had low viability (30%) mostly due to poor development and seed fill. Seeds collected from *Calytrix tetragona* also had low viability (18%) as the majority of the seeds were predated which could be detected by small holes in the fruit. The seed collected from Exocarpos sparteus was also low (14%) with most of the seeds predated or poorly developed. X-ray images of these species are shown in Figure 1.

The number of seeds per gram is included in this table as an indication of seed size and also to use as a guide when using seed weight to estimate the number of seeds required for revegetation.

Images showing microscopic detail of viable seeds for the 27 species are shown in Figure 2. An image of the whole seed or fruit is shown as well as a viable cut seed. These images can be used as a guide during seed collection as a visual reference for viable seed. It is recommended that seeds are cut and examined with a hand lens prior to collection to ensure that viable seed is collected. The seed inside should contain a healthy endosperm and embryo that fills the seed with a creamy or white starchy matrix. Nonviable seeds are often shrivelled or discoloured inside or may have been predated which leaves holes in the seeds. These seeds are not viable and cannot germinate.

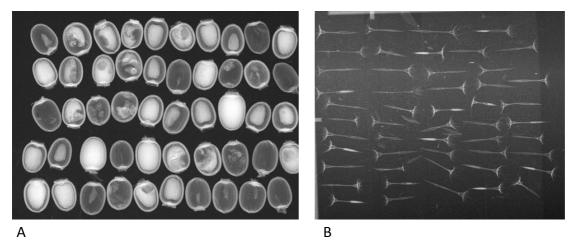



Figure 1. X-ray image of A) Exocarpos sparteus seeds 14% viable; B) Calytrix tetragona seeds 18% viable

**Table 2.** Seed collection data and viability testing results.

| No | Family        | Genus        | Species                           | Date seed collected | Location                | Number of<br>Seeds<br>collected | Number<br>seeds/g | Viability |
|----|---------------|--------------|-----------------------------------|---------------------|-------------------------|---------------------------------|-------------------|-----------|
| 1  | Euphorbiaceae | Adriana      | quadripartita                     | 30-Jan-13           | Woods Well              | 860                             | 40                | 78%       |
| 2  | Epacridaceae  | Astroloma    | conostephioides                   | 4-Oct-12            | Naracoorte<br>Caves NP  | 1912                            | 20                | 95%       |
| 3  | Epacridaceae  | Astroloma    | humifusum                         | 7-Nov-13            | Frahns Scrub            | 2960                            | 15                | 92%       |
| 4  | Rutaceae      | Boronia      | coerulescens ssp.<br>coerulescens | 10-Oct-14           | Cox Scrub               | 1040                            | 340               | 62%       |
| 5  | Myrtaceae     | Calytrix     | tetragona                         | 20-Nov-13           | Monarto CP              | 5660                            | 600               | 18%       |
| 6  | Santalaceae   | Exocarpos    | sparteus                          | 5-Feb-14            | Ngarkat CP              | 1470                            | 45                | 14%       |
| 7  | Santalaceae   | Exocarpos    | syrticola                         | 6-Feb-14            | Salt Creek              | 944                             | 40                | 83%       |
| 8  | Frankeniaceae | Frankenia    | pauciflora var.<br>gunnii         | 21-Feb-13           | Salt Creek              | 66000                           | 7690              | 92%       |
| 9  | Cyperaceae    | Gahnia       | filum                             | 15-Nov-13           | Currency Creek          | 1500                            | 725               | 80%       |
| 10 | Dilleniaceae  | Hibbertia    | riparia                           | 27-Oct-14           | Scott CP                | 1200                            | 755               | 86%       |
| 11 | Dilleniaceae  | Hibbertia    | sericea                           | 20- Oct-14          | Bonney<br>Reserve       | 1040                            | 400               | 56%       |
| 12 | Sterculiaceae | Lasiopetalum | baueri                            | 7-Nov-13            | Ferries<br>Macdonald CP | 1300                            | 690               | 52%       |

| No | Family         | Genus         | Species                       | Date seed collected | Location                        | Number of<br>Seeds<br>collected | Number<br>seeds/g | Viability |
|----|----------------|---------------|-------------------------------|---------------------|---------------------------------|---------------------------------|-------------------|-----------|
| 13 | Epacridaceae   | Leucopogon    | parviflorus                   | 30-Jan-13           | Princess Hwy,<br>Coorong        | 2876                            | 50                | 30%       |
| 14 | Liliaceae      | Lomandra      | densiflora                    | 20-Nov-13           | Frahns Scrub                    | 1500                            | 75                | 100%      |
| 15 | Liliaceae      | Lomandra      | effusa                        | 22-Nov-13           | Frahns Scrub                    | 2425                            | 40                | 100%      |
| 16 | Liliaceae      | Lomandra      | juncea                        | 20-Nov-13           | Monarto CP                      | 1220                            | 80                | 100%      |
| 17 | Liliaceae      | Lomandra      | leucocephala ssp.<br>robusta  | 12-Dec-11           | Langhorne<br>Creek              | 5000                            | 50                | 100%      |
| 18 | Liliaceae      | Lomandra      | multiflora ssp.<br>dura       | 8-Jan-14            | Finniss Oval                    | 2964                            | 60                | 100%      |
| 19 | Polygonaceae   | Muehlenbeckia | adpressa                      | 16-Nov-15           | Kangaroo Island                 | 3100                            | 220               | 85%       |
| 20 | Polygonaceae   | Muehlenbeckia | gunnii                        | 23-Oct-13           | Finniss - Milang<br>Road        | 1140                            | 70                | 100%      |
| 21 | Zygophyllaceae | Nitraria      | billardierei                  | 28-Feb-13           | Langhorne Ck -<br>Wellington Rd | 6200                            | 16                | 96%       |
| 22 | Thymelaeaceae  | Pimelea       | glauca                        | 3-Nov-15            | Rail Reserve,<br>Winery Rd      | 3800                            | 470               | 75%       |
| 23 | Rhamnaceae     | Pomaderris    | paniculosa ssp.<br>paniculosa | 10-Dec-14           | Tailem Bend –<br>Karoonda Rd    | 5800                            | 900               | 95%       |
| 24 | Rhamnaceae     | Spyridium     | fontis-woodii                 | 30-Jan-13           | Woods Well                      | 750                             | 2230              | 74%       |
| 25 | Rhamnaceae     | Spyridium     | subochreatum                  | 7-Nov-13            | Monarto CP                      | 4100                            | 2780              | 70%       |
| 26 | Chenopodiaceae | Tecticornia   | indica ssp.<br>Ieiostachya    | 21-Feb-13           | Salt Creek                      | 4700                            | 910               | 49%       |
| 27 | Sterculiaceae  | Thomasia      | petalocalyx                   | 11-Nov-13           | Naracoorte<br>Caves NP          | 900                             | 720               | 16%       |

**Figure 2.** Images of seeds and fruits taken through a microscope and viable seeds cut open to show the inside of a healthy, ripe seed.

| Species                                                            | Seed Image                                 | Viable Cut seed |
|--------------------------------------------------------------------|--------------------------------------------|-----------------|
| <i>Adriana quadripartita</i><br>(Seeds)                            | Addres patified. BARGE 9 sees:             |                 |
| <i>Astroloma conostephioides</i><br>(Woody drupe)                  | Astroloma concentraphiloides DJD2124 seeds |                 |
| <i>Astroloma humifusum</i><br>(Woody drupe)                        | Astrotoma humifusum JRGF1 seeds            |                 |
| <i>Boronia coerulescens</i> ssp.<br><i>coerulescens</i><br>(Seeds) | Bonesis controlets on the RJB74222 steed   | ESO UM          |
| <i>Calytrix tetragona</i><br>(Fruit with awns)                     | Coljent latragona JRG71 seeds              |                 |

| Species                                        | Seed Image                              | Viable Cut seed |
|------------------------------------------------|-----------------------------------------|-----------------|
| Exocarpos sparteus<br>(Nut)                    | Executions spartnus DuD2382 Seed        |                 |
| Exocarpos syrticola<br>(Nut)                   | Excerption typicable Database and Frant | 88              |
| Frankenia pauciflora var.<br>gunnii<br>(Seeds) | Frankenia pasciffors JRG52 seeds        |                 |
| <i>Gahnia filum</i><br>(Seeds)                 | Gateria filum D151113 SL. Seeds         | 500 um          |
| Hibbertia riparia<br>(Seeds)                   | Hibberlis riparis BJDDD7 & Serd         | Бо ит           |

| Species                                        | Seed Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Viable Cut seed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hibbertia sericea<br>(Seeds)                   | Heberle civils (PC Barry Rearry CLEM Pojet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E CONTRACTOR O CON |
| <i>Lasiopetalum baueri</i><br>(Seeds)          | Lastoptralum baueri JRC 070 seeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>Leucopogon parviflorus</i><br>(Woody drupe) | Leucopogon parvillorus MJ777 Fruit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>Lomandra densiflora</i><br>(Seeds)          | Lomandra densificar JRGIS Seed         Company         Company     < |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>Lomandra effusa</i><br>(Seeds)              | Lonandra offices JROAT? Seeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Species                                          | Seed Image                            | Viable Cut seed |
|--------------------------------------------------|---------------------------------------|-----------------|
| <i>Lomandra juncea</i><br>(Seeds)                | Lonandra jurcea JRG50 Seed:           | t mm            |
| Lomandra leucocephala ssp.<br>robusta<br>(Seeds) | Lonandra Incocoephala D121211MM Seeds |                 |
| Lomandra multiflora ssp.<br>dura<br>(Seeds)      | Lonandria multiflore sep. dura Seeds  |                 |
| <i>Muehlenbeckia adpressa</i><br>(Seeds)         | Muthimbeckia adpressa JRG242 Seets    |                 |
| Muehlenbeckia gunnii<br>(Seeds)                  | Muthinbockii gunii MJTTV seet         | Т пт            |

