Distribution of priority woodland birds in the north-eastern Mount Lofty Ranges

DEWNR Technical report 2017/02

Distribution of priority woodland birds in the north-eastern Mount Lofty Ranges

Trevor J. Hobbs, David M. Armstrong, Nigel Willoughby, Randall Johnson and Andrew West Department of Environment, Water and Natural Resources

June, 2017

DEWNR Technical report 2017/02

Department of Environment, Water and Natural Resources

GPO Box 1047, Adelaide SA 5001

Telephone	National (08) 8463 6946
	International +61 8 8463 6946
Fax	National (08) 8463 6999
	International +61 8 8463 6999
Website	www.environment.sa.gov.au

Disclaimer

The Department of Environment, Water and Natural Resources and its employees do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability, currency or otherwise. The Department of Environment, Water and Natural Resources and its employees expressly disclaims all liability or responsibility to any person using the information or advice. Information contained in this document is correct at the time of writing.

This work is licensed under the Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© Crown in right of the State of South Australia, through the Department of Environment, Water and Natural Resources 2017

ISBN 978-1-925510-61-4

Preferred way to cite this publication

Hobbs TJ, Armstrong DM, Willoughby N, Johnson R & West A (2017). *Distribution of priority woodland birds in the north-eastern Mount Lofty Ranges,* DEWNR Technical report 2017/02, Government of South Australia, Department of Environment, Water and Natural Resources, Adelaide.

Download this document at https://data.environment.sa.gov.au/Content/Publications/DEWNR-TR-2017-02.pdf

Foreword

The Department of Environment, Water and Natural Resources (DEWNR) is responsible for the management of the State's natural resources, ranging from policy leadership to on-ground delivery in consultation with government, industry and communities.

High-quality science and effective monitoring provides the foundation for the successful management of our environment and natural resources. This is achieved through undertaking appropriate research, investigations, assessments, monitoring and evaluation.

DEWNR's strong partnerships with educational and research institutions, industries, government agencies, Natural Resources Management Boards and the community ensures that there is continual capacity building across the sector, and that the best skills and expertise are used to inform decision making.

Sandy Pitcher CHIEF EXECUTIVE DEPARTMENT OF ENVIRONMENT, WATER AND NATURAL RESOURCES

Acknowledgements

The Mount Lofty Ranges Woodland Birds Project is a join initiative of the Government of South Australia's Department of Environment, Water and Natural Resources (DEWNR), Natural Resources Adelaide and Mount Lofty Ranges and DEWNR Science and Information Group (SIG). We greatly appreciate the support of Daniel Rogers, Jason Vanlaarhoven, Danielle Witham, Simon Sherriff, Michelle Bald, Sandy Carruthers, Lisien Loan and Brenton Grear in the development and completion of this work.

We are indebted to many landholders across the Mount Lofty Ranges for allowing our bird survey teams to access and study the woodland birds of the region. Many thanks to our dedicated team of ornithologists (David Armstrong, Graham Armstrong, Brian Blaylock, Phil Northeast) for their keen observational skills during field surveys, and assistance from Grace Hodder, Craig Gillespie and Helen Owens in data entry and management.

We appreciate the contributions of Daniel Rogers, Graham Carpenter and Joel Allan in allowing us to better understand the ecology and drivers of bird distributions in the region, and Stuart Collard and Craig Neumann for their scientific review of this report.

Contents

For	eword		ii
Ack	nowled	lgements	iii
Sun	nmary		vii
1	Intro	duction	1
	1.1	Background	1
	1.2	Aims and objectives	1
2	Meth	odology	3
	2.1	Study area	3
	2.2	Bird data	3
	2.3	Environmental data	3
	2.3.1	Topography and soils	4
	2.3.2	Climate	5
	2.3.3	Native plant cover	6
	2.3.4	Environmental data and derivatives	7
	2.4	Landscape stratification	7
	2.5	New site selection	7
	2.5.1	Area-weighted representativeness of survey effort	7
	2.5.2	Optimisation of stratified survey site selections	7
	2.6	New bird surveys	9
	2.7	Species distributions	9
3	Resul	ts	11
	3.1	Stratification of landscapes for bird surveys	11
	3.2	DEWNR Science and Information Group (SIG) bird surveys 2016	19
	3.3	All bird data	19
	3.4	Species distributions	26
	3.4.1	Minimising sampling bias	26
	3.4.2	Distribution models and responses to environment	27
	3.4.3	Potential distribution maps	36
	3.5	Priority landscapes	43
	3.6	Digital data package	43
4	Conc	usions	45
	4.1	Improvements in bird data	45
	4.2	Better species distribution information	45
5	Appe	ndices	47
	A.	All bird species recorded in the north-eastern Mount Lofty Ranges	47
	В.	Medium priority (level 2) species responses to environment	53
	C.	Medium priority (level 2) species distributions	67
6	Refer	ences	82

List of figures

Figure 1.1.	Study area for priority bird species in the north-eastern Mount Lofty Ranges	2
Figure 3.1.	Landscape stratification using DEM landform classifications in the north-eastern Mount Lofty Ranges	12
Figure 3.2.	Landscape stratification using mean annual rainfall in the north-eastern Mount Lofty Ranges	13
Figure 3.3.	Landscape stratification using DEM topographic wetness index in the north-eastern Mount Lofty	
	Ranges	14
Figure 3.4.	Landscape stratification using tree crown cover mapping in the north-eastern Mount Lofty Ranges	15
Figure 3.5.	Bird record density for the 2006–2015 period in the north-eastern Mount Lofty Ranges	16
Figure 3.6.	Landscapes with few bird records (red areas) from surveys or observations during 2006–2015, and	
	DEWNR SIG 2016 stratified bird survey sites in the north-eastern Mount Lofty Ranges	17
Figure 3.7.	DEWNR SIG 2016 bird survey sites in the north-eastern Mount Lofty Ranges	20
Figure 3.8.	High priority species (level 1) observations (DEWNR SIG 2016 surveys) in the north-eastern Mount	
	Lofty Ranges	21
Figure 3.9.	Distribution of all 2000–2016 bird records in the north-eastern Mount Lofty Ranges (including	
	opportunistic DEWNR SIG 2016 bird survey records located outside of study area)	25
Figure 3.10.	Spatial bias in bird observations (blue=high bias) in the north-eastern Mount Lofty Ranges, based on	
	natural logarithm of bird record density (records/km ² ; consolidated dataset) between 2000 and 2016	26
Figure 3.11.	Potential distribution of Brown Treecreeper in the north-eastern Mount Lofty Ranges	36
Figure 3.12.	Potential distribution of Chestnut-rumped Thornbill in the north-eastern Mount Lofty Ranges	37
Figure 3.13.	Potential distribution of Diamond Firetail in the north-eastern Mount Lofty Ranges	38
Figure 3.14.	Potential distribution of Hooded Robin in the north-eastern Mount Lofty Ranges	39
Figure 3.15.	Potential distribution of Jacky Winter in the north-eastern Mount Lofty Ranges	40
Figure 3.16.	Potential distribution of Restless Flycatcher in the north-eastern Mount Lofty Ranges	41
Figure 3.17.	Potential distribution of Southern Whiteface in the north-eastern Mount Lofty Ranges	42
Figure 3.18.	Priority landscapes of the north-eastern Mount Lofty Ranges, based on the mean likelihood values of	
	7 priority bird species (mean values rescaled to an index of 0–1)	44
Figure 5.1.	Medium priority (level 2) species observations from DEWNR SIG 2016 surveys in the north-eastern	
	Mount Lofty Ranges	67
Figure 5.2.	Potential distribution of Australian Owlet-nightjar in the north-eastern Mount Lofty Ranges	68
Figure 5.3.	Potential distribution of Black-chinned Honeyeater in the north-eastern Mount Lofty Ranges	69
Figure 5.4.	Potential distribution of Brown Songlark in the north-eastern Mount Lofty Ranges	70
Figure 5.5.	Potential distribution of Crested Shriketit in the north-eastern Mount Lofty Ranges	71
Figure 5.6.	Potential distribution of Elegant Parrot in the north-eastern Mount Lofty Ranges	72
Figure 5.7.	Potential distribution of Peaceful Dove in the north-eastern Mount Lofty Ranges	73
Figure 5.8.	Potential distribution of Rainbow Bee-eater in the north-eastern Mount Lofty Ranges	74
Figure 5.9.	Potential distribution of Rufous Songlark in the north-eastern Mount Lofty Ranges	75
Figure 5.10.	Potential distribution of Sacred Kingfisher in the north-eastern Mount Lofty Ranges	76
Figure 5.11.	Potential distribution of Varied Sittella in the north-eastern Mount Lofty Ranges	77
Figure 5.12.	Potential distribution of White-browed Babbler in the north-eastern Mount Lofty Ranges	78
Figure 5.13.	Potential distribution of White-winged Chough in the north-eastern Mount Lofty Ranges	79
Figure 5.14.	Potential distribution of White-winged Triller in the north-eastern Mount Lofty Ranges	80
Figure 5.15.	Potential distribution of Zebra Finch in the north-eastern Mount Lofty Ranges	81
-		

List of tables

Table 2.1	Simplification of slope/relief classes used for landscape stratification in this study	4
Table 2.2	Simplification of topographic wetness index (TWI) values used for landscape stratification in this study	4
Table 2.3	Simplification of mean annual rainfall (MAR) values used for landscape stratification in this study	5
Table 2.4	Simplification of tree crown cover values (local 4 ha scale) used for landscape stratification in this	
	study	6
Table 2.5	Classes of uniformity of tree crown cover values used for survey patch selection in this study	8
Table 2.6	Priority bird species analysed for potential distribution and responses to environment in the north-	
	eastern Mount Lofty Ranges	10
Table 3.1.	Landform x Rainfall x Tree crown cover strata in the north-eastern Mount Lofty Ranges, and targeted	
	new survey sites based on area-weighted representativeness of all bird species records during	
	2006–15	11
Table 3.2.	Summary of area, patch–by–year (2006–15) bird record density and under–surveyed environmental	
10510 5.2.	strata in the north-eastern Mount Lofty Ranges	18
Table 3.3.	Summary of bird species recorded during DEWNR SIG 2016 bird surveys in the north-eastern Mount	10
Table 5.5.	Lofty Ranges	19
	, ,	
Table 3.4.		19 22
Table 3.5.	Bird species recorded during DEWNR SIG 2016 bird surveys in the north-eastern Mount Lofty Ranges	22
Table 3.6.	Summary of MaxEnt models for priority bird species in the north-eastern Mount Lofty Ranges	28
Table 3.7.	Environmental attributes used in species distribution models for priority bird species in the north-	20
	eastern Mount Lofty Ranges	28
Table 3.8.	Response of Brown Treecreeper to environmental variables in the north-eastern Mount Lofty Ranges	29
Table 3.9.	Response of Chestnut-rumped Thornbill to environmental variables in the north-eastern Mount Lofty	
	Ranges	30
Table 3.10.	Response of Diamond Firetail to environmental variables in the north-eastern Mount Lofty Ranges	31
Table 3.11.	Response of Hooded Robin to environmental variables in the north-eastern Mount Lofty Ranges	32
Table 3.12.	Response of Jacky Winter to environmental variables in the north-eastern Mount Lofty Ranges	33
Table 3.13.	Response of Restless Flycatcher to environmental variables in the north-eastern Mount Lofty Ranges	34
Table 3.14.	Response of Southern Whiteface to environmental variables in the north-eastern Mount Lofty Ranges	35
Table 3.15.	Summary of environmental attributes for highest priority landscapes (i.e. landscape priority index	
	>0.75) for high priority (level 1) bird species in the north-eastern Mount Lofty Ranges	43
Table 5.1.	All bird species recorded in the north-eastern Mount Lofty Ranges (consolidated dataset)	47
Table 5.2.	Response of Australian Owlet-nightjar to environmental variables in the north-eastern Mount Lofty	
	Ranges	53
Table 5.3.	Response of Black-chinned Honeyeater to environmental variables in the north-eastern Mount Lofty	
	Ranges	54
Table 5.4.	Response of Brown Songlark to environmental variables in the north-eastern Mount Lofty Ranges	55
Table 5.5.	Response of Crested Shriketit to environmental variables in the north-eastern Mount Lofty Ranges	56
Table 5.6.	Response of Elegant Parrot to environmental variables in the north-eastern Mount Lofty Ranges	57
Table 5.7.	Response of Peaceful Dove to environmental variables in the north-eastern Mount Lofty Ranges	58
Table 5.8.	Response of Rainbow Bee-eater to environmental variables in the north-eastern Mount Lofty Ranges	59
Table 5.9.	Response of Rufous Songlark to environmental variables in the north-eastern Mount Lofty Ranges	60
Table 5.10.	Response of Sacred Kingfisher to environmental variables in the north-eastern Mount Lofty Ranges	61
Table 5.11.	Response of Varied Sittella to environmental variables in the north-eastern Mount Lofty Ranges	62
Table 5.12.	Response of White-browed Babbler to environmental variables in the north-eastern Mount Lofty	~-
10010 3.12.	Ranges	63
Table 5.13.	Response of White-winged Chough to environmental variables in the north-eastern Mount Lofty	05
	Ranges	64
Table 5.14.	Response of White-winged Triller to environmental variables in the north-eastern Mount Lofty Ranges	
Table 5.14.		66
	Response of Zebra Finch to environmental variables in the north-eastern Mount Lofty Ranges	00

Summary

Reducing the decline and increasing the resilience of many woodland bird species is a high priority for conservation and natural resource management in the Mount Lofty Ranges region. Several natural resource management agencies across the region are investing in large-scale, long-term habitat restoration and management programs to relieve pressure on their declining woodland birds.

Several high priority bird species known from north-eastern parts of Mount Lofty Ranges (i.e. Brown Treecreeper, Chestnut-rumped Thornbill, Diamond Firetail, Hooded Robin, Jacky Winter, Restless Flycatcher and Southern Whiteface) have been identified as the intended beneficiaries of these management programs.

Historic knowledge on the distribution and environmental drivers of these species, and the locations or landscapes preferred by these species, have been constrained by gaps or biases in bird observations across the region. Biased analyses using poor quality data has the potential to produce misleading information on environments and locations preferred by woodland birds.