| Species                                             | Seed Image                                          | Viable Cut seed |
|-----------------------------------------------------|-----------------------------------------------------|-----------------|
| Nitraria billardierei<br>(Woody drupe)              | Nizaria bilandierei D.D198 Seeds                    |                 |
| <i>Pimelea glauca</i><br>(Seeds)                    | Presente glucica D/D/375 Seeds                      |                 |
| Pomaderris paniculosa ssp.<br>paniculosa<br>(Seeds) | Pomadorris paniculosa esp. paniculosa DJD1701 Seeds |                 |
| <i>Spyridium fontis-woodii</i><br>(Seeds)           | Spyridum fortis-woodsi seeds EJ.ID2512              |                 |
| <i>Spyridium subochreatum</i><br>(Seeds)            | Spiridum suboohreatum DJD099 seed                   |                 |

| Species                                           | Seed Image                                        | Viable Cut seed                       |
|---------------------------------------------------|---------------------------------------------------|---------------------------------------|
| Tecticornia indica ssp.<br>leiostachya<br>(Seeds) | Tecticorria indica saji. Ieiostachya MJT423 Seeds |                                       |
| <i>Thomasia petalocalyx</i><br>(Seeds)            | Thomasia petalocally Sand care. Seriel            | С С С С С С С С С С С С С С С С С С С |

### **Germination Experiments**

The results from germination experiments for 27 species have been summarised in Table 3 and compiled in Appendix 1. Several methods were tested for some species and the reasons behind different treatment strategies are outlined in Table 1. The germination levels for 21 species were greater than 50% for at least one treatment. Overall, seed germination was greater than 35% which showed that successful propagation methods through seed could be developed for all species following the methods described.

Methods for successful germination have not been previously reported for most of the species tested in this project. A range of different methods were found to enhance germination across the species tested. The germination response of the species tested were grouped into the following categories.

#### Non-dormant

Three species were found to be non-dormant as they germinated within 30 days without treatment (Baskin and Baskin, 2004). These were *Frankenia pauciflora* var. *gunnii*, *Gahnia filum*, and *Tecticornia indica* ssp. *leiostachya*. *Muehlenbeckia gunnii* also had high germination without any treatment although not all seeds germinated within 30 days.

#### Responsive to Gibberellic Acid

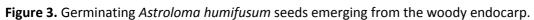
Gibberellic acid is a naturally occurring plant growth regulator, which has an important role in initiating seed germination and can be used to overcome physiological dormancy in many species. Other treatments may also alleviate physiological dormancy such as stratification at different temperatures, temperature cycling or dry after ripening. In this study, germination in several plant species increased after treatment with gibberellic acid and further work is needed to find the environmental conditions that would also trigger this response. Some seeds are classified as having deep physiological dormancy when there is no germination response to exogenously applied gibberellic acid.

Seeds did not germinate in the control treatment for *Adriana quadripartita* but germination increased in treatments that had gibberellic acid and warmer temperatures. The highest germination (60%) was observed after treating with gibberellic acid (1000 mg/L) and incubating using photo and thermoperiods simulating spring/autumn and summer conditions. *Exocarpos sparteus* and *Exocarpos syrticola* both had increased germination after application of gibberellic acid and incubation in winter conditions. *Lomandra effusa* had the highest germination response after treatment with gibberellic acid. *Nitraria billardierei* and *Lomandra leucocephala* ssp. *robusta* had the highest germination in response to treatment with gibberellic acid and dry heat treatment. Germination in *Lomandra juncea* was increased after treatment with aerated water followed by gibberellic acid.

#### Responsive to Fire Cues

Seedlings from many plant species have been observed to emerge post fire. The effects of heat, smoke and increased available nitrogen in the soil can act as a germination stimulant. Germination of *Lomandra densiflora, Lomandra multiflora* ssp. *dura* seeds had a positive response to smoke water.

Boronia coerulescens ssp. coerulescens, Hibbertia riparia and Hibbertia sericea had the highest germination after treatment with a combination of gibberellic acid and smoke water. Leucopogon parviflorus had the highest germination after treatment with a combination of gibberellic acid and smoke water or a combination of dry heat and gibberellic acid. The most effective treatment tested for *Calytrix tetragona* was dry heat and smoke water. These species appeared to respond to the fire cues heat and smoke, but in some cases there was an increase in germination when used in combination with gibberellic acid. The germination response to chemicals in smoke can be dependent on the seed dormancy status, which may be effected by a variety of environmental signals (Baker et al, 2005). In this study gibberellic acid was used to alleviate dormancy in combination with fire cues and resulted in higher germination rates for some species.


#### Physical Dormancy

Some plant families have a type of dormancy known as physical dormancy, where water is prevented from imbibing the embryo by a water impermeable seed coat (Baskin et al 2000; Baskin and Baskin 2004). The outer layer of the seed coat is usually hard and may be waxy. Dormancy is broken when water penetrates the seed coat, which can happen in nature over time, through crazing, scarification, heat, weathering or insect damage. In the laboratory or nursery germination can be initiated by scarification or treatment with hot water. Hot water ruptures the water gap in the seed coat and allows water uptake into the embryo. Plant species used in this project with physical dormancy were *Lasiopetalum baueri, Pomaderris paniculosa* ssp. *paniculosa, Spyridium subochreatum* and *Spyridium fontis-woodii*. Only a small number of *Spyridium fontis-woodii* was collected and the control experiment was omitted for this species in lieu of conserving the seeds in the seed bank. For the other species a marked difference between the control and treatment by nicking or hot water was observed. Physical dormancy is relatively simple to alleviate using these methods.

#### **Difficult to Germinate**

The species that were the most difficult to germinate were *Astroloma conostephioides* and *Astroloma humifusum*. These species have underdeveloped embryos, a woody endocarp and display morphophysiological dormancy which can be complex and difficult to alleviate. Methods to overcome this type of dormancy include stratification at warm or cool temperatures, cycling between seasonal temperatures and the use of chemical compounds such as smoke water and gibberellic acid. Germinating seeds emerged at very low rates from fruits. When germination occurred the endocarp split to allow germinating seeds to emerge (Figure 3). We found that generally the woody endocarp is a barrier to germination in *Astroloma* and further work is needed to find a more rapid method of excising seed from the endocarp or rupturing the endocarp in such a way that the embryo is not damaged and the seed is able to push out of the woody structure. It appears that the endocarp restricts full imbibition and therefore expansion of the embryo. Seeds of *A. conostephioides* and *A. humifusum* germinated readily after being removed from the physical confinement of the surrounding fruit and treatment with gibberellic acid. Further experiments are required to try and find a method suitable for larger scale experiments in the nursery. These results will be included on the seeds of South Australia web site as they become available.





### **Interpretation of Germination Results**

A summary of the most effective treatments used in the germination experiments and general advice regarding common problems with propagation for each species is shown in Table 4. These guidelines are a good starting point for growers to consider before commencing germination of these species. Results will vary depending on the initial seed viability, seed storage conditions, temperatures used for germination and concentration of chemicals applied to the seeds.

| No | Species                  | Treatment                                                                                          | Germination<br>(%) |
|----|--------------------------|----------------------------------------------------------------------------------------------------|--------------------|
| 1  | Adriana                  | Control; spring/autumn                                                                             | 0                  |
|    | quadripartita            | GA (1000 mg/L) continuous; spring/autumn                                                           | 60                 |
| 2  | Astroloma                | Hydrogen Peroxide; spring/autumn                                                                   | 4                  |
|    | conostephioides          | Seed excised from the endocarp; GA (500 mg/L); 15 °C constant temp                                 | 85                 |
| 3  | Astroloma                | Hydrogen Peroxide; winter                                                                          | 0                  |
|    | humifusum                | Seed excised from the endocarp; GA (500 mg/L); 15 °C constant temp                                 | 85                 |
| 4  | Boronia coerulescens     | Control; winter                                                                                    | 0                  |
|    | ssp. <i>coerulescens</i> | Leaching (48 h); GA (500 mg/L) with Smoke Water (10 %<br>(v/v)) for 24 h; winter                   | 38                 |
| 5  | Calytrix tetragona       | Control; spring/autumn                                                                             | 0                  |
|    |                          | Dry heat (90 °C for 15 min); GA (250 mg/L) with Smoke<br>Water (10% (v/v)) for 24 h; spring/autumn | 62                 |
| 6  | Exocarpos sparteus       | Leaching (48 h); winter                                                                            | 0                  |
|    |                          | GA (400 mg/L) for 48 h; winter                                                                     | 36                 |

Table 3. Summary of germination results showing controls and the most effective treatments.

| No | Species                                  | Treatment                                                                                                                                       | Germination<br>(%)                 |
|----|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 7  | Exocarpos syrticola                      | Leaching (48 h); winter<br>GA (400 mg/L) for 48 h; AR 20 °C for 3 weeks; winter                                                                 | 0<br>72                            |
| 8  | Frankenia pauciflora<br>var. gunnii      | Control; winter<br>GA (250 mg/L) continuous; winter                                                                                             | 96<br>100                          |
| 9  | Gahnia filum                             | Control; spring/autumn<br>Nicked seed coat; Leaching (7 d), spring/autumn                                                                       | 88<br>90                           |
| 10 | Hibbertia riparia                        | Control; winter<br>GA (500 mg/L) with Smoke Water (10% (v/v)) for 24 h;<br>spring/autumn                                                        | 0<br>62                            |
| 11 | Hibbertia sericea                        | Control; winter<br>GA (500 mg/L) with Smoke Water (10% (v/v)) for 24 h;<br>spring/autumn                                                        | 2<br>40                            |
| 12 | Lasiopetalum baueri                      | Control: winter<br>Nicked seed coat; winter                                                                                                     | 2<br>100                           |
| 13 | Leucopogon<br>parviflorus                | Hydrogen Peroxide; spring/autumn<br>Hydrogen Peroxide; Smoke Water (10% (v/v)) for 24 h; GA<br>(1000 mg/L) for 72hrs; spring/autumn             | 0<br>100                           |
| 14 | Lomandra densiflora                      | Control; 15 °C constant temperature<br>Hydrogen peroxide; Smoke Water (10% (v/v)) for 24 h; 15<br>°C constant 12 h photoperiod                  | 16<br>69                           |
| 15 | Lomandra effusa                          | Control; 15 °C constant temperature 12 h photoperiod<br>Hydrogen peroxide; GA (1000 mg/L) for 72 h; 15 °C<br>constant 12 h photoperiod          | 62<br>92                           |
| 16 | Lomandra juncea                          | Control; 15 °C constant temperature<br>Hydrogen peroxide; GA (1000 mg/L) for 72 h; 15 °C<br>constant 12 h photoperiod                           | 6<br>35                            |
| 17 | Lomandra<br>leucocephala ssp.<br>robusta | Control; 15 °C constant temperature 12 h photoperiod<br>Hydrogen peroxide; GA (1000 mg/L) for 72 h; 15 °C<br>constant 12 h photoperiod          | 0<br>32                            |
| 18 | Lomandra mutliflora<br>ssp. dura         | Control; 15 °C constant temperature 12 h photoperiod<br>Hydrogen peroxide; Smoke Water (10% (v/v)) for 24 h; 15<br>°C constant 12 h photoperiod | 78<br>93                           |
| 19 | Muehlenbeckia<br>adpressa                | Control; spring/autumn                                                                                                                          | No<br>germination<br>after 34 days |
| 20 | Muehlenbeckia<br>gunnii                  | Control; spring/autumn<br>STRAT 6 weeks spring/autumn; winter                                                                                   | 81<br>94                           |
| 21 | Nitraria billardierei                    | Leaching (15 d); spring/autumn<br>Leaching (15 d); Dry heat (120 °C) for 2min; GA (1000 mg/L)<br>for 72 h; spring/autumn                        | 28<br>48                           |

| No | Species                                     | Treatment                                                 | Germination<br>(%)                 |
|----|---------------------------------------------|-----------------------------------------------------------|------------------------------------|
| 22 | Pimelea glauca                              | Control; spring/autumn                                    | No<br>germination<br>after 34 days |
| 23 | Pomaderris<br>paniculosa ssp.<br>paniculosa | Control; winter<br>Wet heat (100 °C) for 30 sec; winter   | 4<br>72                            |
| 24 | Spyridium fontis-                           | Control; spring/autumn                                    | NA                                 |
|    | woodii                                      | Wet heat (95 °C) for 30 sec; spring/autumn                | 70                                 |
| 25 | Spyridium                                   | Control; spring/autumn 4 weeks then transferred to winter | 0                                  |
|    | subochreatum                                | Nicked seed coat; winter                                  | 84                                 |
| 26 | Tecticornia indica                          | Control; spring/autumn                                    | 72                                 |
|    | ssp. leiostachya                            | GA (250mg/L) continuous; spring/autumn                    | 70                                 |
| 27 | Thomasia                                    | Control; winter                                           | 4                                  |
|    | petalocalyx                                 | Nicked seed coat; winter                                  | 94                                 |

NA – not available.

**Table 4**. Summary table of the seed germination data and advice for collection and/or germination of each species.

| Species                                   | Best treatment for germination                                                                                                                                                                                                                                                                                                                                                                                  | Advice for this species                                                                                                                                                                                                                                                                                                                                               |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Adriana quadripartita                     | Treat seeds with GA for increased germination levels. Germinate seeds in spring through to autumn.                                                                                                                                                                                                                                                                                                              | Seeds may require cold stratification prior to germination warmer temperatures, spring/autumn and summer.                                                                                                                                                                                                                                                             |  |
| Astroloma<br>conostephioides              | Germination rates were very slow for<br>this species. Some germination was<br>observed during winter in a nursery<br>experiment where seeds were placed<br>in potting soil in the previous<br>summer. Germination was observed<br>within 2-3 weeks after seeds were<br>removed from the woody endocarp<br>or the endocarp had been cracked,<br>and treated with GA.                                             | This species can be propagated<br>through cuttings using a perlite:peat<br>(90:10) propagation mix and<br>application of rooting hormone.<br>Excise the seeds from the woody fruit<br>and treat with gibberellic acid for<br>rapid germination. Care must be<br>taken not to damage the seed during<br>this process. Seedling growth in<br>potting mix may be slow.   |  |
| Astroloma humifusum                       | Germination has been very slow for<br>this species. Some germination was<br>observed during winter in a nursery<br>experiment where seeds were placed<br>in potting soil during the summer of<br>the year before. Germination was<br>observed within 2-3 weeks after<br>seeds were removed from the woody<br>endocarp and treated with GA. Care<br>must be taken not to damage the<br>seed during this process. | This species can be propagated<br>through cuttings, using a perlite: peat<br>(90:10) propagation mix and<br>application of rooting hormone.<br>Excise the seeds from the woody fruit<br>and treat with gibberellic acid for<br>rapid germination. Care must be<br>taken not to damage the seed during<br>this process. Seedling growth in<br>potting mix may be slow. |  |
| Boronia coerulescens<br>ssp. coerulescens | Treat seeds with GA and diluted smoke water for increased germination.                                                                                                                                                                                                                                                                                                                                          | Seeds may require stratification in combination with fire cues to germinate.                                                                                                                                                                                                                                                                                          |  |
| Calytrix tetragona                        | Germination increased after dry heat<br>(15 min; 90 °C) and diluted smoke<br>water in combination with GA.<br>Germination rates were slow with 50<br>% of seeds germinating after 79 days.                                                                                                                                                                                                                      | Viability is a likely issue for this<br>species. The seeds collected had low<br>viability mainly due to predation.<br>Seeds with drill holes will be non-<br>viable. Seeds may require<br>stratification in combination with fire<br>cues to germinate.                                                                                                               |  |
| Exocarpos sparteus                        | Treat seeds with GA for increased<br>germination results. Seeds are most<br>likely to germinate during winter.                                                                                                                                                                                                                                                                                                  | Viability is a likely issue for this<br>species. Collect shiny brown nuts that<br>are filled with endosperm, check by<br>cutting open some seeds. Viable<br>seeds were collected from emu scats.<br>Seeds may require stratification to<br>germinate.                                                                                                                 |  |

| Species                             | Best treatment for germination                                                                                                                                            | Advice for this species                                                                                                                                                                                                                                                   |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exocarpos syrticola                 | Treat seeds with GA for increased<br>germination results. Seeds are most<br>likely to germinate during winter.                                                            | Viability is a likely issue for this<br>species. Collect shiny dark coloured<br>nuts that are filled with endosperm,<br>check by cutting open some seeds.<br>Seeds may require stratification to<br>germinate.                                                            |
| Frankenia pauciflora<br>var. gunnii | No treatment is required for this<br>species. High levels of germination<br>(100%) were observed in the control<br>test incubated under winter<br>temperature conditions. | Using a hand lens, check that viable seeds are present in the capsules during collection.                                                                                                                                                                                 |
| Gahnia filum                        | No treatment is required for this<br>species. High levels of germination<br>(88%) were observed in the control<br>test incubated under spring<br>temperature conditions.  | Check that seeds are viable on collection.                                                                                                                                                                                                                                |
| Hibbertia riparia                   | Treat seeds with GA and diluted smoke water for increased germination.                                                                                                    | May be difficult to collect large<br>numbers of seed numbers as capsules<br>dehisce when seed is ripe. Seeds may<br>require stratification in combination<br>with fire cues to germinate.                                                                                 |
| Hibbertia sericea                   | Treat seeds with GA and diluted smoke water for increased germination.                                                                                                    | May be difficult to collect large<br>numbers of seed numbers as capsules<br>dehisce when seed is ripe. Seeds may<br>require stratification in combination<br>with fire cues to germinate.                                                                                 |
| Lasiopetalum baueri                 | Break physical dormancy by nicking<br>the seed coat or try hot water<br>treatment before sowing.                                                                          | Predation is a likely issue for this<br>species. Avoid collecting fruit with<br>evidence of predation. These seeds<br>have physical dormancy, the seed<br>coat requires modification by<br>abrasion, nicking or heat shock to<br>disrupt the water impermeable<br>layers. |
| Leucopogon parviflorus              | Treat fruits with GA and use in<br>combination with diluted smoke<br>water and/or dry heat (100°C) for 2<br>min for increased germination results.                        | Viability is likely to be a problem for<br>this species. Collect large white fruits<br>and check that the seeds inside are<br>filled by cutting open the fruits. Seeds<br>may require stratification in<br>combination with fire cues to<br>germinate.                    |