In this study we have stratified landscapes and analysed recent bird data to identify environments that are poorly represented by past surveys. With this knowledge we have designed and conducted new surveys in 2016 to fill gaps and reduce biases in bird data, and to facilitate better analyses of species distributions and their responses to environment.

Species distribution modelling software was used to identify environmental variables that have the most influence on individual species distributions, quantify the strength of these relationships and produce maps of their potential distribution (including likelihood of occurrence statistics) across the study area. These potential species distribution maps for seven high priority species can be used to identify locations where management actions are most likely to benefit an individual species, or combined to identify landscapes where management actions can benefit multiple woodland bird species.

These priority landscapes tend to be located west, north and south-east of Monarto, south of Palmer, north-east and south-east of Truro, and include eastward flowing drainage lines/valleys to the east of Springton. They are typically found in rolling hills with low to medium rainfall (~400–450 mm/year) containing local patches of 10 to 25% native vegetation cover within broader landscapes with between 6 and 10% native vegetation cover.

1 Introduction

1.1 Background

Approximately 90% of the original woodlands of the Mount Lofty Ranges (MLR) of South Australia (SA) have been cleared, modified or fragmented. In the last 60 years, these activities have severely impacted on the natural environments of the region, and especially on bird species dependent on native vegetation (Ford and Howe 1980; Paton et al. 1994; Paton et al. 2004; Szabo et al. 2011). Several bird species are declining significantly while some large–bodied generalists are increasing. Of particular interest to the rest of Australia, the MLR is viewed as indicator of change for temperate woodlands (i.e. 'canary landscape', Szabo et al. 2011). Many natural resources management (NRM) agencies across temperate Australia, including the SA Department of Environment, Water and Natural Resource (DEWNR), Natural Resources (NR) Adelaide and Mount Lofty Ranges (AMLR) and NR SA Murray-Darling Basin (MDB) are investing in large-scale, long-term habitat restoration and management programs to relieve pressure on their declining woodland birds.

DEWNR NR AMLR, in conjunction NR SAMDB, are seeking improved confidence in information regarding the presence of declining, ground foraging, grassy woodland bird species in the north-eastern (NE) Mount Lofty Ranges (MLR), an area considered under–surveyed in relation to the central parts of Mount Lofty Ranges. In addition, there is a need to improve knowledge regarding the environmental features that influence the occurrence of declining woodland birds so that investment can be better directed towards particular locations and activities that are more likely to benefit these values. Priority bird species for the region are based on those identified by Rogers (2011), with this study focussing on the seven highest priority species for NR AMLR conservation programs.

1.2 Aims and objectives

This study aims to improve the confidence in the spatial location and environmental features targeted for restoration aimed at maintaining the woodland birds of the north-eastern Mount Lofty Ranges (NE MLR, Figure 1.1). This information will also serve to both improve the recognition of the value of modified landscapes in supporting these declining species; and inform the types of investment/interventions appropriate for maintaining populations of these species in the landscape.

The information provided by this study is intended to assist natural resource managers within government (e.g. DEWNR NR AMLR, NR SAMDB & NR Northern and Yorke; Australian Government), non-governmental agencies (e.g. Eastern Hills and Murray Plains Catchment Management Group, Goolwa to Wellington Local Action Planning Association, Birds SA, Trees for Life, Greening Australia, Nature Conservation Society of SA) and private landholders involved in on-ground works in the region.

Objectives of this study include:

- 1. Design a bird survey to fill gaps in recent records of woodland birds from the eastern Mount Lofty Ranges
- 2. Implement surveys in autumn and spring of 2016
- 3. Reduce spatial and temporal biases in bird records used in analyses of individual species environmental responses and likely distributions
- 4. Generate individual species models for seven high priority bird species (i.e. Brown Treecreeper, Chestnut-rumped Thornbill, Diamond Firetail, Hooded Robin, Jacky Winter, Restless Flycatcher, Southern Whiteface)
- 5. Identify landscapes that can be prioritised for restoration activities aimed at maintaining woodland birds

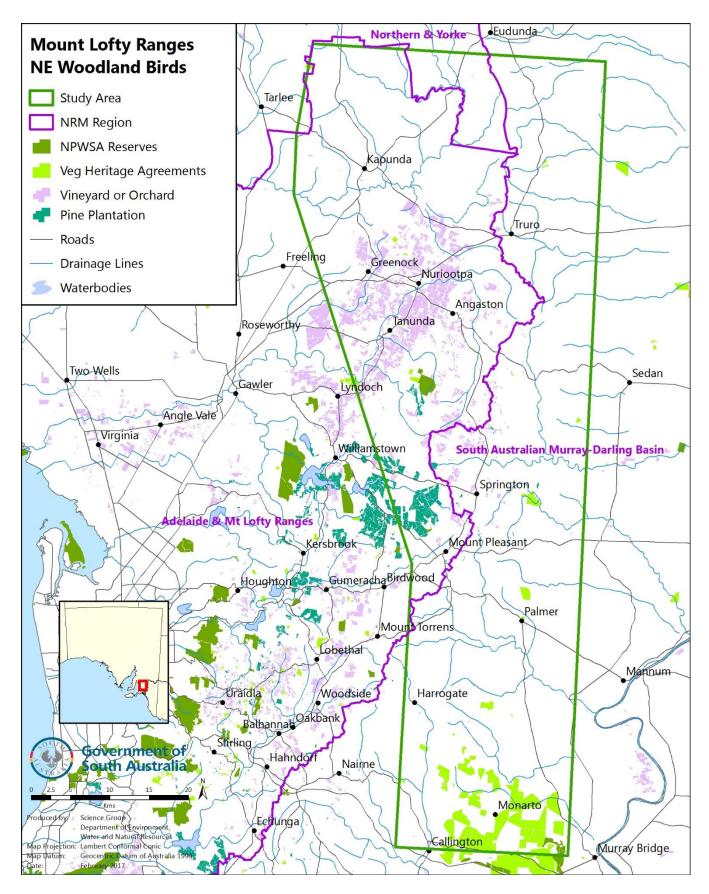


Figure 1.1. Study area for priority bird species in the north-eastern Mount Lofty Ranges

2 Methodology

2.1 Study area

This study considers the natural and modified landscapes (~292,000 ha) of north-eastern Mount Lofty Ranges (NE MLR) (Figure 1.1). The study area intersects three biogeographic regions (i.e. Kanmantoo, Flinders Lofty Block, Murray–Darling Depression; IBRA Version 7, DotE 2012) and includes four IBRA sub–regions (i.e. Fleurieu, Broughton, Mount Lofty Ranges, Murray Mallee). Topography of the region is diverse, dominated by undulating hills, and includes large areas of rolling hills to ranges or gently inclined slopes, with smaller areas of level plains (CSIRO 2015). The region experiences a Mediterranean climate with cool wet winters and warm dry summers. Mean annual rainfall in the study area ranges between 309–768 mm/year, and mean annual temperature between 13.4–16.5 °C (ANUCLIM Version 6.1, 1976 to 2005, Xu & Hutchison 2013). These lands are dominated by livestock grazing and annual cereal cropping production systems, with components of high intensity agriculture (e.g. vines and orchards), conservation areas containing predominately native vegetation communities and smaller areas of pine plantation forestry (Figure 1.1).

2.2 Bird data

In early 2016, bird records from the north-eastern Mount Lofty Ranges (NE MLR) study area were compiled from DEWNR's Biological Databases of South Australia (BDBSA, DEWNR 2016), an extract of all records from the national Bird Atlas (i.e. 1998–2015; Birdlife Australia 2016), and existing records held in DEWNR NR SAMDB's Vertebrate Database (i.e. "Murraylands" dataset). Supplementary records were provided by ornithologist Graham Carpenter from his 2012, 2013 and 2015 observations in the region. Duplicate records were identified and removed from the "Consolidated Dataset" (i.e. "Birds_All") and bird taxonomy (i.e. scientific binomials and common name) standardised across sources.

In mid-2016, DEWNR Science and Information Group's (SIG) 2016 autumn survey data were added to the Consolidated Dataset.

In late-2016, DEWNR SIG's 2016 spring survey data were added to the Consolidated Dataset.

In early 2017, new BDBSA bird data (i.e. 2015–16) records were also added to the Consolidated Dataset. Further supplementary data were added from other surveys/observations conducted in the region (i.e. DEWNR NR AMLR's Paddock Tree Project [Trees for Life] and Monarto Frahn 500 Project [DCP]; Graham Carpenter observations from 1997–99, 2014, 2016).

The final Consolidated Dataset (i.e. "Birds_All") was closely inspected for any errors, duplicate records or transfers between source datasets. All bird records were constrained to the boundaries of the NE MLR study area, except for a few records obtained from DEWNR SIG 2016 opportune surveys located in close proximity to the study area. Bird taxonomy was standardised (i.e. scientific binomials and common name) to conventions used in DEWNR's BDBSA Fauna Taxonomy list published in December 2016 (DEWNR 2016).

2.3 Environmental data

The environmental data selected for this study are a subset used by DEWNR Science and Information Group (SIG) researchers to understand the distribution of ecosystems and associated species in South Australia (e.g. Hobbs *et al.* 2015, Bonifacio *et al.* 2016). Topography, soils, climate, water redistribution and vegetation cover have been shown by these studies to influence the distribution and function of South Australian ecosystems, species, primary productivity and vegetation cover.

2.3.1 Topography and soils

To map environmental features and estimate some ecological functions, the 'Digital Soils and Landscape Grid of Australia' (CSIRO 2015) provides access to topographic and soil spatial datasets that can quantify the distribution of landscape types, vegetation communities, ecological functions and associated fauna. Layers include landforms, soil characteristics and topographic features that influence water redistribution, and primary productivity across landscapes (CSIRO 2015). These spatial layers contain nationally consistent data (90 m resolution) based on digital elevation models (DEM) data collected by NASA Space Shuttle missions NASA (2014).

To assist in landscape stratification for analysis and design of fauna surveys, or provide insight into the likely distribution of fauna species, a subset of this data has been used in this project:

- Slope/relief class landform classifications (Speight 2009) (landscape stratification and survey design)
- Topographic wetness index (landscape stratification, survey design and species distribution mapping)
- Soil texture multi-layer in top 1 m of soil profile (species distribution mapping)
- Soil pH soil acidity or alkalinity, multi-layer in top 1 m of soil profile (species distribution mapping)

Landforms (slope/relief classes)

The Speight (2009) classification system identifies 38 potential landform classes (10 occurring within the study region, CSIRO 2015). These have been simplified to five classes following Table 2.1.

Strata ID	General description	Slope/relief class
0	water bodies or lakes	0
1	level plains	11 to 14
2	gently inclined slopes	21 to 24
3	undulating hills	31 to 35
4	rolling hills to ranges	41 to 76

 Table 2.1
 Simplification of slope/relief classes used for landscape stratification in this study

Topographic wetness index (TWI)

TWI is a measure of local water redistribution patterns; lower values represent drier water-shedding areas and higher values represent wetter run–on or flood out areas (CSIRO 2015). The continuous TWI data (range 4.3 to 17.5) have been simplified into in four TWI classes using natural breaks in the distribution within the NE MLR study area (Table 2.2).

Table 2.2	Simplification of topographic wetness index (TWI)	values used for landscape stratification in this study
		,

Strata ID	General description	TWI
1	dry	4 to 8
2	mid	8 to 10
3	wet	10 to 21
9	lakes	>21

Soil texture index (STI)

To differentiate functional soil types (e.g. heavy clays through to deep sands) data on the proportion of sand in the 0–15 cm, 15–30 cm, 30–60 cm, 60–100 cm soil profiles (CSIRO 2015) was used to create a continuous soil texture index (rather than many discrete soil group classifications) using the formula:

STI_{0-100cm} = Sand_{0-15cm} x Sand_{15-30cm} x Sand_{30-60cm} x Sand_{60-100cm}

The index is weighted towards higher proportions of sand in uppermost soil layers which provides an ecological surrogate for increased rainfall absorption and lower runoff values from deeper sandy soils. The continuous STI data ranges between 0.02 for deep clay soils to 0.75 for deep sands in the NE MLR study area.

Soil pH (acidity/alkalinity)

The average pH of soils was calculated from pH data (CSIRO 2015) in the 0–15 cm, 15–30 cm, 30–60 cm, 60-100 cm soil profiles using the formula:

 $pH_{0-100cm}$ = (pH_{0-15cm} + $pH_{15-30cm}$ + $pH_{30-60cm}$ + $pH_{60-100cm}$) / 4

The index is slightly weighted by the pH values in the uppermost soil layers to reflect its likely influence on plant species and the typically higher proportions of plant roots in upper soil layers. The continuous Soil pH data ranges between 4.8 for acidic soils to 8.2 for alkaline soils in the NE MLR study area.

2.3.2 Climate

While other SA studies have found that several bioclimatic variables can be useful in predicting the likely distribution of ecosystems and species over large geographic areas (e.g. 11 climate variables in rangeland ecosystems, Hobbs *et al.* 2015). At smaller scales (e.g. NE MLR study area) many bioclimatic variables (e.g. Hijmans *et al.* 2005; Xu & Hutchison 2013) become highly auto correlated and redundant when used in spatial analyses. For this study, the available suite of bioclimatic variables were constrained to mean annual rainfall and mean annual temperature as previous studies indicated they often have a strongest influence on species distributions.

Mean annual rainfall (MAR)

Mean annual rainfall in the study area is 489 mm/year with a spatial range of 309–768 mm/year (ANUCLIM Version 6.1, 1976 to 2005, Xu & Hutchison 2013). The continuous mean annual rainfall data have been simplified into in 4 Rainfall classes using natural breaks in the distribution within the NE MLR study area (Table 2.3).

Table 2.3	Simplification of mean annual rainfall (MAR) values used for landscape stratification in this study
-----------	---

Strata ID	General description	MAR (mm/year)
3	low	301 to 400
4	low to medium	401 to 500
5	medium	501 to 600
6	high	601 to 800

Mean annual temperature (MAT)

Mean annual temperature in the study area is 15.0 °C with a spatial range of 13.4–16.5 °C (ANUCLIM Version 6.1, 1976 to 2005, Xu & Hutchison 2013).

2.3.3 Native plant cover

Two measures of native plant cover have been included in the study:

- **1. Tree crown cover** based on a single very high resolution satellite image (equivalent to aerial photography)
- 2. Woody vegetation cover based on multi-year Landsat satellite cover estimates (30 m resolution)

The two measures of native plant cover are correlated, however, the woody vegetation cover data has the potential to discriminate variations in primary productivity (i.e. photosynthetic activity) which may influence vegetation community types, vegetation health and resources utilised by different bird species.

Tree crown cover

In 2015, individual native species tree crowns were mapped as polygons (i.e. 'Trees' layer) within the NE MLR study area using very high resolution satellite imagery of the study area (~10–20 cm resolution; A Hay (Flying Ant) 2016, pers. comm., 25 January). The process classified tree crowns based on multiple training points within each 1 km by 1 km image subset, converted classified raster imagery to polygons and stitched the subsets to create a complete coverage of individual trees for the study area. Tree crowns were not mapped for Kaiserstuhl Conservation Park, areas of planted vegetation cover (i.e. DEWNR VEG.PlantedVegetationCover sde) or areas identified with intensive land uses (SA Government 2015).

Within our study, the tree crown cover polygons were converted to 50 cm resolution gridded data and resampled to 5 m and 30 m grids. Gaps in the 30 m gridded Tree crown cover layer (e.g. Kaiserstuhl Conservation Park and planted Monarto Woodlands) were in–filled using locally–recalibrated (i.e. 500 m buffer) Landsat woody vegetation cover data (30 m resolution).

For landscape stratification (and later use in species distribution analyses) the mean Tree crown cover was calculated for the surrounding 4 ha (113 m radius) for each 30 m grid cell. The continuous 4 ha mean Tree cover data have been simplified into six Tree crown cover classes using natural breaks in the distribution within the NE MLR study area (Table 2.3).

Strata ID	General description	Tree crown cover (%)
0	treeless	0 to 0.1
1	very sparse	0.1 to 5
2	sparse	5 to 15
3	low	15 to 30
4	moderate	30 to 56
5	high	56 to 100

Table 2.4Simplification of tree crown cover values (local 4 ha scale) used for landscape stratification in this study

Woody vegetation cover

Auscover (2016) has created Australia-wide estimates of persistent green cover based on annual dry season Landsat imagery from 2000 to 2010. The resulting product "Woody vegetation cover" (30 m resolution) provides a surrogate for native vegetation mapping but also provides estimates of foliage-projected cover (Auscover 2016, Gill *et al.* 2017) that can provide indicators of primary productivity, vegetation community types, vegetation health and species preferences. For species distribution analyses the mean Woody vegetation cover was calculated for the surrounding 4 ha (113 m radius) for each 30 m grid cell.

2.3.4 Environmental data and derivatives

For continuous environmental data further spatial statistical analyses were conducted to create environmental derivatives that may influence the distribution of priority bird species (e.g. spatial variability in productivity and vegetation cover, patchiness). These derivatives included mean and standard deviation values using 30 m resolution gridded data for continuous environmental variables at different scales (i.e. local 4 ha=113 m radius, landscape=500 m radius).

2.4 Landscape stratification

Each gridded class coverage of Landforms, Rainfall, Topographic wetness and Tree crown cover were converted to polygons and these polygon layers intersected to identify patches of common landscape stratifications across the four classes (total of 265 landscape stratification classes). Areas identified as containing non-native planted cover (e.g. vines, orchards, pines; DEWNR VEG.PlantedVegetationCover sde) or intensive land uses (e.g. irrigated areas, industrial uses; DEWNR LANDSCAPE.LandUse2008 sde, SA Government 2015) were masked from further analyses.

In early 2016, recent bird records (i.e. last 10 years, 2006–15) were extracted from the consolidated bird database and intersected with landscape stratification patches (i.e. polygons). Only the most recent occurrence records were used to represent extant populations and recent survey efforts. Within each individual patch all bird records were simplified to a single occurrence of species by each of the 10 years (i.e. species x year x patch) to reduce survey intensity bias (i.e. repeated visits to the same site, or nearby sites with similar environmental attributes, within 1 year). For each patch these species by year records were summed for the 10 years period as an indicator of local survey intensity. For each unique landscape stratification class (i.e. Landform x Rainfall x Topographic wetness x Tree crown cover) the total area of patches and total number of unique species by year per patch records within each landscape stratification class is an indicator of the degree of equality in representativeness of surveys efforts in the region. Landscape stratification classes with a total patch area of <100 ha were considered to be uncommon combinations of environments and were given the lowest priority for new surveys in this study.

2.5 New site selection

2.5.1 Area-weighted representativeness of survey effort

The total number of species by patch by year records across 2006–15 for each landscape stratification class were simplified to "Survey site–equivalent" based on an approximation of a total of 30 records for a survey site with 2 repeated visits (i.e. 15 records per visit). The Survey site–equivalent values were calculated for each landscape stratification class. Excluding areas and records for non–native woody vegetation or intensive land uses, this equates to a total area of ~271 300 hectares with 370 survey site–equivalents in 2006–15. With the proposed addition of 100 new survey sites in 2016 this equates to a survey site to area (ha) ratio of 1:577.

For each landscape stratification class the difference between 2006–15 Survey site–equivalents and an optimal post-2016 Survey site equivalent (i.e. balanced area-weighted representation, 1 survey site per 577 ha) was used to identify deficits (i.e. under-surveyed) or excesses in survey efforts (i.e. over-surveyed). The range of over- and under-surveyed site-equivalents was indexed (0–1) to highlight strata requiring new surveys. The proposed 100 new survey sites were proportionally allocated to under–surveyed landscape strata to increase the area–weighted representativeness of bird survey data.

2.5.2 Optimisation of stratified survey site selections

To optimise survey site selection the mean (\bar{x}) and standard deviation (SD) values of each strata class within the continuous datasets (i.e. Rainfall, Topographic wetness index, Tree crown cover) were calculated to help identify locations within central range of each individual strata class (i.e. $\bar{x}\pm 0.5$ SD). The central range was given an optimal

score of 1 and locations outside of this central range were assigned a score of 0.5. Local scale uniformity in Tree crown cover values were estimated by dividing the 4ha mean Tree crown cover value by standard deviation over the 4 ha area (i.e. lower values represent most locally–uniform cover). Uniformity estimates were converted to optimisation scores (Table 2.5). Each gridded sub–strata priority class coverage of Rainfall, Topographic wetness, Tree crown cover and Uniformity of cover were converted to polygons.

Strata ID	General description	Uniformity estimate	Optimisation score
0	very high	0	1.0
1	high	0 to 0.1	0.9
2	medium	0.1 to 0.2	0.8
3	medium-low	0.2 to 0.3	0.7
4	low	0.3 to 0.4	0.6
5	very low	0.4 to 0.5	0.5
6	exclude	>0.5	0

Table 2.5	Classes of uniformity of tree crown cover values used for survey patch selection in this study
-----------	--

These optimisation polygon layers, plus the landform class polygon, were intersected. The product of optimisation scores for Rainfall, Topographic wetness index, Tree crown cover and Uniformity of cover were calculated for each polygon patch. All patches with an optimal product value of <0.4 (i.e. unsatisfactory for surveys) were excluded.

The potential landscape survey patch layer was intersected by land tenure parcels data (i.e. DEWNR DCDB.PARCEL sde) to identify landscape patches managed by single landholder. The size of each optimal landscape patch within a single land tenure was calculated. Parcel IDs were annotated to each patch to permit later discovery of land holder identity and contact information for site access.

The average point density of all bird species records (2006–15) within 1 km radius (observations/km²) was used to identify geographic areas devoid of recent bird observations (i.e. 90 m gridded density data). An Unsurveyed Index (i.e. 1-(Ln(Point Density+1)/4.61512)) was created to strongly avoid areas with a high number of records and prioritise surveys in lightly–surveyed areas (Figure 3.5).

Targeted optimal locations for new survey sites were identified by filtering the potential landscape survey patch– parcel layer (i.e. potential survey patches by Parcel IDs) for each under-surveyed landscape strata. The Unsurveyed Index value was annotated for each patch–parcel using the patch–parcel centroid. The landscape survey patch optimisation value was multiplied by the Unsurveyed index value to identify the highest priority patches for new surveys. Within each under–surveyed stratum each patch–parcel was ranked according to the product of optimisation scores and largest patch–parcel size.

Potential survey patch–parcels were selected with highest combined rank, and duplicates within a single Parcel ID and stratum were ignored. The priority of each patch–parcel within each stratum was noted, and selections continued until 2x the number of required survey sites per strata (3x for single survey strata) were recorded. If primary sites (i.e. most highly ranked with each stratum) could not be accessed, these alternate secondary sites allowed for substitution of sites. The centre of each potential polygon patch–parcel was located and converted to potential survey point for use in Global Positioning System (GPS) navigation.

2.6 New bird surveys

Potential stratified survey sites were inspected using DEWNR satellite image data and/or online Google Maps (<u>https://www.google.com.au/maps/</u>) to verify site selections, vegetation cover and accessibility. SA Government property title searches (<u>https://www.sailis.sa.gov.au/</u>) and local knowledge was used to identify landholders and to seek permission to access potential survey sites.

Autumn and spring periods of 2016 were identified for surveys of 100 stratified survey sites (i.e. one visit in each season). Bird surveys were conducted by experienced bird observers with local knowledge and experience of birds of the Mount Lofty Ranges. Global Positioning System (GPS) devices were used to accurately locate survey sites. At each site and visit a standard "20 minute/ 2 hectare area search" (i.e. Birdlife Australia, 80 m radius; Loyn 1986) was conducted, the presence of all bird species was recorded (i.e. presence-only data). Supplementary observations of weather conditions and vegetation types were also noted. Opportune observations were also made on approach and departure from each site, and during travel between sites. After preliminary analysis of potential habitats for priority bird species following the autumn 2016 surveys, additional "targeted opportune" sites were visited in spring 2016. Many of these targeted opportune sites were located in the north-eastern corner of the study area in environments with a higher likelihood of containing priority bird species and with few prior bird observations.

All observations were recorded on standardised datasheets prior to data entry into the DEWNR NR SAMDB Vertebrate Database (i.e. Microsoft Access) and then transferred to DEWNR's corporate Biological Databases of South Australia (BDBSA; DEWNR 2016).

2.7 Species distributions

An important characteristic of reliable analyses of species distributions and their responses to environmental variables is to reduce data biases resulting from temporal and spatial variability in sampling intensity. For this study care has been taken to reduce duplicates in time and space and to adopt appropriate analytical methods.

Java-based MaxEnt software (version 3.3.3k; Phillips *et al.* 2006, Phillips 2015) was used to evaluate relationships between each priority bird species and several environmental variables (and their interactions), identify the most efficient (i.e. maximum entropy) model, and produce a spatial map of the likelihood of occurrence for each species. MaxEnt models were run using a consistent set of environmental variables across all species. MaxEnt software includes algorithms to reduce the influence of correlated environmental variables.

Species distribution analyses were conducted on the seven targeted high priority bird species ("level 1") from the region (Table 2.6). Supplementary analyses were also conducted on 14 additional bird species identified by Rogers (2011) as having a priority for conservation management within the broader Mount Lofty Ranges region (i.e. medium priority, "level 2"). Records for these analyses were constrained to all priority species for the period 2000 to 2016, with a locational accuracy of <500m. Earlier bird records were not used for species distribution models as the locational accuracy of bird records prior to 2000 are lower due the lack of Global Positioning System (GPS) devices, and the historic reliance on hard-copy maps, by bird observers of that era. All duplicate individual species by point location records were removed to reduce bias in analyses.

Each MaxEnt logistic models included each individual species' observations plus 10000 randomly-selected background training points. Duplicate presence records within each 90m grid cell were removed by MaxEnt to further reduce model bias. The maximum number of model iterations for algorithm convergence was set at 5000. Measures of variable importance (i.e. percent contribution and permutation importance) were calculated using a jack-knife method (Phillips *et al.* 2006, Phillips 2015). MaxEnt's proportional area under the curve (AUC) statistics were calculated for each model as a measure of model strength (i.e. higher value=better model).

Table 2.6Priority bird species analysed for potential distribution and responses to environment in the north-eastern Mount Lofty Ranges

High priority (level 1)	Medium priority (level 2)	
Brown Treecreeper	Australian Owlet-nightjar	Rufous Songlark
Chestnut-rumped Thornbill	Black-chinned Honeyeater	Sacred Kingfisher
Diamond Firetail	Brown Songlark	Varied Sittella
Hooded Robin	Crested Shriketit	White-browed Babbler
Jacky Winter	Elegant Parrot	White-winged Chough
Restless Flycatcher	Peaceful Dove	White-winged Triller
Southern Whiteface	Rainbow Bee-eater	Zebra Finch

3 Results

3.1 Stratification of landscapes for bird surveys

The spatial distribution of the four bird survey stratification classes (i.e. of Landforms, Rainfall, Topographic wetness, Tree crown cover) are presented in Figure 3.1 to Figure 3.4. The intersection of the four stratification class layers (and excluding areas containing vines, orchards or pines) resulted in 265 landscape strata. Approximately one-third of the strata represent very small landscape components (i.e. 111 strata, <100 ha in size) of the north-eastern Mount Lofty Ranges region. The largest landscape components (i.e. >10000 ha in size) consist of undulating hills (and a few ranges) with low–medium to medium rainfall and very sparse tree cover or virtually no tree cover.

Analyses of area-weighted representativeness of all bird species data recorded between 2006 and 2015 (Figure 3.5) across Landform, Rainfall and Tree crown cover classes (Table 3.1), and in finer landscape detail (i.e. topographic wetness, Table 3.2), show the allocations of new "stratified survey sites" for under-surveyed landscape strata. These new stratified survey sites were located to avoid landscapes with high densities of existing bird records (i.e. Unsurveyed Index, Figure 3.5). No new sites were allocated to "Treeless" (i.e. <0.1% tree crown cover) strata as they provide few opportunities for priority woodland species. Biases in previous bird records were clearly evident from the 2006 to 2015 dataset (i.e. most records occur with higher rainfall areas with higher tree cover). Most new survey sites (78%) were allocated to landscapes containing undulating hills, with 53% of all sites allocated to the "Very Sparse" tree crown cover class (0.1 to 5% cover) and 43% of all sites allocated to the "Sparse" tree crown cover).