| Species                                  | Best treatment for germination                                                                                                                                                                                                   | Advice for this species                                                                                                                                         |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lomandra densiflora                      | Treat seeds with hydrogen peroxide<br>(30%) and diluted smoke water for<br>increased germination results. 69% of<br>seeds germinated after this<br>treatment and incubation at 15°C.                                             | Collect ripe seed when fruits have<br>begun to split open. Immature seed<br>will not germinate.                                                                 |
| Lomandra effusa                          | A reasonable level of germination<br>(44%) was observed in the control<br>test incubated at 15 °C. Treatment<br>with GA will increase germination<br>levels (up to ~90%).                                                        | Collect ripe seed when fruits have<br>begun to split open. Immature seed<br>will not germinate.                                                                 |
| Lomandra multiflora<br>ssp. dura         | No treatment is required for this<br>species, high levels of germination<br>(75%) were observed in the control<br>test incubated at 15 °C. Germination<br>level was increased after treatment<br>with diluted smoke water (93%). | Collect ripe seed when fruits have<br>begun to split open. Immature seed<br>will not germinate.                                                                 |
| Lomandra leucocephala<br>ssp. robusta    | Low germination levels were<br>observed in control experiments.<br>Germination increased to 32% after<br>treatment with GA.                                                                                                      | Collect ripe seed when fruits have<br>begun to split open. Immature seed<br>will not germinate.                                                                 |
| Lomandra juncea                          | Low germination levels were<br>observed in control experiments.<br>Germination increased to 35% after<br>treatment with GA or GA and diluted<br>smoke water.                                                                     | Collect ripe seed when fruits have<br>begun to split open. Immature seed<br>will not germinate.                                                                 |
| Muehlenbeckia gunnii                     | No treatment is required for this<br>species, high levels of germination<br>(94%) were observed in the control<br>test incubated in a spring/autumn<br>temperatures.                                                             | Collect yellow fruits containing mature, black seeds.                                                                                                           |
| Nitraria billardierei                    | Germination of 28% of seeds was<br>observed after leaching seeds in<br>water for 2 weeks. Germination<br>increased to 48% after treatment<br>with GA and dry heat 120°C for ~2<br>mins.                                          | The woody fruit surrounding the seed<br>may inhibit germination. Leaching<br>with water, treatment with GA and<br>heat shock increased germination.             |
| Pomaderris paniculosa<br>ssp. paniculosa | Break physical dormancy with hot<br>water treatment before sowing. Best<br>germination rate (72%) was observed<br>in winter conditions.                                                                                          | These seeds have physical dormancy,<br>the seed coat requires modification<br>by abrasion, nicking or heat shock to<br>disrupt the water impermeable<br>layers. |

| Species                                | Best treatment for germination                                                                                                                       | Advice for this species                                                                                                                                                                                                                                                         |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spyridium fontis-woodii                | Break physical dormancy with hot<br>water treatment before sowing. 70%<br>of seeds germinated in spring<br>conditions.                               | These seeds have physical dormancy<br>and the seed coat requires<br>modification by abrasion, nicking or<br>heat shock to disrupt the water<br>impermeable layers.                                                                                                              |
| Spyridium<br>subochreatum              | Break physical dormancy with hot<br>water treatment or nicking the seed.<br>Highest germination (46%) was<br>observed in winter conditions.          | These seeds have physical dormancy,<br>the seed coat requires modification<br>by abrasion, nicking or heat shock to<br>disrupt the water impermeable<br>layers.                                                                                                                 |
| Tecticornia indica ssp.<br>leiostachya | No treatment is required for this<br>species, high levels of germination<br>(72%) were observed in the control<br>incubated in a winter environment. | Check that viable seed has been<br>collected. The seed sits within wedge<br>shaped fruits in between segments of<br>the fruiting spike.                                                                                                                                         |
| Thomasia petalocalyx                   | Break physical dormancy by nicking<br>the seed coat or try hot water<br>treatment before sowing.                                                     | Predation in this species can cause<br>low viability. Avoid collecting fruits<br>with evidence of predation. These<br>seeds have physical dormancy, the<br>seed coat requires modification by<br>abrasion, nicking or heat shock to<br>disrupt the water impermeable<br>layers. |

## Vegetative Propagation of Astroloma conostephioides and Astroloma humifusum

The results from the *Astroloma* propagation experiment showed that good root development had occurred after seven months of cuttings being maintained on a heat bed in a moist environment. The strike rates (percentage of cuttings with good root development) from both species are shown below:

| Nursery conditions | ns Astroloma conostephioides Astroloma hun |     |
|--------------------|--------------------------------------------|-----|
| With bottom heat   | 33%                                        | 20% |
| No bottom heat     | 44 %                                       | 10% |

The rooted cuttings were potted into tube-stock pots and remain in good condition, however, they have been slow to put on new growth. Further experimentation is required using a range of different potting mixes and inoculation with ericoid mycorrhizae to improve the vigour of the rooted cuttings.

## Discussion

## **Seed Viability**

Testing seed viability is a crucial step, as non-viable seeds cannot germinate. Seeds can be non-viable for several reasons, including stress during development, predation, collection of immature seeds and inappropriate storage conditions. There is a high chance of collecting seed with low viability for some species that are commonly predated by insects or typically only develop a small number of viable seeds. In some cases, plants set larger amounts of viable seeds post fire in response to increased available nutrients and decreased competition from other plants. The post fire conditions are favourable for seed development, seedling establishment and plant survival.

Seeds that were collected from *Leucopogon parviflorus* along the Coorong had low viability (30%) mostly due to poor development and seed fill. Previous collections by the seed centre staff from the same region and same time of year had higher viability (up to 90%), showing that seed quality can vary between seasons for this species. Another species with low viability (18%) was *Calytrix tetragona*, the majority of the seed collection was predated which could be seen by small holes in the fruit. *Exocarpos sparteus* seeds collected from bushes at Ngarkat CP on Feb 5<sup>th</sup> 2014 had low viability (14%) but, interestingly, seed found in emu scat at the same location were 100% viable. It is possible that nonviable seeds were destroyed in the emu's gut or that the viability of the seeds was higher at the time of ingestion. Seeds collected post fire from the same population in January 2005 had high viability (90%).

The importance of testing seed viability is fundamental but is often overlooked. Revegetation through direct seeding is futile if non-viable seed is used. Seed can be collected, cleaned, stored, seeded and monitored for seedling emergence that will not occur if little viable seed was collected in the first place. The poor seedling emergence results may then be put down to lack of germination or a variety of other reasons. This amounts to a waste of resources and limits the opportunity to learn from seeding experiments and importantly, failure to establish plants. It is therefore recommended that seed viability is routinely checked on collection and quantified after the seed is cleaned.

Seed dissection is a readily available tool for estimating seed quality and correlates to the expected germination percentage in the sample. This can be done in the field or in a laboratory using small snips or other similar tools. A sample of cut seeds can be viewed with a hand lens or dissecting microscope. Images of viable cut seeds have been provided in this report to assist seed collectors to examine the quality of seeds in the field before collection (Figure 2).

### Germination

The results from the project indicate that the majority of the target species are able to be propagated through seed for the purpose of revegetation. Most of the species listed are not currently used in revegetation due to difficulties in propagation or lack of information about seed collection and germination.

Members of Ericaceae commonly occur in Australian temperate woodlands and heathlands, however little is known about their mechanisms for dormancy and germination (Merritt et al 2007). Three widespread and ecologically important heath species (*Astroloma conostephioides, Astroloma humifusum, Leucopogon parviflorus*) were tested in this project. Ericaceae fruit is dispersed as a drupe or a capsule containing several seeds inside a woody endocarp. The seeds are known to be difficult to germinate due to underdeveloped embryos and physiological dormancy (morphophysiological dormancy). Several reports show that freshly dispersed Ericaceae seeds do not germinate under laboratory conditions (Dixon et al 1995, Allan et al 2004, Ooi et al 2006, Turner et al 2009).

Seeds of *Astroloma xerophyllum* that were kept in natural conditions took several seasons to germinate and were shown to have morphophysiological dormancy, indicating that underdeveloped embryos in the seed contributed to seed dormancy. However, successful germination was achieved after excising seed from the endocarp and treatment with gibberellic acid (Turner at al 2009). This was also the case for the two *Astroloma* species tested in this project (Figure 4). Both species had high germination with excised seeds and exposure to gibberellic acid. This suggests that the process of weathering and stratification combine to alleviate dormancy in nature (Figure 3). The challenge now is to speed up that process in the laboratory or nursery.



Figure 4. Germination of excised seeds of Astroloma conostephioides.

Members of the Ericaceae family are also known to have specific ericoid mycorrhizae associated with their roots that enables access to moisture and nutrients through the expansive associated mycorrhizal hyphae network. It would be interesting to test the effects of mycorrhizal inoculations on young plants growing in pots and in the field as it may be an important step in the long-term success of revegetating Ericaeae species.

*Leucopogon* species have also been shown to have morphophysiological dormancy, which was overcome by changes in seasonal temperatures. Ooi et al (2006) found that dormancy was not broken by fire cues but germination was enhanced by smoke treatment once dormancy was overcome

*Leucopogon parviflorus* seeds used in this study had high germination after treatments with fire cues dry heat and smoke water in combination with gibberellic acid.

*Nitraria billardierei* grows in saline environments and bears fleshy drupes that are reported to germinate after emu ingestion. The increase in germination was attributed to the removal of the salts accumulating in the fruit flesh that may be inhibitory (Noble and Whalley 1978; Waisel 1972). This species is known to be difficult to germinate In our experiments the optimum treatment was leaching for 15 days in several changes of water, then the seeds were dried and subjected to a brief heat shock (120°C for 2 minutes) followed by exposure to gibberellic acid. This treatment was likely to remove salts and other inhibitors and overcome the physiological dormancy requirement. Interestingly, no germination was recorded without leaching the seeds in any treatment.

Two species of *Exocarpos* were studied, *E. syrticola* grows in saline coastal areas and *E. sparteus* grows in mallee communities on sandy soils. There has been very little information recorded about the germination requirements of these species. It has been reported that seeds from *Exocarpos aphyllus* germinated after vacuum infiltration with gibberellins (Lovey and Jusaitis 1994). Both of the species we tested also had increased germination after exposure to gibberellic acid. These species have morphophysiological dormancy, which was partially alleviated by treatment with gibberellic acid.

*Hibbertia* is another genus with morphophysiological dormancy where germination is reported to be difficult, requiring complex regimes of after ripening, stratification, wet and dry cycles and smoke (Hidayati et al 2012). *Hibbertia* species are typically not used in restoration because the seeds are hard to collect as the fruiting capsules dehisce when seeds are ripe, and plants are difficult to propagate. In this study two species of *Hibbertia* germinated after treatment with smoke water and gibberellic acid. Forty per cent of *H. sericea* and 62% of *H. riparia* seeds germinated after treatment. This can be considered a good result for members of this genus.

Iron grass natural temperate grassland in South Australia is a critically endangered vegetation community, with patches occurring in the Murray Darling Depression bioregion. However, there is scant information published on propagation of the iron grass species that dominate these ecological communities (*L. effusa*, and *L. multiflora* ssp. *dura*). Germination of *Lomandra sonderi* was reported to be improved by removal of the pericarp and gibberellic acid (Plummer et al, 1995).

In this project seeds from five Lomandra species were collected and tested using a range of laboratory techniques to study germination requirements. Interestingly, the optimum germination treatments differed between the *Lomandra* species. *L. multiflora* ssp. *dura* had high germination in the control and after smoke water treatment but was inhibited by gibberellic acid application. However, germination in *L. effusa* was enhanced after treatment with gibberellic acid. *L. densiflora* had high germination after treatment with smoke water and/or gibberellic acid.

*L. leucocephala* ssp. *robusta* and *L. juncea* were the most difficult to germinate and both grow in sandy soils. *L. juncea* had the highest germination after treatment with aerated water followed by gibberellic acid. It is possible that some inhibitors may have been leached out from the testa during this treatment, resulting in increased germination. *L. leucocephala* ssp. *robusta* had highest germination after prolonged dry heat (50°C 24 h), which may also have broken down germination inhibitors in the seed.

The germination experiments were conducted under laboratory conditions and results will vary from germination tests done in other conditions (nursery/garden/field), especially with different seed collections from that species. The information provided should be used as a guide when collecting and germinating seeds for revegetation and habitat restoration projects.

### Propagation

Striking cuttings can be an effective method of propagation where seed germination is difficult. The propagation of *Astroloma* species through cuttings had a reasonable success rate, especially with *Astroloma conostephiodes*. The cuttings were taken in autumn and the propagation mix had a high percent of perlite (90%), and therefore good drainage. These may be important factors for success with striking cuttings. To provide a good representation of genetic diversity cuttings should be sourced from a large number (> 50) of individuals. The genetic diversity of populations established from cutting material can then increase through sexual reproduction between individuals once the plants are mature. The disadvantages of propagation through cuttings is that less genetic diverse than using seed and that root development can be less vigorous. The propagation *Astroloma* species may become possible through seed germination with more research into practical germination methods and investigating the role of mycorrhizal fungi in seedling establishment.

### **Information Sharing**

The information compiled on the Seeds of South Australia website (Appendix 2) will be an ongoing resource that will continue to facilitate the propagation of these and other species from the CLLMM region. The data and images will continue to be updated as new information is obtained by the SASCC.

### **Future Work**

We will continue experimenting with the species that have been difficult to germinate. In particular, the *Astroloma* species, to find a suitable technique of germinating seeds that can be readily adapted to nurseries. Progress in this area will be uploaded onto the Seeds of South Australia website.

## References

Allan SM, Adkins SW, Preston CA and Bellairs SM (2004) Improved germination of the Australian natives *Hibbertia commutata*, *Hibbertia amplexicaulis* (Dilleniaceae), *Camaescilla corybosa* (Lilliaceae) and Leucopogon nutans (Epacridaceae). Australian Journal of Botany 52: 345-351.

Baker KS, Steadman KJ, Plummer JA, Merritt DJ and Dixon K. (2005) Dormancy release in Australian fire ephemeral seeds during burial increases germination response to smoke water or heat. Seed Science Research 15, 339-348.

Baskin CC and Baskin JM (1998) SEEDS Ecology, biogeography, and evolution of dormancy and germination. Academic Press, California, USA.

Baskin J and Baskin, C (2004) A classification system for seed dormancy. Seed Science Research 14, 1-16.

Baskin J, Baskin C and Li X (2000) Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biology 15, 139–152.

Bonney NB (2003) What seed is that? : A field guide to the identification, collection and germination of native seed in South Australia. Finsbury Press, South Australia

Dixon KW, Roche S and Pate JS (1995) The promotive effect of smoke derived from burnt vegetation on seed germination of western Australian plants. Oecologica 101:185-192.

Hidayati, S. and Walck, J. and Merritt, D. and Turner, S. and Turner, D. and Dixon, K. (2012) Sympatric species of *Hibbertia* (Dilleniaceae) vary in dormancy break and germination requirements: Implications for classifying morphophysiological dormancy in Mediterranean biomes. Annals of Botany. 109, 1111-1123.

Langkamp PJ (1987) Germination of Australian Native Plant Seed. Inkata Press PTY Ltd, Melbourne Australia

Loveys BR and M Jusaitis M (1994) Stimulation of Germination of Quandong (*Santalum acuminatum*) and other Australian native plant seeds. Australian Journal of Botany 42, 565 – 574.

Meritt DJ, Turner SR, Clarke S, Dixon KW (2007) Seed dormancy and germination stimulation syndromes for Australian temperate species. Australian Journal of Botany 55: 336-344.

Noble JC and Whalley RDB (1978) The biology and autecology of *Nitraria* L. in Australia. II. Seed germination, seedling establishment and response to salinity. Australian Journal of Ecology 3, 165–177.

Ooi MJ, Auld TD and Whelan RJ (2006) Dormancy and the fire-centric focus: germination of three Leucopogon species (Ericaceae) from south-eastern Australia. Annals of Botany 98: 421-430.

Plummer JA, Crawford AD and Taylor SK (1995) Germination of *Lomandra sonderi* (Dasypogonaceae) promoted by pericarp removal and chemical stimulation of the embryo. Australian Journal of Botany 43, 223-230.

Turner SR, Commander LE, Baskin JM, Baskin CC and Dixon KW (2009) Germination behaviour of Astroloma xerophyllum (Ericaceae), a species with woody indehiscent endocarps. Botanical Journal of the Linnean Society 160: 299-311.

Waisel Y (1972) In: Biology of halophytes. Academic Press New York and London pp 302.

## Acknowledgements

Thanks to Phil Druce of Blackwood Seeds for collecting seeds from *Gahnia filum* and *Pomaderris* paniculosa ssp paniculosa.

Thanks to Fiona MacLachlan for collecting seeds from Astroloma humifusum, Mt Pleasant.

Thanks to Thai Te for adding data to the Seeds of South Australia website and for advice throughout the project.

Thanks to Sacha Jellinek, Ross Meffin and Blair Kavanagh for providing feedback on versions of this report.

Thanks to the Vegetation Program which is part of the Coorong Lower Lakes and Murray Mouth Recovery Project funded by the Commonwealth and South Australian Governments, for their ongoing support for this project.

We gratefully acknowledge the support of the Native Vegetation Council for funding the propagation of *Astroloma* species presented in this report.

## Appendix 1.

Methods and results from germination experiments conducted for the target species. Treatments are described in Table 1. The treatment with the highest level of germination for that species is shown in bold. **T0**: Number of days before first germinant observed. **T50**: Number of days to achieve 50% germination.

| No | Species               | Treatment                                             | Germination<br>% (Average) | To  | <b>T</b> 50 |
|----|-----------------------|-------------------------------------------------------|----------------------------|-----|-------------|
| 1  | Adriana quadripartita | Control; spring/autumn                                | 0                          | N/A | N/A         |
|    |                       | GA (250 mg/L) continuous; spring/autumn               | 48                         | 14  | N/A         |
|    |                       | KNO₃ (100 mg/L) continuous; spring/autumn             | 8                          | 28  | N/A         |
|    |                       | Wet heat (100 °C) for 1 min; spring/autumn            | 0                          | N/A | N/A         |
|    |                       | Nicked seed coat; spring/autumn                       | 20                         | 28  | N/A         |
|    |                       | GA (500 mg/L) continuous; 20 °C constant temperature  | 16                         | 15  | N/A         |
|    |                       | GA (1000 mg/L) continuous; 20 °C constant temperature | 8                          | 8   | N/A         |
|    |                       | GA (500 mg/L) continuous; spring/autumn               | 48                         | 22  | N/A         |
|    |                       | GA (1000 mg/L) continuous; spring/autumn              | 60                         | 15  | 46          |
|    |                       | GA (500mg/L) continuous; summer                       | 48                         | 15  | N/A         |
|    |                       | GA (1000mg/L) continuous; summer                      | 60                         | 15  | 36          |