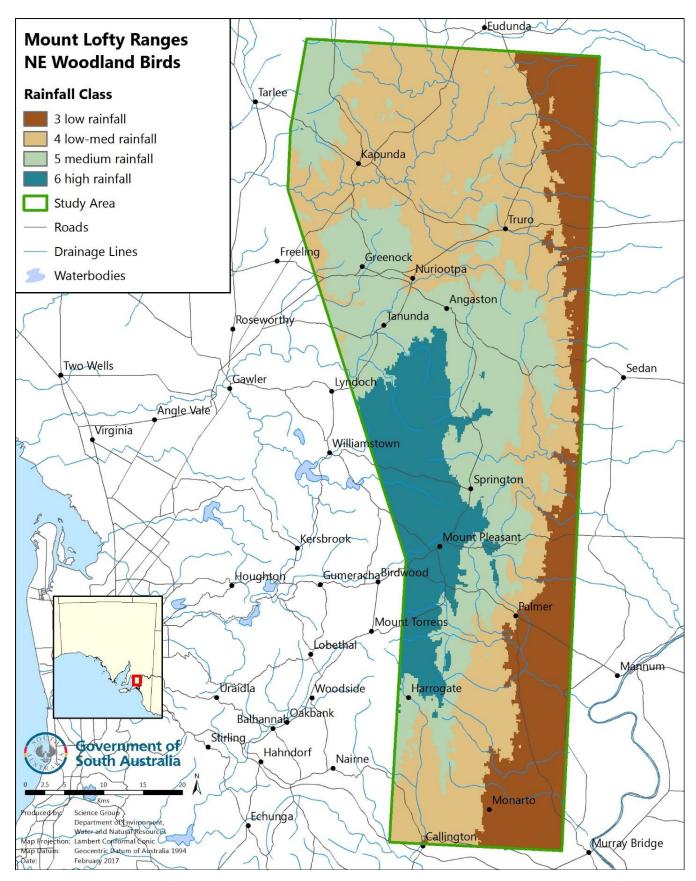

Strata ¹		Total		Tree crown cover (%) class / New sites Very Mod-							
Landform class	Rainfall class (mm/year)	new sites	Treeless (0–0.1)	Sparse (0.1–5)	Sparse (5–15)	Low (15–30)	erate (30–56)	High (56–100			
Level plains	Low (301–400)										
	Low-medium (401–500)										
	Medium (501–600)										
	High (601–800)										
Gently inclined slopes	Low (301–400)	5		4	1						
	Low-medium (401-500)	3		1	2						
	Medium (501–600)	3		1	2						
	High (601–800)	2			2						
Undulating hills	Low (301–400)	2		2							
-	Low-medium (401-500)	11		11							
	Medium (501–600)	38		21	17						
	High (601–800)	27		9	12	5	1				
Rolling hills to ranges	Low (301–400)	1			1						
	Low-medium (401-500)	1		1							
	Medium (501–600)	3		1	2						
	High (601–800)	4		2	2						
Total		100	0	53	41	5	1	0			

Table 3.1.Landform x Rainfall x Tree crown cover strata in the north-eastern Mount Lofty Ranges, and targetednew survey sites based on area-weighted representativeness of all bird species records during 2006–15

¹ A finer level of stratification using topographic wetness classes are presented in Table 3.2

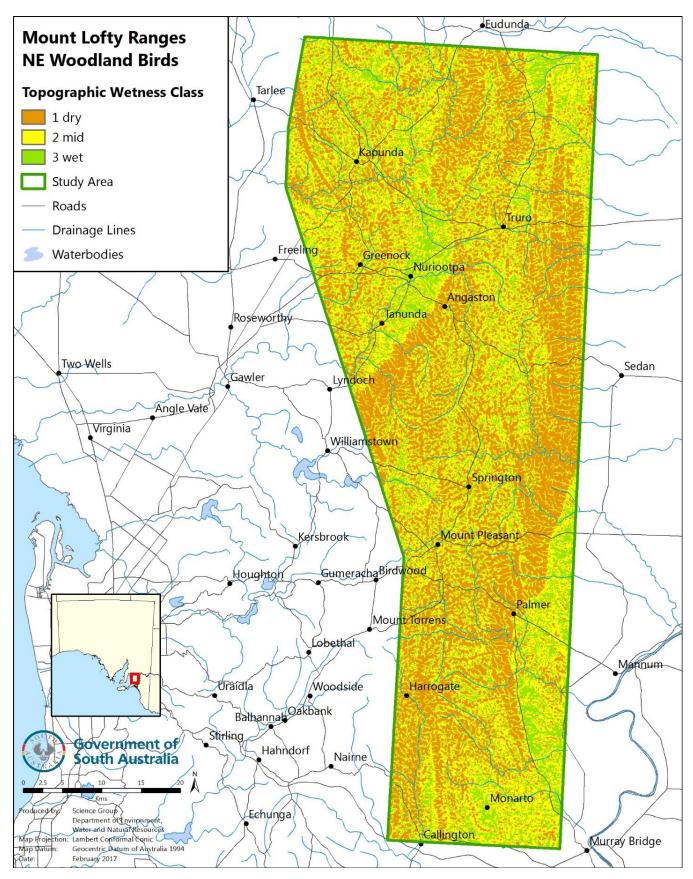


Figure 3.1. Landscape stratification using DEM landform classifications in the north-eastern Mount Lofty Ranges

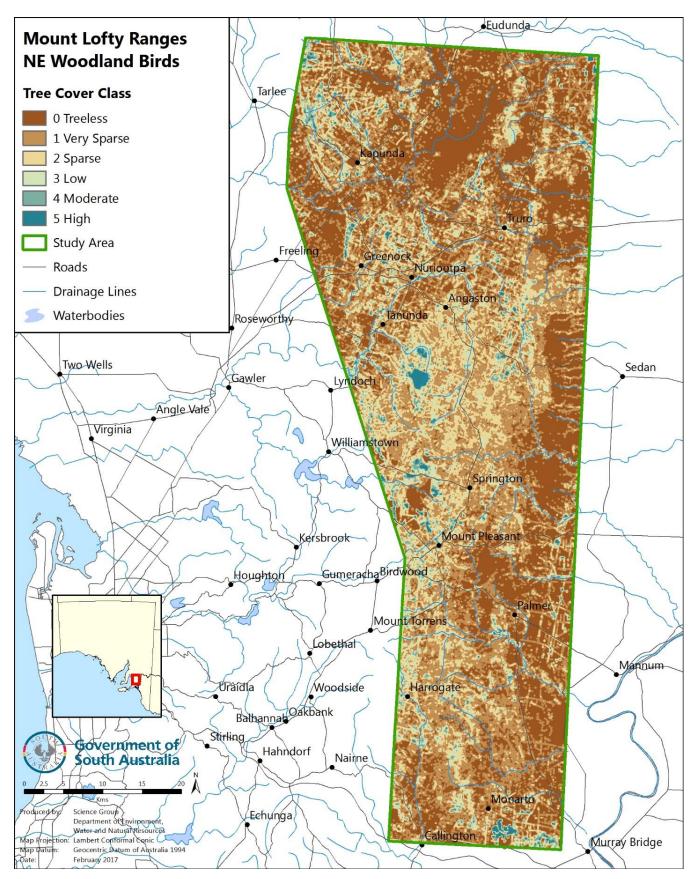

Mean annual rainfall (mm/year): low=301-400; low to medium=401-500; medium=501-600; high=601-800.

Figure 3.2. Landscape stratification using mean annual rainfall in the north-eastern Mount Lofty Ranges

Topographic wetness index: dry=4-8; mid=8-10; wet=10-21; lakes>21.

Figure 3.3. Landscape stratification using DEM topographic wetness index in the north-eastern Mount Lofty Ranges

Mean tree crown cover (%): treeless=0–0.1; very sparse=0.1–5; sparse=5–15; low=15–30; moderate=30–56; high=56–100.

Figure 3.4. Landscape stratification using tree crown cover mapping in the north-eastern Mount Lofty Ranges

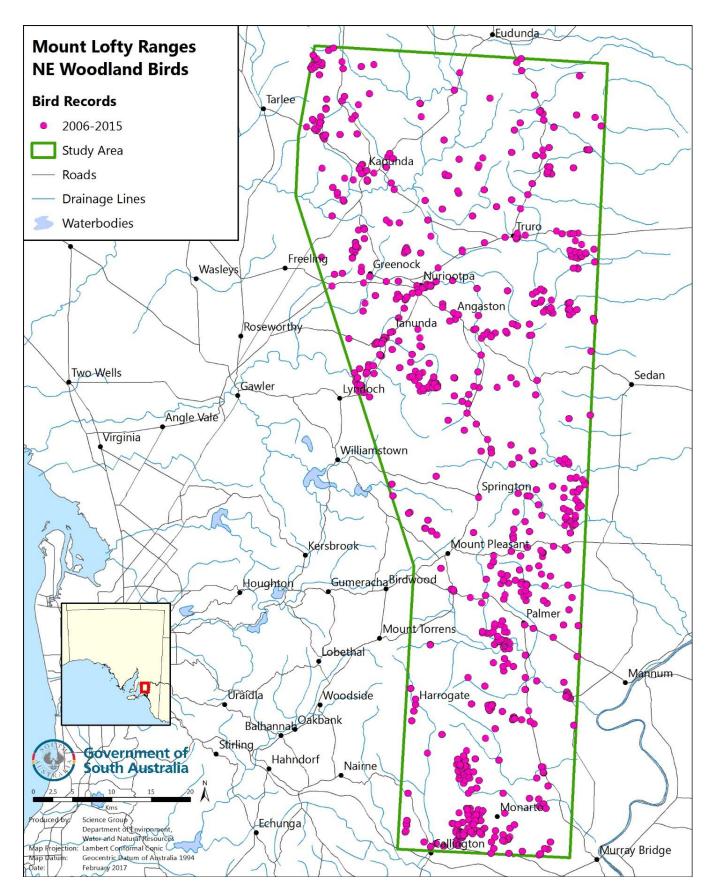


Figure 3.5. Bird record density for the 2006–2015 period in the north-eastern Mount Lofty Ranges

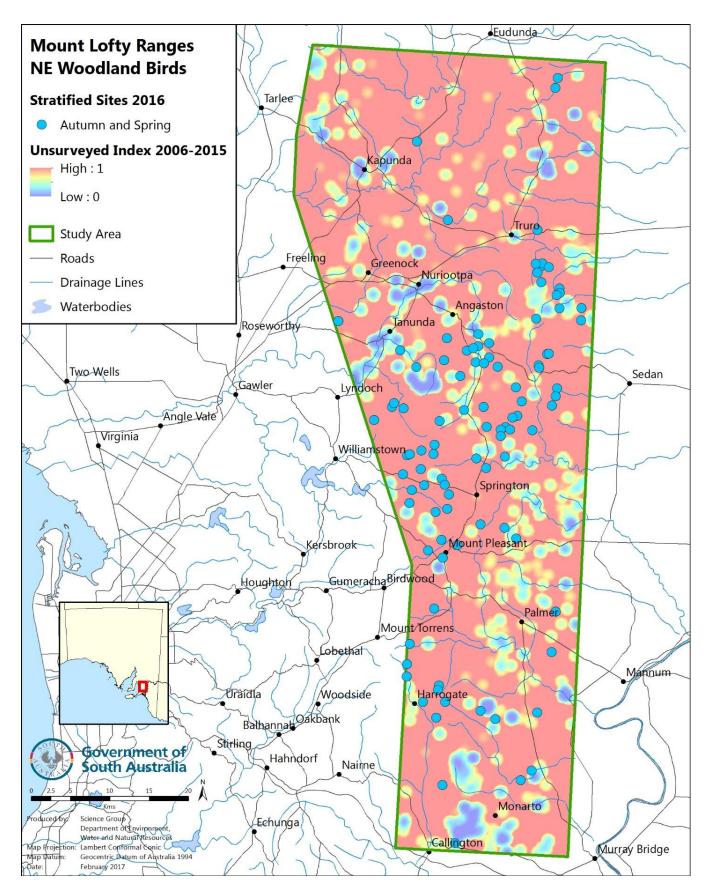


Figure 3.6. Landscapes with few bird records (red areas) from surveys or observations during 2006–2015, and DEWNR SIG 2016 stratified bird survey sites in the north-eastern Mount Lofty Ranges

					Tree crown co	over class														
					0 Treeless 1 Very Sparse			2 Sparse			3 Low			4 Moderate			5 High			
Landform	Rainfall	Wetness	Area	New	Excluded		Under-			Under-			Under-			Under-		-	Under-	
class	class	class	(ha)	Sites	area (ha)	Area (ha)	surveyed	New sites	Area (ha)	surveyed	New sites	Area (ha)	surveyed	New sites	Area (ha)	surveyed	New sites	Area (ha)	surveyed	New site
1 level	3 low	1 dry	4		4	<1	0.03													
plains		2 mid	220		120	85	0.47		10	0.25		2	0.11		2	0.12		<1	0.03	
		3 wet	347		209	122	0.51		6	0.21		4	0.17		4	0.17		2	0.12	
	4 low-med	1 dry	33		3	8	0.23		10	0.25		9	0.24		4	0.16				
		2 mid	580		155	136	0.52		142	0.52		100	0.44		42	0.38		5	0.13	
		3 wet	1149		441	285	0.58		234	0.57		133	0.48		48	0.41		9	0.24	
	5 medium	2 mid	13		3	6	0.21		2	0.12		1	0.09		<1	0.00				
		3 wet	22		3	13	0.28		5	0.18		2	0.11		<1	0.01				
	6 high	2 mid	4		<1	1	0.07		<1	0.04		1	0.07		2	0.10				
		3 wet	31		2	6	0.21		14	0.28		8	0.23		1	0.07				
2 gently	3 low	1 dry	1753		688	715	0.69		227	0.57		84	0.45		31	0.36		9	0.08	
nclined		2 mid	11027	3	5095	4151	0.88	2	1098	0.73	1	392	0.62		212	0.55		80	0.46	
slopes		3 wet	8943	2	4458	3245	0.85	2	808	0.69		274	0.58		118	0.50		39	0.29	
	4 low-med	1 dry	1395	1	490	511	0.65		252	0.58	1	107	0.49		32	0.37		3	0.14	
		2 mid	6276	2	2714	2410	0.82	1	831	0.70	1	242	0.57		73	0.45		6	0.19	
		3 wet	4968		2004	1908	0.79		731	0.68		238	0.57		76	0.45		11	0.26	
	5 medium	1 dry	764	1	115	270	0.59		254	0.58	1	93	0.47		30	0.36		2	0.11	
		2 mid	3120	2	713	1147	0.74	1	846	0.71	1	304	0.58		100	0.47		10	0.25	
		3 wet	2142		333	824	0.70		648	0.67		248	0.57		80	0.46		10	0.25	
	6 high	1 dry	238		7	43	0.40		108	0.49		48	0.41		25	0.34		7	0.22	
		2 mid	950	1	31	224	0.57		376	0.62	1	211	0.56		83	0.47		26	0.35	
		3 wet	746	1	21	226	0.57		287	0.60	1	156	0.53		45	0.40		12	0.27	
3 undulat-	3 low	1 dry	7859		3191	3184	0.85		1045	0.72		276	0.58		119	0.49		45	0.40	
ng hills		2 mid	11439	1	5016	4502	0.88	1	1269	0.75		379	0.60		206	0.54		68	0.43	
		3 wet	4062	1	1494	1732	0.78	1	575	0.66		167	0.52		74	0.37		19	0.32	
	4 low-med	1 dry	32189	3	13301	12361	0.99	3	4467	0.88		1605	0.76		421	0.62		34	0.37	
		2 mid	32028	7	12832	13203	1.00	7	4327	0.87		1325	0.75		314	0.58		27	0.35	
		3 wet	11039	1	3315	4837	0.89	1	2049	0.79		664	0.65		163	0.52		11	0.26	
	5 medium	1 dry	28959	16	5416	12132	0.99	9	7370	0.94	7	2709	0.82		1109	0.72		223	0.56	
		2 mid	26125	18	5003	11282	0.98	10	6916	0.93	8	2037	0.79		747	0.66		141	0.46	
		3 wet	7977	4	913	3164	0.85	2	2720	0.83	2	890	0.70		259	0.54		32	0.34	
	6 high	1 dry	13004	12	931	5104	0.90	5	4179	0.88	5	1698	0.78	1	687	0.69	1	405	0.61	
	5	2 mid	9783	11	482	3533	0.86	3	3302	0.85	5	1560	0.77	3	613	0.67		292	0.52	
		3 wet	2983	4	114	948	0.72	1	1063	0.73	2	585	0.67	1	173	0.53		101	0.40	
4 rolling	3 low	1 dry	4739	1	2529	1652	0.78		418	0.64	1	103	0.49		30	0.36		7	0.22	
nills to		2 mid	1133	_	423	511	0.65		151	0.53	-	30	0.32		14	0.28		3	0.16	
ranges		3 wet	404		61	177	0.54		133	0.50		24	0.34		8	0.23		<1	0.03	
5	4 low-med	1 dry	16108	1	10046	4623	0.89	1	1005	0.72		329	0.61		92	0.46		14	0.24	
		2 mid	3696	-	1718	1481	0.76	-	384	0.62		92	0.48		20	0.32		1	0.06	
		3 wet	940		232	434	0.70		215	0.53		43	0.40		16	0.32		1	0.00	
	5 medium	1 dry	5524	3	1767	2049	0.80	1	1084	0.74	2	438	0.40		159	0.30		27	0.32	1 - C
	5 mealum	2 mid	1230		247	490	0.80	1	320	0.74	2	438	0.64		48	0.49		27	0.32	1
		3 wet	202		15	56	0.64		65	0.81		54	0.31		48	0.41		2	0.10	
	6 high		4234	3	303	1630	0.42	2	1317	0.44	1	54 573	0.38		311	0.27		100	0.49	
	6 high	1 dry 2 mid	4234 822	1	22	229	0.78	2	325	0.75	1	573 196	0.66		45	0.36		4	0.49	
		2 mid 3 wet	822 125	-	22 <1	229	0.37		48	0.61	1	46	0.54		45 7	0.36		4	0.17	
		3 wet	271331	100	<1 86979	105672	0.55	53	48 51633	0.41	41	46	0.40		6653	0.22		T	0.09	1

Table 3.2. Summary of area, patch-by-year (2006-15) bird record density and under-surveyed environmental strata in the north-eastern Mount Lofty Ranges

DEWNR Technical report 2017/02

3.2 DEWNR Science and Information Group (SIG) bird surveys 2016

DEWNR SIG 2016 surveys of 100 new stratified sites and opportunistic sites (Figure 3.7) were conducted in late autumn (5/05/2016–25/06/2016) and spring (26/09/2016–27/10/2016). Over 6000 observations were made (Table 3.3, Table 3.5), including all seven targeted high priority species (level 1, Figure 3.8) and 11 of the 14 medium priority species (level 2, Figure 5.1). One-third of all observations (i.e. 2142 of 6133 records) occurred on stratified survey sites with an autumn to spring ratio of *44:56*. The total number of spring observations (i.e. stratified + opportune) was more than double of those recorded in autumn, this is partially attributed to many targeted opportune surveys being located in more productive landscapes with medium to higher plant cover values in the north–east of the study area.

A total of 137 species were encountered across DEWNR SIG 2016 surveys (Table 3.3, Table 3.5), including 131 native species and 6 non-native species. The total number of high priority species observed on stratified sites during autumn and spring periods were similar (i.e. 36 cf. 37).

Table 3.3.	Summary of bird species recorded during DEWNR SIG 2016 bird surveys in the north-eastern Mount Lofty
Ranges	

	Autumn survey records				g survey re			
Bird species	Strati- fied	Oppor- tune	Sub- total	Strati- fied	Oppor- tune	Sub- total	Total records	Total species
High priority (level 1)	36	55	91	37	201	238	329	7
Medium priority (level 2)	8	27	35	29	213	242	277	11
Low priority	872	931	1803	1080	2390	3470	5273	113
Non-native	24	31	55	56	143	199	254	6
Total	940	1044	1984	1202	2947	4149	6133	137

3.3 All bird data

The Consolidated Dataset (i.e. "Birds_All", combination of BDBSA, Bird Atlas, DEWNR NR AMLR & SAMDB projects, Graham Carpenter and DEWNR SIG 2016 data) resulted in over 147000 unique bird records (Table 3.4, Table 5.1) with 87.2% of these records occurring between 2000 and 2016. For the 2000 to 2016 period, 9446 observations (7.4%) were made of high priority species (level 1) and 8104 (6.3%) for medium priority species (level 2) with 103158 (80%) other native species and 7566 (5.9%) non-native species records. The density of these 2000 to 2016 records is not uniform across the MLR NE study area (Figure 3.9) with some localised areas (e.g. west of Monarto) having a very high number of records.

	Consolidated d	lataset records	Total	Total
Bird species	pre-2000	2000–16	records	species
High priority (level 1)	724	9446	10170	7
Medium priority (level 2)	901	8104	9005	14
Low priority	15455	103158	118613	217
Non-native	1770	7566	9336	11
Total	18850	128274	147124	249

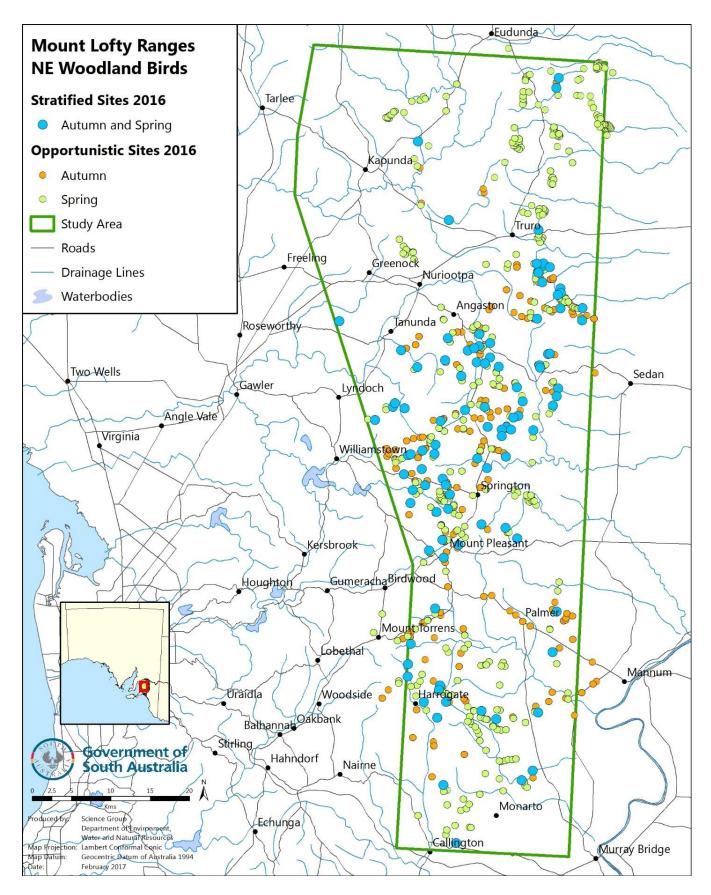


Figure 3.7. DEWNR SIG 2016 bird survey sites in the north-eastern Mount Lofty Ranges

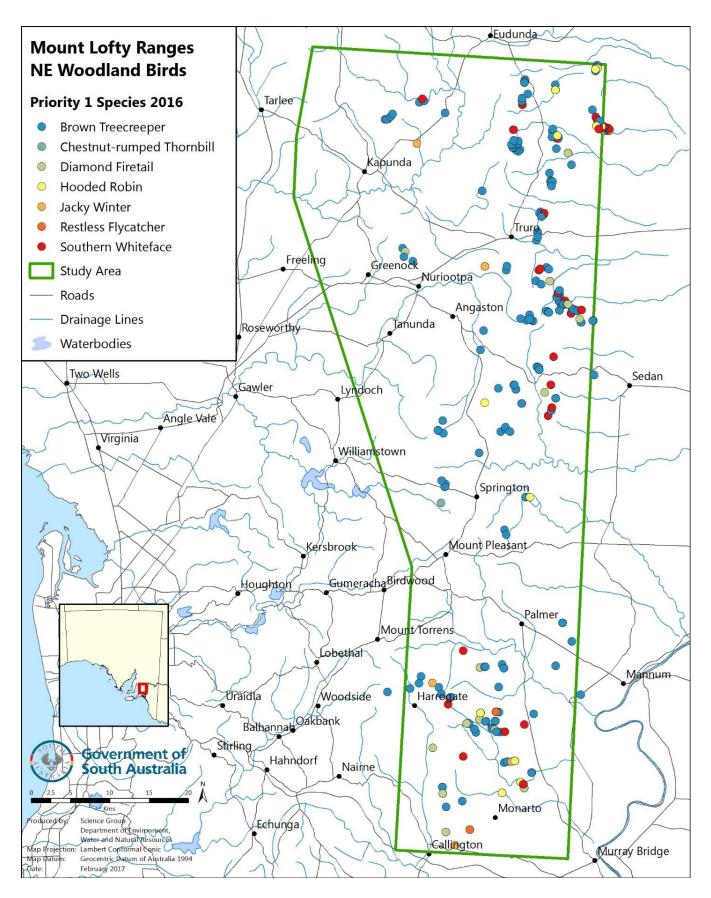


Figure 3.8. High priority species (level 1) observations (DEWNR SIG 2016 surveys) in the north-eastern Mount Lofty Ranges

Table 3.5. Bird species recorded during DEWNR SIG 2016 bird surveys in the north-eastern Mount Lofty Ranges

	Autur	nn survey r	ecords	Sprin			
	Strati-	Oppor-	Sub-	Strati-	Oppor-	Sub-	Total
Bird species	fied	tune	total	fied	tune	total	records
High priority (7 species)	36	55	91	37	201	238	329
Brown Treecreeper	20	35	55	24	129	153	208
Chestnut-rumped Thornbill					3	3	3
Diamond Firetail	3	9	12	2	15	17	29
Hooded Robin	4	2	6	4	19	23	29
Jacky Winter	3	2	5	1	4	5	10
Restless Flycatcher		1	1		2	2	3
Southern Whiteface	6	6	12	6	29	35	47
Other native (124 species)	880	958	1838	1109	2603	3712	5550
Australasian Grebe	1	7	8	3	6	9	17
Australasian Shoveler		1	1		2	2	3
Australian Golden Whistler		2	2				2
Australian Magpie	84	86	170	93	151	244	414
Australian Owlet-nightjar ²	-	1	1		1	1	2
Australian Pelican	1		1		1	1	2
Australian Pipit	5	2	7	4	23	27	34
Australian Raven	3	1	4	1	3	4	8
Australian Reed Warbler	1		1	11	15	26	27
Australian Ringneck	2	5	7	4	20	24	31
Australian Shelduck	3	5	8	5	10	15	23
Australian White Ibis				1		1	1
Banded Lapwing	1		1				1
Black Kite				1	1	2	2
Black-faced Cuckooshrike	9	4	13	12	41	53	66
Black-faced Woodswallow	1	3	4		1	1	5
Black-fronted Dotterel	2	1	3		1	1	4
Black-shouldered Kite				2	2	4	4
Blue-billed Duck		1	1		6	6	7
Brown Falcon	1	5	6	2	21	23	29
Brown Goshawk	2		2	5	4	9	11
Brown Songlark ²				1	1	2	2
Brown Thornbill				1	4	5	5
Brown-headed Honeyeater	7	7	14	4	12	16	30
Buff-rumped Thornbill	5	2	7	6	18	24	31
Chestnut Teal					1	1	1
Collared Sparrowhawk	1	1	2		6	6	8
Common Bronzewing	5	3	8	9	16	25	33
Crescent Honeyeater	3	8	11	2	20	22	33
Crested Pigeon	11	8	19	11	19	30	49
Crimson Rosella	80	63	143	85	181	266	409
Dusky Moorhen		2	2		2	2	4
Dusky Woodswallow		2	2	2	26	28	30
Eastern Barn Owl					1	1	1
Eastern Spinebill	3	7	10	3	4	7	17
Elegant Parrot ²					5	5	5
Emu	1	3	4	2		2	6
Eurasian Coot	2	12	14	2	12	14	28
Fairy Martin	1		1	1		1	2