| No | Species                   | Treatment                                                                                                  | Germination<br>% (Average) | To  | T <sub>50</sub> |
|----|---------------------------|------------------------------------------------------------------------------------------------------------|----------------------------|-----|-----------------|
| 2  | Astroloma conostephioides | Hydrogen Peroxide; spring/autumn                                                                           | 4                          | 119 | N/A             |
|    |                           | Hydrogen Peroxide; GA (1000 mg/L) for 72 h;<br>spring/autumn                                               | 0                          | N/A | N/A             |
|    |                           | Leaching (13 d); Hydrogen Peroxide; GA (1000 mg/L) for 72<br>h; spring/autumn                              | 0                          | N/A | N/A             |
|    |                           | Hydrogen Peroxide; Smoke Water (10% (v/v))for 24 h; GA<br>(1000 mg/L) for 72 h; spring/autumn              | 0                          | N/A | N/A             |
|    |                           | Aerosol smoke (15mins); Hydrogen Peroxide; GA (1000<br>mg/L) for 72hrs; spring/autumn                      | 0                          | N/A | N/A             |
|    |                           | Hydrogen Peroxide; winter                                                                                  | 0                          | N/A | N/A             |
|    |                           | Hydrogen Peroxide; AR 35 °C for 6 weeks; winter                                                            | 0                          | N/A | N/A             |
|    |                           | Hydrogen Peroxide; AR 35 °C for 6 weeks; GA (1000 mg/L)<br>with Smoke Water (33 % (v/v) for 48 h; winter   | 0                          | N/A | N/A             |
|    |                           | Hydrogen Peroxide; Wet/dry 35 °C for 6 weeks; winter                                                       | 0                          | N/A | N/A             |
|    |                           | Hydrogen Peroxide; Wet/dry 35 °C for 6 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v) for 48 h; winter | 0                          | N/A | N/A             |
|    |                           | Hydrogen Peroxide; AR summer for 8 weeks; winter                                                           | 0                          | N/A | N/A             |
|    |                           | Hydrogen Peroxide; AR summer for 8 weeks; GA (1000 mg/L) with Smoke Water (33 % (v/v)) for 48 h; winter    | 2                          | 160 | N/A             |

| Νο | Species                                             | Treatment                                                                                                                             | Germination<br>% (Average) | Τo  | T <sub>50</sub> |
|----|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----|-----------------|
|    | Astroloma conostephioides                           | Hydrogen peroxide; AR summer for 8 weeks;<br>spring/autumn                                                                            | 0                          | N/A | N/A             |
|    |                                                     | Hydrogen peroxide; AR summer for 8 weeks; GA (1000 mg/L) with smoke water (33 % (v/v)) for 48 h;                                      | 0                          | N/A | N/A             |
|    |                                                     | spring/autumn<br>Hydrogen peroxide; AR summer for 8 weeks; STRAT<br>spring/autumn 10 weeks; winter                                    | 0                          | N/A | N/A             |
|    |                                                     | Hydrogen peroxide; AR summer for 8 weeks; GA (1000 mg/L) with smoke water (33 % (v/v)) for 48 h; STRAT spring/autumn 10 weeks; winter | 4                          | 160 | N/A             |
|    |                                                     | Hydrogen peroxide; GA (900 mg/L); smoke water (10%<br>(v/v)) 48 h; 15 °C constant temp                                                | 0                          | N/A | N/A             |
|    |                                                     | Hydrogen peroxide; endocarp gently cracked; GA (900<br>mg/L); smoke water (10% (v/v)) 48 h; 15 °C constant temp                       | 33                         | 18  | N/A             |
|    | (Seeds collected from<br>Horsnell Gully CP December | Seed excised from the endocarp; 15 °C constant temp                                                                                   | 30                         | 28  | N/A             |
|    | 2015 88% viable)                                    | Seed excised from the endocarp; GA (500 mg/L) + smoke<br>water (10% (v/v)); 15 °C constant temp                                       | 64                         | 21  | 42              |
|    | ↓<br>↓                                              | Seed excised from the endocarp; GA (500 mg/L); 15 °C constant temp                                                                    | 85                         | 21  | 28              |
| 3  | Astroloma humifusum                                 | Hydrogen peroxide; winter                                                                                                             | 0                          | N/A | N/A             |
|    |                                                     | Hydrogen peroxide; AR 35 °C for 6 weeks; winter                                                                                       | 0                          | N/A | N/A             |

| No | Species             | Treatment                                                                                                                            | Germination<br>% (Average) | To  | T <sub>50</sub> |
|----|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----|-----------------|
|    | Astroloma humifusum | Hydrogen peroxide; AR 35 °C for 6 weeks; GA (1000 mg/L) with smoke water (33 % (v/v)) for 48 h; winter                               | 6                          | 63  | N/A             |
|    |                     | Hydrogen peroxide; wet/dry 35 °C for 6 weeks; winter                                                                                 | 6                          | 63  | N/A             |
|    |                     | Hydrogen peroxide; wet/dry 35 °C for 6 weeks; GA (1000 mg/L) with smoke water (33 % (v/v)) for 48 h; winter                          | 2                          | 140 | N/A             |
|    |                     | Hydrogen peroxide; AR summer for 8 weeks; winter                                                                                     | 0                          | N/A | N/A             |
|    |                     | Hydrogen peroxide; AR summer for 8 weeks; GA (1000 mg/L) with smoke water (33 % (v/v)) for 48 h; winter                              | 6                          | 140 | N/A             |
|    |                     | Hydrogen peroxide; AR summer for 8 weeks; spring/autumn                                                                              | 0                          | N/A | N/A             |
|    |                     | Hydrogen peroxide; AR summer for 8 weeks; GA (1000 mg/L) with smoke water (33 % (v/v)) for 48 h; spring/autumn                       | 0                          | N/A | N/A             |
|    |                     | Hydrogen peroxide; AR summer for 8 weeks; STRAT spring/autumn 10 weeks; winter                                                       | 0                          | N/A | N/A             |
|    |                     | Hydrogen peroxide; AR summer for 8 weeks; GA (1000 mg/L) with smoke water (33 % (v/v) for 48 h; STRAT spring/autumn 10 weeks; winter | 6                          | 84  | N/A             |
|    |                     | Hydrogen peroxide; GA (900 mg/L); smoke water (10%<br>(v/v)) 48 h; 15 °C constant temp                                               | 0                          | N/A | N/A             |
|    |                     |                                                                                                                                      |                            |     |                 |

| Νο | Species                                                         | Treatment                                                                                                    | Germination<br>% (Average) | To  | T <sub>50</sub> |
|----|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|-----|-----------------|
|    |                                                                 | Hydrogen peroxide; endocarp gently cracked; GA (900 mg/L); smoke water (10% (v/v)) 48 h; 15 °C constant temp | 2                          | N/A | N/A             |
|    | (Seeds collected from Mt<br>Pleasant March 2016, 89%<br>viable) | Seed excised from the endocarp; GA (500 mg/L); 15 °C constant temp                                           | 85                         | 21  | 21              |
| 4  | Boronia coerulescens                                            | Control; winter                                                                                              | 0                          | N/A | N/A             |
|    |                                                                 | Leaching (48 h); GA (500 mg/L) with smoke water (10 %<br>(v/v)) for 24 h; winter                             | 38                         | 22  | N/A             |
|    |                                                                 | Control; spring/autumn                                                                                       | 0                          | N/A | N/A             |
|    |                                                                 | Leaching (48 h); GA (500 mg/L) with smoke water (10 % (v/v)) for 24 h; spring/autumn                         | 34                         | 22  | N/A             |
| 5  | Calytrix tetragona                                              | Control; spring/autumn                                                                                       | 0                          | N/A | N/A             |
|    |                                                                 | GA (250 mg/L) for 24 h; spring/autumn                                                                        | 0                          | N/A | N/A             |
|    |                                                                 | GA (250 mg/L) with smoke water (10 % (v/v)) for 24 h ; spring/autumn                                         | 28                         | 57  | N/A             |
|    |                                                                 | Dry heat (90 °C for 15 min); GA (250 mg/L) with smoke water (10% (v/v)) for 24 h; spring/autumn              | 62                         | 41  | 79              |
| 6  | Exocarpos sparteus                                              | Leaching (48 h); winter                                                                                      | 0                          | N/A | N/A             |
|    |                                                                 | GA (400 mg/L) for 48 h; winter                                                                               | 38                         | 42  | N/A             |

| No | Species                             | Treatment                                                                                | Germination<br>% (Average) | To  | T <sub>50</sub> |
|----|-------------------------------------|------------------------------------------------------------------------------------------|----------------------------|-----|-----------------|
|    |                                     | GA (400 mg/L) with smoke water (20% (v/v)) for 48 h;<br>winter                           | 18                         | 49  | N/A             |
|    |                                     | Dry heat (120 °C) for 4 min; GA (400 mg/L) with smoke water (20% (v/v)) for 48 h; winter | 15                         | 49  | N/A             |
| 7  | Exocarpos syrticola                 | Fruit removal; GA (400mg/L) for 48hrs; AR 20°C for 3 weeks; winter                       | 20                         | 49  | N/A             |
|    |                                     | GA (400 mg/L) for 48 h; AR 20 °C for 3 weeks; winter                                     | 72                         | 40  | 93              |
|    |                                     | Aerosol smoke (15min); GA (400mg/L) for 48 h; AR 20 °C for 3 weeks; winter               | 32                         | 49  | N/A             |
|    |                                     | Leaching (48 h); winter                                                                  | 0                          | N/A | N/A             |
|    |                                     | GA (400 mg/L) for 48 h; winter                                                           | 62                         | 28  | 70              |
|    |                                     | GA (400 mg/L) with smoke water (20 % (v/v)) for 48 h;<br>winter                          | 68                         | 28  | 63              |
|    |                                     | Dry heat (120 °C) for 4 min; GA (400 mg/L) with smoke water (20% (v/v)) for 48 h; winter | 28                         | 42  | N/A             |
| 8  | Frankenia pauciflora var.<br>gunnii | Control; winter                                                                          | 96                         | 7   | 14              |
|    |                                     | GA (250 mg/L) continuous; winter                                                         | 100                        | 7   | 14              |
|    |                                     | Control; spring/autumn                                                                   | 72                         | 7   | 21              |