	Autur	nn survey r	ecords	Sprin			
	Strati-	Oppor-	Sub-	Strati-	Oppor-	Sub-	Total
Bird species	fied	tune	total	fied	tune	total	records
Fan-tailed Cuckoo					2	2	2
Flame Robin	1		1				1
Galah	63	39	102	85	163	248	350
Great Cormorant					1	1	1
Grey Butcherbird		1	1				1
Grey Currawong	3	4	7	3	12	15	22
Grey Fantail	18	22	40	6	27	33	73
Grey Shrikethrush	13	21	34	29	110	139	173
Grey Teal	3	18	21	6	12	18	39
Hardhead		5	5				5
Hoary-headed Grebe	2	13	15		1	1	16
Horsfield's Bronze Cuckoo	3	5	8	3	4	7	15
Horsfield's Bush Lark				1		1	1
Laughing Kookaburra	20	13	33	25	33	58	91
Little Black Cormorant					1	1	1
Little Corella	14	9	23	41	39	80	103
Little Eagle	1		1				1
Little Pied Cormorant		5	5	2	11	13	18
Little Raven	59	54	113	54	83	137	250
Little Wattlebird		1	1		1	1	2
Long-billed Corella	1	2	3	3		3	6
Magpielark	9	8	17	14	27	41	58
Maned Duck (Australian Wood Duck)	23	41	64	27	42	69	133
Masked Lapwing		5	5	4	17	21	26
Mistletoebird				2	5	7	7
Musk Duck		1	1		1	1	2
Musk Lorikeet	32	25	57	24	29	53	110
Nankeen Kestrel	4	1	5	13	12	25	30
New Holland Honeyeater	9	17	26	9	36	45	71
Noisy Miner	18	6	24	19	31	50	74
Pacific Black Duck	4	10	14	6	9	15	29
Peaceful Dove ²	1	3	4		12	12	16
Peregrine Falcon	1		1		3	3	4
Pink-eared Duck		1	1				1
Purple Swamphen				1		1	1
Purple-crowned Lorikeet	5	6	11	8	39	47	58
Rainbow Bee-eater ²				13	52	65	65
Rainbow Lorikeet		3	3		3	3	6
Red Wattlebird	41	25	66	31	61	92	158
Red-browed Finch	2	1	3		1	1	4
Red-capped Robin	4	2	6				6
Red-rumped Parrot	18	17	35	23	68	91	126
Rose Robin	1		1				1
Rufous Songlark ²				4	8	12	12
Rufous Whistler	5	1	6	7	17	24	30
Sacred Kingfisher ²				1	9	10	10
Scarlet Robin	1		1		3	3	4
Shining Bronze Cuckoo					1	1	1
Silver Gull		1	1				1
Silvereye		4	4	2	3	5	9
Singing Honeyeater	11	12	23	7	35	42	65

DEWNR Technical report 2017/02

	Autun	nn survey r	ecords	Sprin			
Bird species	Strati- fied	Oppor- tune	Sub- total	Strati- fied	Oppor- tune	Sub- total	Total records
Spiny-cheeked Honeyeater	1	5	6		10	10	16
Spotted Harrier					2	2	2
Spotted Pardalote		2	2				2
Striated Pardalote	36	30	66	75	157	232	298
Striated Thornbill	6	13	19	4	11	15	34
Stubble Quail		1	1				1
Sulphur-crested Cockatoo	10	16	26	20	20	40	66
Superb Fairywren	22	37	59	26	65	91	150
Tawny Frogmouth	1	1	2		2	2	4
Tree Martin	21	19	40	69	130	199	239
Varied Sittella ²	2	1	3	2	8	10	13
Variegated Fairywren					4	4	4
Wedge-tailed Eagle	7	2	9	9	10	19	28
Weebill	6	2	8	3	9	12	20
Welcome Swallow	18	15	33	13	18	31	64
Whistling Kite	1	5	6		4	4	10
White-browed Babbler ²	2	8	10	4	41	45	55
White-browed Scrubwren		1	1		1	1	2
White-faced Heron		5	5	10	17	27	32
White-fronted Chat		2	2	1	2	3	5
White-fronted Honeyeater	1		1			-	1
White-naped Honeyeater				2	3	5	5
White-plumed Honeyeater	34	42	76	46	134	180	256
White-throated Treecreeper	1		1		4	4	5
White-winged Chough ²	3	14	17	4	75	79	96
White-winged Triller ²	Ū.		_,	·	1	1	1
Willie Wagtail	36	37	73	24	97	121	_ 194
Yellow Thornbill	50	8	8	21	10	10	18
Yellow-billed Spoonbill		1	1		10	10	1
Yellow-faced Honeyeater	8	5	13	12	20	32	45
Yellow-plumed Honeyeater	0	1	1	**	20	4	5
Yellow-rumped Thornbill	39	41	80	38	78	4 116	196
Yellow-tailed Black Cockatoo	55	71	00	50	1	110	190
Yellow-throated Miner				1	1 4	1 5	5
Introduced (6 species)	24	31	55	56	143	199	254
Common Blackbird	24 2		35 9	3	145 20	199 23	234 32
		7	9 27				
Common Starling	11	16	21	45	86	131	158
Eurasian Skylark	2		n		4	4	4
European Goldfinch	2		2	1	6	6	8
Feral Pigeon (Rock Dove)	3	0	3	1	3	4	7
House Sparrow	6	8	14	7	24	31	45
Total (137 species)	940	1044	1984	1202	2947	4149	6133

² Medium priority species (level 2)

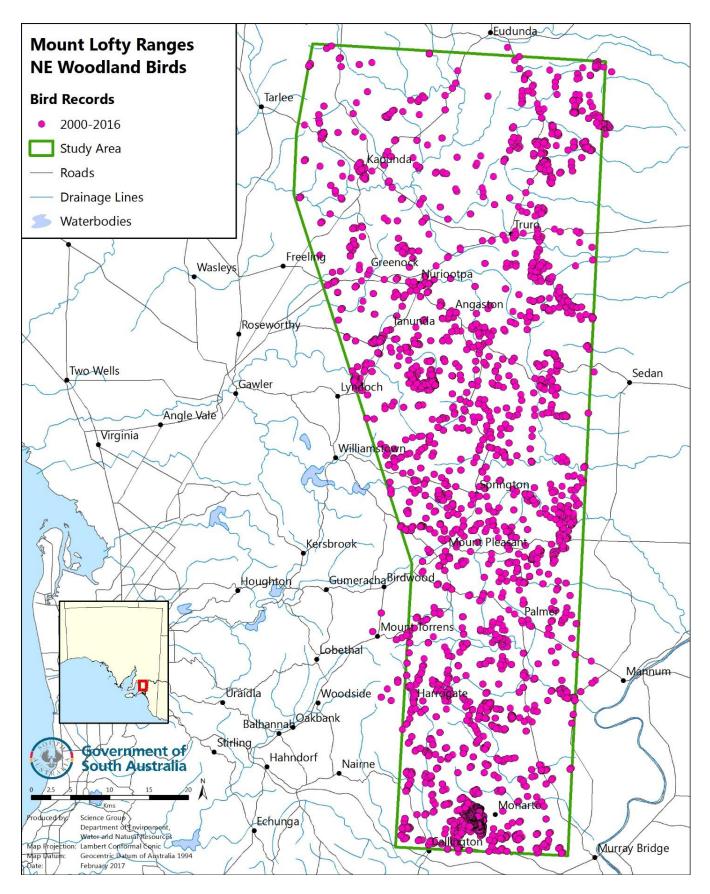


Figure 3.9. Distribution of all 2000–2016 bird records in the north-eastern Mount Lofty Ranges (including opportunistic DEWNR SIG 2016 bird survey records located outside of study area)

3.4 Species distributions

3.4.1 Minimising sampling bias

New DEWNR Science and Information Group (SIG) stratified surveys conducted 2016 (and supplemented by targeted opportune surveys) has provided important gap–filling results for many under–sampled landscape strata and geographic locations. Contrasts between record density maps used in the landscape stratification process at the early stages of this study (Figure 3.5) and those used in species distributions / environmental analyses (Figure 3.10) show considerable improvement in the distribution of bird observations across the study area.

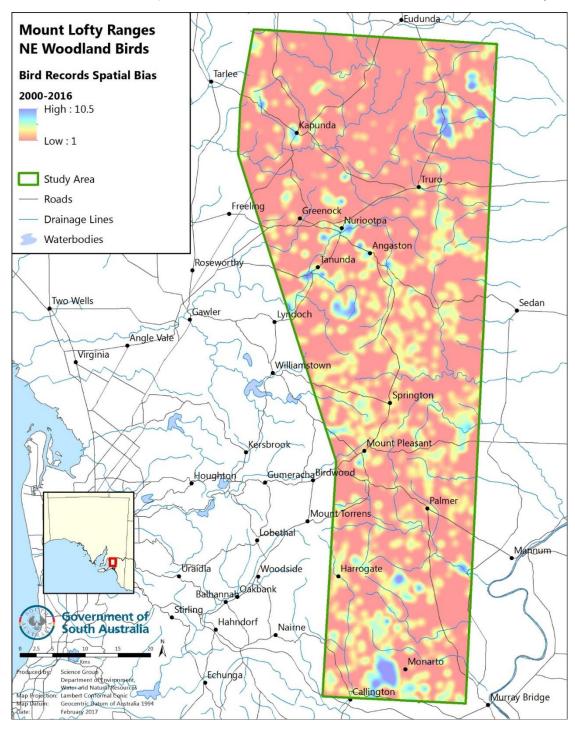


Figure 3.10. Spatial bias in bird observations (blue=high bias) in the north-eastern Mount Lofty Ranges, based on natural logarithm of bird record density (records/km²; consolidated dataset) between 2000 and 2016

3.4.2 Distribution models and responses to environment

Species distribution models (SDM) used in this study are generated from MaxEnt software. These logistic models include spatially-unique observations for each species (i.e. duplicates removed within each 90 m grid cell) plus 10000 background training points (Table 3.6). The model iteratively processes relationships between bird records and single and multiple combinations of environmental variables to identify the optimal combination of variables to estimate the likelihood of occurrence of each species. As continuous environmental data have greater analytical power in model development the Landform classification used in the survey site stratification process was substituted by the highly correlated mean Topographic wetness index at the 500 m radius "landscape" scale.

Preliminary SDM analyses conducted in mid–2016 for priority species used a wide range of environmental variables and their spatial derivatives (i.e. mean and standard deviation at 4 ha [local] and 500 m radius [landscape] scales) to identify variables and spatial scales of data with highest influence on SDMs. Higher standard deviation values for vegetative cover variables represent environments with more fragmented or patchy vegetation cover at local and landscape scales. The most useful set of standard environmental variables across multiple priority species are included in Table 3.7, this table includes summary information on the influence of each of these environmental variables on the final version of SDMs for 21 priority species generated in early 2017 (Table 3.6). MaxEnt SDMs have included a spatial bias file to improve model prediction (Figure 3.10), based on the mean density of all bird records for the 2000 to 2016 period (i.e. bias = 1 + Ln([records/km²] + 1).

Measures of variable importance (i.e. percent contribution and permutation importance) were calculated for each species and environmental variable (Table 3.8 to Table 3.14). The species response tables provide estimates of relative contributions of the environmental variables to the Maxent model (high priority species Table 3.8 to Table 3.14; medium priority species Table 5.2 to Table 5.15). To determine the first estimate (i.e. "percent contribution"), in each iteration of the training algorithm, the increase in regularised gain is added to the contribution of the corresponding variable, or subtracted from it if the change to the absolute value of lambda is negative. For the second estimate (i.e. "permutation importance"), for each environmental variable in turn, the values of that variable on training presence and background data are randomly permuted. The model is re–evaluated on the permuted data and optimised on training AUC (%). Variable contributions should be interpreted with caution when the predictor variables are correlated. MaxEnt's proportional area under the curve (AUC) statistic is a measure of model strength (i.e. higher value=better model).

Response curves show how each environmental variable affects the Maxent prediction. The curves show how the logistic prediction changes as each environmental variable is varied, keeping all other environmental variables at their average sample value (i.e. "single response"). Response curves for high priority species are presented in Table 3.8 to Table 3.14. Supplementary results for medium priority species can be found in the appendices (Table 5.2 to Table 5.15). Note that the curves can be difficult to interpret if some variables are strongly correlated, as the model may depend on the correlations in ways that are not evident in the curves. In other words, the curves show the marginal effect of changing exactly one variable, whereas the model may take advantage of sets of variables changing together (i.e. "combined response").

It is important to note that although Tree crown cover and Woody vegetation cover are highly correlated environmental variables (and may have similar single variable species response curves) that many species are more responsive to the actual greenness/productivity of native vegetation (i.e. Woody vegetation cover values) rather than simply crown area (i.e. Tree crown cover). The automated processing of very high resolution satellite imagery to identify Tree crown cover readily identified Eucalyptus species, but often failed to recognise the crowns of Sheoak (*Allocasuarina verticillata*) trees in the region. Bird species with a preference for Sheoak trees are less likely to respond estimates of Tree crown cover than Woody vegetation cover.

Supplementary species distribution models were also generated for each priority bird species using only abiotic variables (i.e. excluding Tree crown cover, Woody vegetation cover and their derivatives). These identify additional landscapes likely to support priority bird species in the future if optimal restoration activities can create vegetation communities preferred by each species.

Potential species distribution model (SDM) maps and all individual bird records (pre- and post-2000) for high priority species (level 1) are presented in Figure 3.11 to Figure 3.17. Supplementary maps for medium priority species (level 2) can be found in the appendices (Figure 5.2 to Figure 5.15).