| No | Species           | Treatment                                                             | Germination<br>% (Average) | To  | T <sub>50</sub> |
|----|-------------------|-----------------------------------------------------------------------|----------------------------|-----|-----------------|
|    |                   | GA (250 mg/L) continuous; spring/autumn                               | 78                         | 7   | 21              |
| 9  | Gahnia filum      | Control; spring/autumn                                                | 88                         | 29  | 51              |
|    |                   | Nicked seed coat; spring/autumn                                       | 80                         | 29  | 61              |
|    |                   | Nicked seed coat; leaching (7 d), spring/autumn                       | 90                         | 22  | 44              |
|    |                   | GA (250 mg/L) with smoke water (10% (v/v)) for 24 h;<br>spring/autumn | 74                         | 29  | 51              |
| 11 | Hibbertia riparia | Control; winter                                                       | 0                          | N/A | N/A             |
|    |                   | Nicked seed coat; winter                                              | 18                         | 60  | N/A             |
|    |                   | GA (500 mg/L) for 24 h; winter                                        | 12                         | 50  | N/A             |
|    |                   | GA (500 mg/L) with smoke water (10% (v/v)) for 24 h;<br>spring/autumn | 62                         | 43  | 89              |
| 10 | Hibbertia sericea | Control; winter                                                       | 2                          | 60  | N/A             |
|    |                   | Nicked seed coat; winter                                              | 14                         | 60  | N/A             |
|    |                   | GA (500 mg/L) for 24 h; winter                                        | 26                         | 43  | N/A             |
|    |                   | GA (500 mg/L) with smoke water (10% (v/v)) for 24 h;<br>spring/autumn | 40                         | 50  | N/A             |

| Species                | Treatment                                                                                                   | Germination<br>% (Average)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T <sub>50</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lasiopetalum baueri    | Control; winter                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | Control; spring/autumn                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | Nicked seed coat; winter                                                                                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | Nicked seed coat; spring/autumn                                                                             | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Leucopogon parviflorus | Fruit removed; Control; sown 14/3/13                                                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | Fruit removed; smoke water; sown 14/2/13                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | Hydrogen peroxide; spring/autumn                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | Hydrogen peroxide; GA (1000 mg/L) for 72hrs;<br>spring/autumn                                               | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | Dry heat (100 °C) for 2 min; hydrogen peroxide; GA (1000 mg/L) for 72 h; spring/autumn                      | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | Leaching (13 days); hydrogen peroxide; GA (1000 mg/L) for 72hrs; spring/autumn                              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | Hydrogen peroxide; smoke water (10% (v/v)) for 24 h; GA<br>(1000 mg/L) for 72hrs; spring/autumn             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | Dry heat (90°C) for 15 mins; hydrogen peroxide; GA<br>(1000mg/l) + smoke water for 48 hours; spring/autumn. | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | Lasiopetalum baueri                                                                                         | Lasiopetalum baueri       Control; winter         Lasiopetalum baueri       Control; spring/autumn         Nicked seed coat; winter       Nicked seed coat; winter         Nicked seed coat; spring/autumn       Nicked seed coat; spring/autumn         Leucopogon parviflorus       Fruit removed; Control; sown 14/3/13         Fruit removed; Smoke water; sown 14/2/13       Hydrogen peroxide; spring/autumn         Hydrogen peroxide; GA (1000 mg/L) for 72hrs; spring/autumn       Dry heat (100 °C) for 2 min; hydrogen peroxide; GA (1000 mg/L) for 72 h; spring/autumn         Leaching (13 days); hydrogen peroxide; GA (1000 mg/L) for 72hrs; spring/autumn       Leaching (13 days); hydrogen peroxide; GA (1000 mg/L) for 72hrs; spring/autumn         Hydrogen peroxide; smoke water (10% (v/v)) for 24 h; GA (1000 mg/L) for 72hrs; spring/autumn       Dry heat (90°C) for 15 mins; hydrogen peroxide; GA | Image: | Image: |

| No | Species             | Treatment                                                                                                               | Germination<br>% (Average) | To | T <sub>50</sub> |
|----|---------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------|----|-----------------|
| 14 | Lomandra densiflora | Control; 15 °C constant temperature                                                                                     | 16                         | 61 | N/A             |
|    |                     | GA (1000 mg/L) for 24 h; 15 °C constant temperature 12 h photoperiod                                                    | 32                         | 61 | N/A             |
|    |                     | Hydrogen peroxide; 15 °C constant temperature 12 h photoperiod                                                          | 28                         | 35 | N/A             |
|    |                     | Hydrogen peroxide; GA (1000 mg/L) for 72 h; 15 °C constant 12 h photoperiod                                             | 23                         | 28 | N/A             |
|    |                     | Hydrogen peroxide; smoke water (10% (v/v)) for 24 h; 15<br>°C constant 12 h photoperiod                                 | 69                         | 28 | 49              |
|    |                     | Hydrogen peroxide; GA (1000 mg/L) 72 h; smoke water<br>(10% (v/v)) 24 h; 15 °C constant temperature 12 h<br>photoperiod | 14                         | 28 | N/A             |
|    |                     | Hydrogen peroxide, GA (1000 mg/L) + smoked water<br>(20% (v/v) 24 hrs; winter                                           | 90                         | 28 | 35              |
|    |                     | Hydrogen peroxide, GA (1000 mg/L) 24 hrs; winter                                                                        | 80                         | 28 | 42              |
| 15 | Lomandra effusa     | Control; 15 °C constant temperature 12 h photoperiod                                                                    | 62                         | 61 | 75              |
|    |                     | GA (1000 mg/L) for 24 h; 15 °C constant temperature 12 h photoperiod                                                    | 74                         | 28 | 71              |
|    |                     | Hydrogen Peroxide; 15 °C constant temperature 12 h photoperiod                                                          | 44                         | 28 | N/A             |

| No | Species                  | Treatment                                                                                                                       | Germination<br>% (Average) | To | T <sub>50</sub> |
|----|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------|----|-----------------|
|    |                          | Hydrogen peroxide; GA (1000 mg/L) for 72 h; 15 °C constant 12 h photoperiod                                                     | 90                         | 35 | 42              |
|    |                          | Hydrogen peroxide; smoke water (10% (v/v)) for 24 h; 15<br>°C constant 12 h photoperiod                                         | 48                         | 28 | N/A             |
|    |                          | Hydrogen peroxide; GA (1000 mg/L) for 72 h; smoke water<br>(10% (v/v)) for 24 h; 15 °C constant 12 h photoperiod                | 65                         | 35 | 56              |
| 16 | Lomandra multiflora ssp. | Control; 15 °C constant temperature 12 h photoperiod                                                                            | 78                         | 28 | 64              |
|    | dura                     | GA (1000 mg/L) for 24 h; 15 °C constant temperature 12 h photoperiod                                                            | 10                         | 28 | N/A             |
|    |                          | Hydrogen peroxide; 15 °C constant temperature 12 h photoperiod                                                                  | 75                         | 28 | 42              |
|    |                          | Hydrogen peroxide; GA (1000 mg/L) for 72 h; 15 °C constant temperature 12 h photoperiod                                         | 12                         | 28 | N/A             |
|    |                          | Hydrogen peroxide; smoke water (10% (v/v)) for 24 h; 15<br>°C constant temperature 12 h photoperiod                             | 93                         | 28 | 42              |
|    |                          | Hydrogen peroxide; GA (1000 mg/L) for 72 h; smoke water<br>(10% (v/v)) for 24 h; 15 °C constant temperature 12 h<br>photoperiod | 13                         | 28 | N/A             |
| 17 | Lomandra juncea          | Control; 15 °C constant temperature                                                                                             | 6                          | 28 | N/A             |

| No | Species               | Treatment                                                                                                                       | Germination<br>% (Average) | Τo  | T <sub>50</sub> |
|----|-----------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----|-----------------|
|    |                       | GA (1000 mg/L) for 24 h; 15 °C constant temperature 12 h photoperiod                                                            | 12                         | 28  | N/A             |
|    |                       | Hydrogen peroxide; 15 °C constant temperature 12 h photoperiod                                                                  | 7                          | 28  | N/A             |
|    |                       | Hydrogen peroxide; GA (1000 mg/L) for 72 h; 15 °C constant temperature 12 h photoperiod                                         | 35                         | 35  | N/A             |
|    |                       | Hydrogen peroxide; smoke water (10% (v/v)) for 24 h; 15<br>°C constant 12 h photoperiod                                         | 7                          | 28  | N/A             |
|    |                       | Hydrogen peroxide; GA (1000 mg/L) for 72 h; smoke water<br>(10% (v/v)) for 24 h; 15 °C constant temperature 12 h<br>photoperiod | 35                         | 28  | N/A             |
|    |                       | Hydrogen peroxide; aerated water 72 h; GA (1000 mg/L) for 72 h; 15 °C constant temperature 12 h photoperiod                     | 70                         | 28  | 42              |
|    |                       | Dry heat 50 °C 24 h; hydrogen peroxide; GA (1000 mg/L)<br>for 72 h; 15 °C constant temperature 12 h photoperiod                 | 62                         | 35  | 49              |
|    |                       | Hydrogen peroxide; GA (1000 mg/L) for 72 h; 15 °C constant temperature 12 h photoperiod                                         | 60                         | 28  | 56              |
|    |                       | Hydrogen peroxide (3%) 72 h; GA (1000 mg/L) for 72 h; 15<br>°C constant temperature 12 h photoperiod                            | 40                         | 42  | N/A             |
| 18 | Lomandra leucocephala | Control; 15 °C constant temperature 12 h photoperiod                                                                            | 0                          | N/A | N/A             |