Table 3.6. Summary of MaxEnt models for priority bird species in the north-eastern Mount Lofty Ranges

		·
Bird species	Unique records 2000–2016	Model strength (AUC ¹)
High priority (level 1)		
Brown Treecreeper	608	0.899
Chestnut-rumped Thornbill	127	0.988
Diamond Firetail	497	0.928
Hooded Robin	305	0.952
Jacky Winter	113	0.982
Restless Flycatcher	92	0.976
Southern Whiteface	378	0.931
Medium priority (level 2)		
Australian Owlet-nightjar	97	0.981
Black-chinned Honeyeater	12	0.978
Brown Songlark	65	0.823
Crested Shriketit	18	0.955
Elegant Parrot	37	0.885
Peaceful Dove	242	0.937
Rainbow Bee-eater	268	0.911
Rufous Songlark	92	0.918
Sacred Kingfisher	73	0.943
Varied Sittella	179	0.957
White-browed Babbler	743	0.935
White-winged Chough	481	0.912
White-winged Triller	78	0.937
Zebra Finch	38	0.905

¹ MaxEnt model strength statistic, proportional area under curve (AUC), maximum of 1

Table 3.7.Environmental attributes used in species distribution models for priority bird species in the north-easternMount Lofty Ranges

	Study area			Highest model influence ¹			
Environmental variable	Minim	Minimum Maximum		Value	Rank	Gridded data name	
Landform (Topographic wetness index, landscape)	ranges	6.2	12.7	floodouts	16.1	2	twi_r500m_mean
Mean annual rainfall (mm/year)	low	309	743	high	84.1	1	sa_rain_r500m_mean
Mean annual temperature (°C)	cool	13.4	16.5	warm	41.6	1	sa_temp_r500m_mean
Topographic wetness index, local	runoff	5.0	15.7	runon	7.2	2	twi_4ha_mean
Soil texture index, landscape	clay	0.03	0.53	sand	24.2	2	sa_snd_index_r500m_mean
Soil pH, landscape	acid	5.0	8.1	alkaline	24.8	1	sa_ph_avg_r500m_mean
Tree crown cover (%), local	low	0.0	100.0	high	41.6	1	trees_4ha_mean
Tree crown cover (%), landscape	low	0.0	78.0	high	42.3	1	trees_r500m_mean
Tree crown cover (% sd), local variability	uniform	0.0	50.0	variable	22.8	1	trees_4ha_std
Tree crown cover (%sd), landscape variability	uniform	0.0	48.6	variable	10.1	3	trees_r500m_std
Woody vegetation cover (%), local	low	0.0	96.6	high	76.2	1	sa_woody_veg_4ha_mean
Woody vegetation cover (%), landscape	low	0.0	80.7	high	17.9	3	sa_woody_veg_r500m_mean
Woody veg. cover (%sd), local variability	uniform	0.0	33.4	variable	7.3	4	sa_woody_veg_4ha_std
Woody veg. cover (%sd), landscape variability	uniform	0.3	33.9	variable	16.1	2	sa_woody_veg_r500m_std

¹ percent contribution or permutation importance value, and variable rank across final SDMs for 21 priority species.

	-	MaxEnt mode	el (n=608, AUC=0.8	99)
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve
Tree crown cover, local	41.6	23.2	trees_4ha_mean	trees_4ha_mean
Woody vegetation cover, local	19.3	13.3	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean
Rainfall	15.8	27.1	0 00 012 50 cm mean 10 00 00 001 70 774	0 00 012 sa_rain_r500m_mean 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tree crown cover, landscape variability	6.8	2.6	trees_r500m_std	trees_r500m_std
Temperature	6.1	11.4	sa_temp_r500m_mean	sa_temp_r500m_mean
Topographic wetness, landscape	2.3	1.1	twi_f500m_mean	twi_f500m_mean
Soil texture, landscape	1.8	1	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean
Tree crown cover, local variability	1.7	3.1	1.0 trees_4ha_std	trees_4ha_std
Soil pH, landscape	1.4	2.4	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean
Tree crown cover, landscape	1.3	11.7	trees_r500m_mean	Trees_r500m_mean
Topographic wetness, local	0.9	0.4	1.0 0.5 0.0 0.0 0.0 0.0	twi_4ha_mean
Woody veg. cover, landscape variability	0.6	0.7	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std
Woody vegetation cover, local variability	0.2	0.5	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std
Woody vegetation cover, landscape	0.2	1.6	sa woody_veg_r500m_mean	sa_woody_veg_r500m_mean

Table 3.8. Response of Brown Treecreeper to environmental variables in the north-eastern Mount Lofty Ranges

Table 3.9.Response of Chestnut-rumped Thornbill to environmental variables in the north-eastern Mount LoftyRanges

	MaxEnt model (n=127, AUC=0.988)						
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve			
Rainfall	50.3	84.1	sa_rain_r500m_mean	sa_rain_r500m_mean			
Woody vegetation cover, local	21	4.3	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean			
Tree crown cover, local	13.4	0.4	trees_4ha_mean	trees_4ha_mean			
Woody vegetation cover, landscape	5.5	1.7	sa_woody_veg_r500m_mean	sa_woody_veg_r500m_mean			
Soil texture, landscape	2.6	4.3	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean			
Topographic wetness, landscape	2.1	1.2	twi_r500m_mean	twi_r500m_mean			
Woody veg. cover, landscape variability	1.8	0.4	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std			
Tree crown cover, local variability	1.6	0.2	trees_4ha_std	trees_tha_std			
Temperature	0.7	2.1	sa_temp_r500m_mean	sa_temp_r500m_mean			
Woody vegetation cover, local variability	0.4	0.1	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std			
Tree crown cover, landscape	0.3	0.5	trees_r500m_mean	trees_r500m_mean			
Soil pH, landscape	0.2	0.2	sa_ph_avg_r500m_mean	sa_bh_avg_r500m_mean			
Tree crown cover, landscape variability	0.1	0.3	trees_r500m_std	trees_r500m_std			
Topographic wetness, local	0.1	0.2	twi_4ha_mean	twi_4ha_mean			

	MaxEnt model (n=497, AUC=0.928)						
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve			
Rainfall	35.9	44.4	sa_rain_r500m_mean	sa_rain_r500m_mean			
Woody vegetation cover, local	34.6	14.9	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean			
Soil texture, landscape	8.2	15.9	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean			
Temperature	7.6	7	sa_temp_r500m_mean	sa_temp_r500m_mean			
Tree crown cover, landscape	2.9	4.4	1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	trees_f500m_mean			
Tree crown cover, landscape variability	2.9	1.6	1.0 0.5 0.0 0.0 0.0 0.48	trees_r500m_std			
Soil pH, landscape	2.4	4.1	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean			
Woody veg. cover, landscape variability	2.4	2.5	sa woody_veg_r500m_std	sa woody_veg_r500m_std			
Topographic wetness, landscape	1.6	2.6	1.0 twi_f500m_mean 1.0 twi_f500m_mean 0.5 twi_f500m_mean 0.6 twi_f500m_mean 0.7 twi_f500m_mean	1.0 1.0 0.5 0.0 0.1 0.1 0.1 0.5 0.0 0.1 0.5 0.0 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5			
Woody vegetation cover, landscape	0.5	0.2	sa_woody_veg_r500m_mean	sa_woody_veg_r500m_mean			
Tree crown cover, local	0.4	0.9	trees_4ha_mean	trees_4ha_mean			
Topographic wetness, local	0.2	0.3	twi_4ha_mean	1.0 0.5 0.174 1.0 0.5			
Woody vegetation cover, local variability	0.2	0.9	s1/4 14 14 14 14 14 14 14 14 14 14 14 14 14	size sa_woody_veg_tha_std			
Tree crown cover, local variability	0.1	0.3	trees_4ha_std	1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			

Table 3.10. Response of Diamond Firetail to environmental variables in the north-eastern Mount Lofty Ranges

	MaxEnt model (n=305, AUC=0.952)					
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve		
Rainfall	40.3	45.9	sa_rain_r500m_mean	sa_rain_r500m_mean		
Woody vegetation cover, local	24.2	16	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean		
Temperature	11.5	7.1	sa_temp_r500m_mean	sa_temp_r500m_mean		
Woody veg. cover, landscape variability	7.7	5.9	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std		
Topographic wetness, landscape	4.9	2.1	twi_r500m_mean	twi_r500m_mean		
Soil texture, landscape	3.5	6.2	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean		
Tree crown cover, landscape	1.8	9.5	trees_r500m_mean	trees_r500m_mean		
Woody vegetation cover, landscape	1.7	1.7	sa_woody_veg_r500m_mean	sa_woody_veg_r500m_mean		
Soil pH, landscape	1.4	1.3	Sa_ph_avg_r500m_mean	Sa_ph_avg_r500m_mean		
Tree crown cover, local	0.9	0.3	trees_4ha_mean	trees_4ha_mean		
Woody vegetation cover, local variability	0.8	0.7	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std		
Tree crown cover, landscape variability	0.6	2.4	trees_r500m_std	trees_r500m_std		
Tree crown cover, local variability	0.3	0.7	1.0	1.0		
Topographic wetness, local	0.3	0.1	twi_4ha_mean	twi_4ha_mean		

Table 3.11. Response of Hooded Robin to environmental variables in the north-eastern Mount Lofty Ranges

	MaxEnt model (n=113, AUC=0.982)					
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve		
Rainfall	35.9	7.6	sa_rain_r500m_mean	sa_rain_r500m_mean		
Woody veg. cover, landscape variability	15.7	16.1	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std		
Soil pH, landscape	10.9	2.4	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean		
Woody vegetation cover, local	10.8	5.4	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean		
Woody vegetation cover, landscape	7.9	14.4	sa_woody_veg_r500m_mean	sa_woody_veg_r500m_mean		
Temperature	6.3	1.2	sa_temp_r500m_mean	sa_temp_r500m_mean		
Tree crown cover, local	3.6	3.2	trees_4ha_mean	trees_4ha_mean		
Tree crown cover, landscape	2.7	32	1.0 0.5 0.0 0 0 0 0773	trees_r500m_mean		
Topographic wetness, landscape	2.4	1.1	twi_r500m_mean	twi_r500m_mean		
Tree crown cover, local variability	1.1	7.3	1.0 trees_4ha_std	10 0.5 0.0 0.0 0.0 0.0 0.0		
Soil texture, landscape	0.9	1.9	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean		
Woody vegetation cover, local variability	0.7	0.8	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std		
Tree crown cover, landscape variability	0.6	6.5	1.0 trees_r500m_std	1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		
Topographic wetness, local	0.4	0.2	twi_4ha_mean	twi_4ha_mean		

Table 3.12. Response of Jacky Winter to environmental variables in the north-eastern Mount Lofty Ranges

	MaxEnt model (n=92, AUC=0.976)						
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve			
Rainfall	33.1	63.1	sa_rain_r500m_mean	sa_rain_r500m_mean			
Woody vegetation cover, local	21.1	1.8	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean			
Soil pH, landscape	12.4	5.8	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean			
Temperature	10.7	0.2	salin salin	a sa_temp_r500m_mean			
Topographic wetness, landscape	10.2	4.5	10 10 10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10 10 10			
Woody vegetation cover, landscape	6.2	3.5	sa_woody_veg_r500m_mean	sa_woody_veg_r500m_mean			
Tree crown cover, local	1.8	2.4	trees_4ha_mean	trees_4ha_mean			
Soil texture, landscape	1	0.7	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean			
Tree crown cover, landscape variability	0.8	2.6	1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	trees_r500m_std			
Woody vegetation cover, local variability	0.8	1.9	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std			
Tree crown cover, landscape	0.8	8.1	1.0 trees_r500m_mean	trees_r500m_mean			
Topographic wetness, local	0.5	0.3	twi_4ha_mean	twi_4ha_mean			
Woody veg. cover, landscape variability	0.4	5	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std			
Tree crown cover, local variability	0.2	0.1	trees_tha_std	trees_4ha_std			

Table 3.13. Response of Restless Flycatcher to environmental variables in the north-eastern Mount Lofty Ranges

	MaxEnt model (n=378, AUC=0.931)					
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve		
Rainfall	49	57	sa_rain_r500m_mean	sa_fain_f500m_mean		
Woody vegetation cover, local	23.5	9	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean		
Soil texture, landscape	10.5	8.1	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean		
Temperature	5.6	10.8	sa_temp_r500m_mean	sa_temp_r500m_mean		
Woody vegetation cover, landscape	4.5	2.5	sa_woody_veg_r500m_mean	sa_woody_veg_r500m_mean		
Woody vegetation cover, local variability	2	1.4	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std		
Tree crown cover, landscape	1.3	3.7	trees_r500m_mean	trees_r500m_mean		
Soil pH, landscape	1.1	2.1	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean		
Woody veg. cover, landscape variability	0.8	0.8	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std		
Tree crown cover, local variability	0.6	1.4	1.0 trees_4ha_std	1.0 trees_4ha_std		
Topographic wetness, landscape	0.5	0.6	twi_f500m_mean	twi_r500m_mean		
Tree crown cover, landscape variability	0.2	1.1	trees_r500m_std	1.0 0.5 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Topographic wetness, local	0.1	0.1	twi_4ha_mean	1.0 twi_4ha_mean 0.5 twi_4ha_mean		
Tree crown cover, local	0.1	1.1	trees_4ha_mean	trees_4ha_mean		

Table 3.14. Response of Southern Whiteface to environmental variables in the north-eastern Mount Lofty Ranges

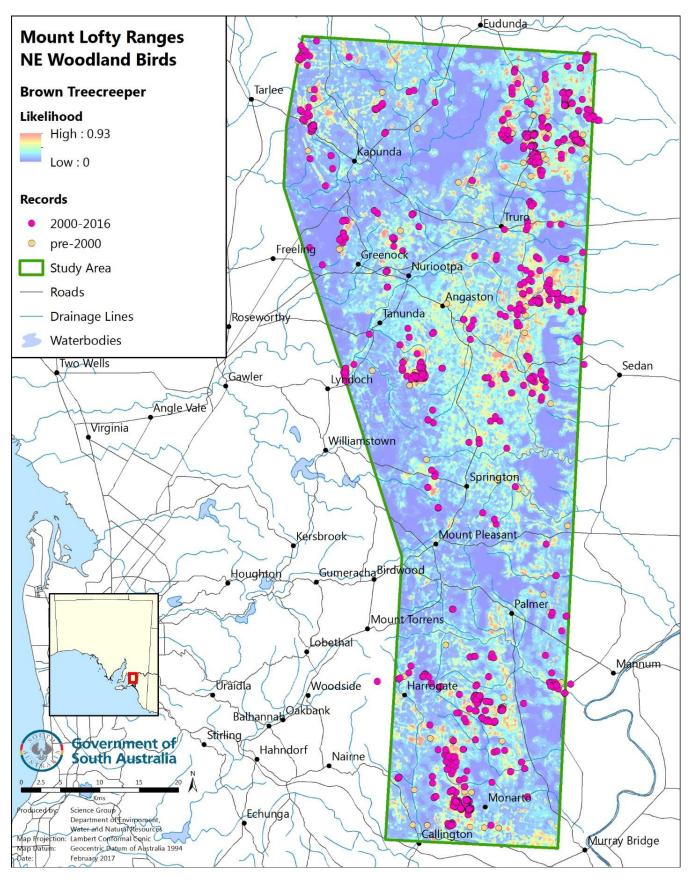


Figure 3.11. Potential distribution of Brown Treecreeper in the north-eastern Mount Lofty Ranges