| Νο | Species                | Treatment                                                                                                                 | Germination<br>% (Average)     | To           | T <sub>50</sub> |
|----|------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|-----------------|
|    |                        | GA (1000 mg/L) for 24 h; 15 °C constant temperature 12 h photoperiod                                                      | 2                              | 56           | N/A             |
|    |                        | Hydrogen peroxide; 15 °C constant temperature 12 h photoperiod                                                            | 1                              | 28           | N/A             |
|    |                        | Hydrogen peroxide; GA (1000 mg/L) for 72 h; 15 °C constant 12 h photoperiod                                               | 44                             | 42           | N/A             |
|    |                        | Dry heat (50 °C) 24 h; hydrogen peroxide; GA (1000 mg/L)<br>72 h; 15 °C constant temperature 12 h photoperiod             | 50                             | 49           | 94              |
|    |                        | Hydrogen peroxide; aerated water 72 h; GA (1000 mg/L) for 72 h; 15 °C constant temperature 12 h photoperiod               | 26                             | 42           | N/A             |
|    |                        | Hydrogen peroxide; smoke water (10% (v/v)) for 24 h; 15<br>°C constant temperature 12 h photoperiod                       | 0                              | N/A          | N/A             |
|    |                        | Hydrogen peroxide; GA (1000 mg/L) for 72 h; smoke water (10% (v/v)) for 24 h; 15 °C constant temperature 12 h photoperiod | 12                             | 28           | N/A             |
| 19 | Muehlenbeckia adpressa | Control; spring/autumn                                                                                                    | No germina                     | tion after 3 | 4 days          |
|    |                        | Nicked seed coat; spring/autumn                                                                                           | Results to be added to SoSA we |              | SA website      |
| 20 | Muehlenbeckia gunnii   | Control; spring/autumn                                                                                                    | 81                             | 31           | 41              |
|    |                        | STRAT 6 weeks spring/autumn; winter                                                                                       | 94                             | 21           | 41              |

| Νο | Species               | Treatment                                                                           | Germination<br>% (Average) | To  | T <sub>50</sub> |
|----|-----------------------|-------------------------------------------------------------------------------------|----------------------------|-----|-----------------|
|    |                       | GA (250 mg/L) for 48 h; spring/autumn                                               | 92                         | 14  | 31              |
| 21 | Nitraria billardierei | Hydrogen peroxide (10%); spring/autumn                                              | 0                          | N/A | N/A             |
|    |                       | Hydrogen peroxide (10%); winter                                                     | 0                          | N/A | N/A             |
|    |                       | Hydrogen peroxide (30%); spring/autumn                                              | 0                          | N/A | N/A             |
|    |                       | Hydrogen peroxide (30%); winter                                                     | 0                          | N/A | N/A             |
|    |                       | Hydrogen peroxide (10%); GA (1000 mg/L) 3 d;<br>spring/autumn                       | 0                          | N/A | N/A             |
|    |                       | Hydrogen peroxide (10%); GA (1000 mg/L) 3 d; winter                                 | 0                          | N/A | N/A             |
|    |                       | Hydrogen peroxide (10%); GA (1000 mg/L) 3 d;<br>spring/autumn                       | 0                          | N/A | N/A             |
|    |                       | Hydrogen peroxide (10%); GA (1000 mg/L) 3 d; winter                                 |                            |     |                 |
|    |                       | Leaching (15 d); spring/autumn                                                      | 28                         | 25  | N/A             |
|    |                       | Leaching (15 d); dry heat (120 °C) for 2min; spring/autumn                          | 16                         | 8   | N/A             |
|    |                       | Leaching (15 d); GA (1000 mg/L) for 72 h; spring/autumn                             | 38                         | 8   | N/A             |
|    |                       | Leaching (15 d); Dry heat (120 °C) for 2min; GA (1000 mg/L) for 72 h; spring/autumn | 48                         | 8   | N/A             |
|    |                       |                                                                                     |                            |     |                 |

| No | Species                                 | Treatment                                                                                                                                                                                       | Germination<br>% (Average)                                          | Τo                                 | T <sub>50</sub>                       |
|----|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------|---------------------------------------|
| 22 | Pimelea glauca                          | Control; spring/autumn<br>Nicked; spring/autumn<br>GA (500 mg/L) for 24 h; spring/autumn<br>Smoke Water (10% (v/v)); for 24 h spring/autumn                                                     | No germination after 34 days<br>Results to be added to SoSA website |                                    |                                       |
| 23 | Pomaderris paniculosa ssp<br>paniculosa | Control; winter<br>Wet heat (100 °C) for 30 sec; winter<br>Leaching (3 days); winter<br>Dry Heat (120°C) 5 min; winter<br>Control; spring/autumn<br>Wet heat (100 °C) for 30 sec; spring/autumn | 4<br><b>72</b><br>6<br>38<br>0<br>36                                | 35<br><b>20</b><br>20<br>N/A<br>28 | N/A<br><b>35</b><br>N/A<br>N/A<br>N/A |
| 24 | Spyridium fontis-woodii                 | Leaching (3 days); spring/autumn<br>Dry Heat (120°C) 5 min; spring/autumn<br>Wet heat (95 °C) for 30 sec; spring/autumn                                                                         | 4<br>34<br><b>70</b>                                                | 62<br>28<br><b>25</b>              | N/A<br>N/A<br>53                      |
| 25 | Spyridium subochreatum                  | Control; spring/autumn 4 weeks then transferred to winter                                                                                                                                       | 0                                                                   | N/A                                | N/A                                   |

| No | Species                                | Treatment                                                                                                     | Germination<br>% (Average) | To              | T <sub>50</sub>  |
|----|----------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------|-----------------|------------------|
|    |                                        | Control; winter                                                                                               | 2                          | 51              | N/A              |
|    |                                        | Nicked seed coat; spring/autumn 4 weeks then transferred to winter                                            | 46                         | 10              | N/A              |
|    |                                        | Nicked seed coat; winter<br>Wet heat (100 °C) for 30 sec; spring/autumn 4 weeks then<br>transferred to winter | <b>84</b><br>24            | <b>7</b><br>61  | <b>21</b><br>N/A |
| 26 | Tecticornia indica ssp.<br>leiostachya | <b>Control; spring/autumn</b><br>GA (250mg/L) continuous; spring/autumn                                       | <b>72</b><br>70            | <b>4</b><br>11  | <b>18</b><br>18  |
| 27 | Thomasia petalocalyx                   | Control; winter Nicked seed coat; winter                                                                      | 4<br>94                    | 58<br><b>14</b> | N/A<br>14        |

## Appendix 2.

Seeds of South Australia species page links.

| Species                                | Seeds of South Australia species page link                |  |  |  |
|----------------------------------------|-----------------------------------------------------------|--|--|--|
| Adriana quadripartita                  | http://saseedbank.com.au/species_information.php?rid=277  |  |  |  |
| Astroloma conostephioides              | http://saseedbank.com.au/species_information.php?rid=509  |  |  |  |
| Astroloma humifusum                    | http://saseedbank.com.au/species_information.php?rid=510  |  |  |  |
| Boronia coerulescens ssp. coerulescens | http://saseedbank.com.au/species_information.php?rid=705  |  |  |  |
| Calytrix tetragona                     | http://saseedbank.com.au/species_information.php?rid=949  |  |  |  |
| Exocarpos sparteus                     | http://saseedbank.com.au/species_information.php?rid=1928 |  |  |  |
| Exocarpos syrticola                    | http://saseedbank.com.au/species_information.php?rid=1930 |  |  |  |
| Frankenia pauciflora var. gunnii       | http://saseedbank.com.au/species_information.php?rid=1956 |  |  |  |
| Gahnia filum                           | http://saseedbank.com.au/species_information.php?rid=1977 |  |  |  |
| Hibbertia riparia                      | http://saseedbank.com.au/species_information.php?rid=2309 |  |  |  |
| Hibbertia sericea                      | http://saseedbank.com.au/species_information.php?rid=2310 |  |  |  |
| Lasiopetalum baueri                    | http://saseedbank.com.au/species_information.php?rid=2530 |  |  |  |
| Leucopogon parviflorus                 | http://saseedbank.com.au/species_information.php?rid=55   |  |  |  |
| Lomandra densiflora                    | http://saseedbank.com.au/species_information.php?rid=2731 |  |  |  |
| Lomandra effusa                        | http://saseedbank.com.au/species_information.php?rid=2732 |  |  |  |
| Lomandra juncea                        | http://saseedbank.com.au/species_information.php?rid=2735 |  |  |  |
| Lomandra leucocephala ssp. robusta     | http://saseedbank.com.au/species_information.php?rid=2736 |  |  |  |
| Lomandra mutliflora ssp. dura          | http://saseedbank.com.au/species_information.php?rid=2740 |  |  |  |
| Muehlenbeckia adpressa                 | http://saseedbank.com.au/species_information.php?rid=2989 |  |  |  |
| Muehlenbeckia gunnii                   | http://saseedbank.com.au/species_information.php?rid=2993 |  |  |  |
| Nitraria billardierei                  | http://saseedbank.com.au/species_information.php?rid=54   |  |  |  |
| Pimelea glauca                         | http://saseedbank.com.au/species_information.php?rid=3344 |  |  |  |
| Pomaderris paniculosa ssp. paniculosa  | http://saseedbank.com.au/species_information.php?rid=3469 |  |  |  |
| Spyridium fontis-woodii                | http://saseedbank.com.au/species_information.php?rid=4835 |  |  |  |
| Spyridium subochreatum                 | http://saseedbank.com.au/species_information.php?rid=4278 |  |  |  |
| Tecticornia indica ssp. leiostachya    | http://saseedbank.com.au/species_information.php?rid=4407 |  |  |  |
| Thomasia petalocalyx                   | http://saseedbank.com.au/species_information.php?rid=4496 |  |  |  |