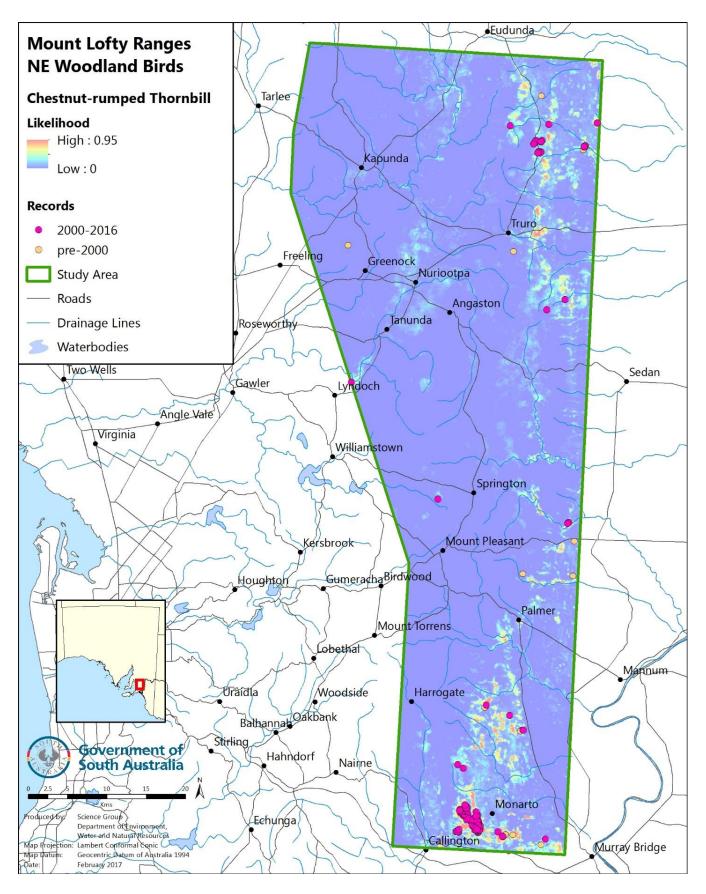


Figure 3.12. Potential distribution of Chestnut-rumped Thornbill in the north-eastern Mount Lofty Ranges

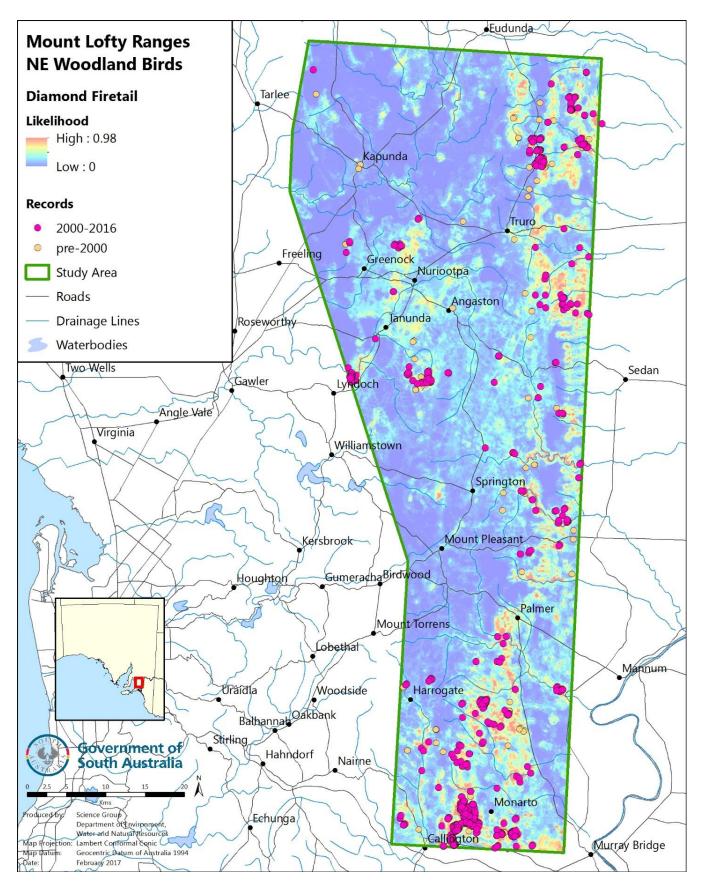


Figure 3.13. Potential distribution of Diamond Firetail in the north-eastern Mount Lofty Ranges

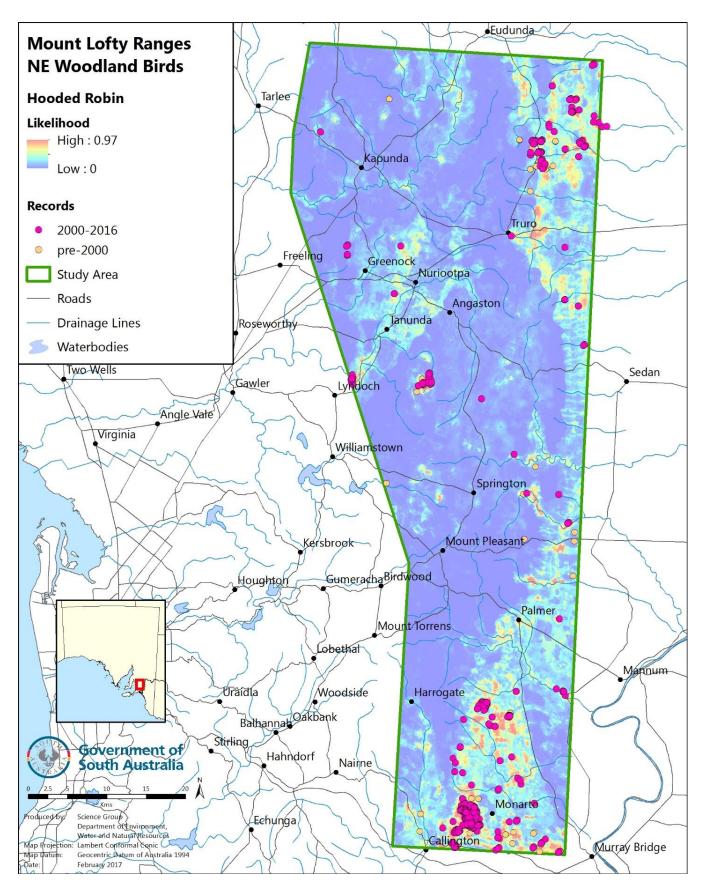


Figure 3.14. Potential distribution of Hooded Robin in the north-eastern Mount Lofty Ranges

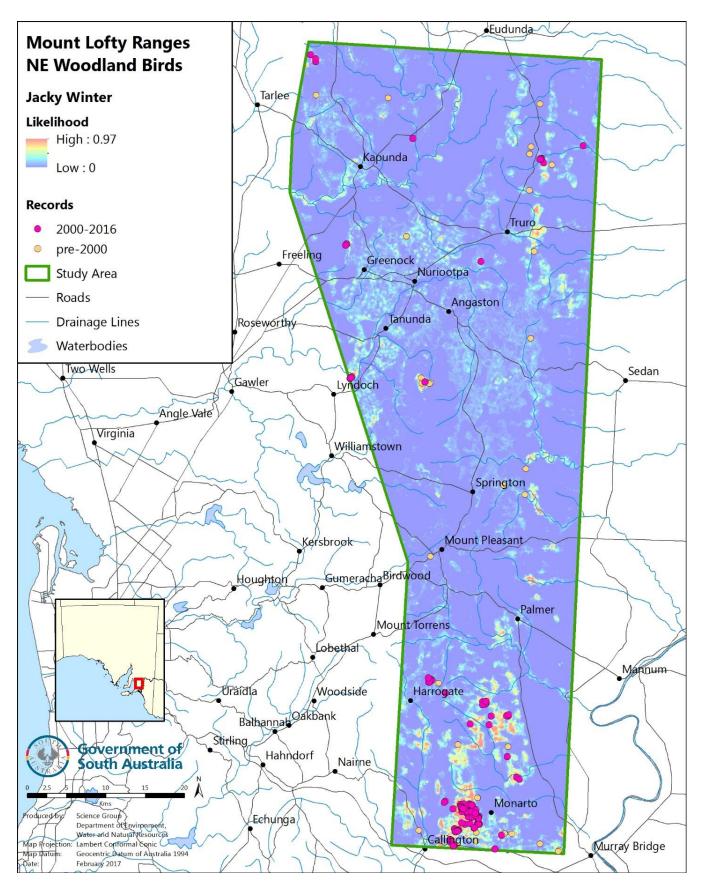


Figure 3.15. Potential distribution of Jacky Winter in the north-eastern Mount Lofty Ranges

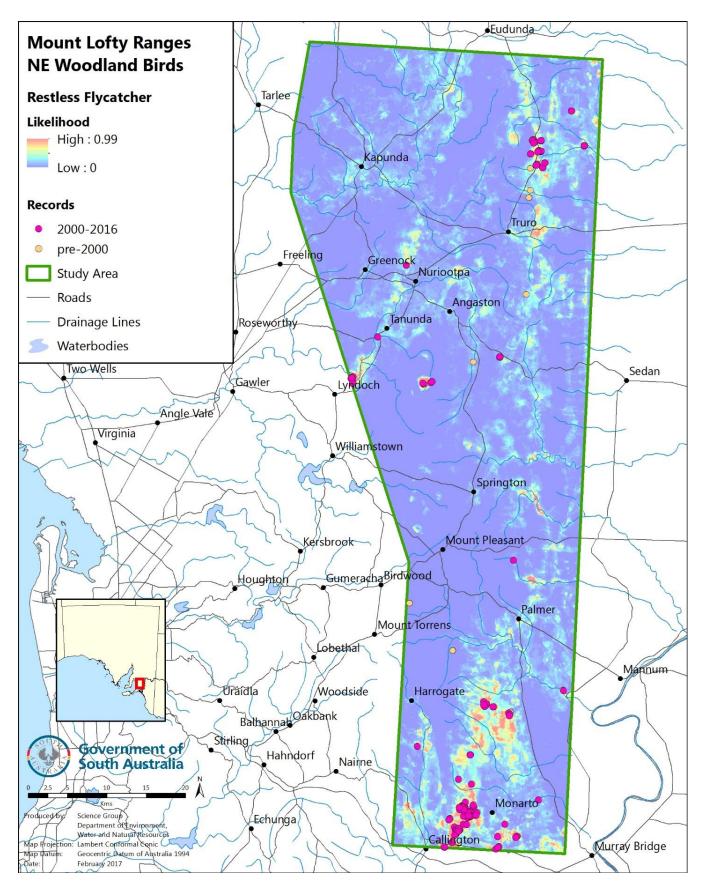


Figure 3.16. Potential distribution of Restless Flycatcher in the north-eastern Mount Lofty Ranges

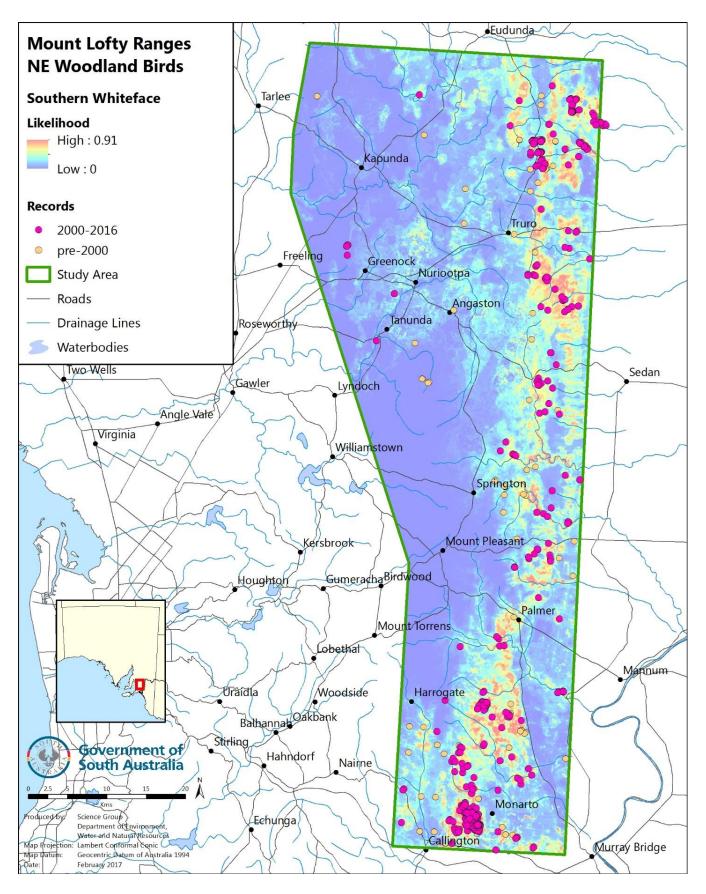


Figure 3.17. Potential distribution of Southern Whiteface in the north-eastern Mount Lofty Ranges

3.5 Priority landscapes

The individual priority species distribution maps represent the most likely landscapes for targeted single–species management in the north-eastern Mount Lofty Ranges (i.e. high priority Figure 3.11 to Figure 3.17, medium priority Figure 5.2 to Figure 5.15). Important environmental variables and species response curves identified in Table 3.8 to Table 3.14 and Table 5.2 to Table 5.15 from MaxEnt modelling can be used to inform targeted management for individual species in the region. Identifying the overlaps in landscapes preferred by multiple priority species can be used to inform regional priority setting and increase effectiveness of management actions.

The mean likelihood statistic across the seven highest priority bird species for each location (range 0 to 0.86) is an indicator of landscapes preferred by multiple high priority species. Mean values were linearly rescaled between 0 and 1 to create a "Landscape Priority Index" for the high priority bird species (level 1) to provide an indicative map of areas for targeted management (Figure 3.18). These priority areas are mainly located west, north and south-east of Monarto, south of Palmer, and north-east and south-east of Truro. Additional priority landscapes include eastwards flowing drainage lines/valleys to the east of Springton.

For locations with a Landscape Priority Index >0.75 a summary of environmental variables assessed for species' responses and distribution models is presented in Table 3.15. Priority landscapes for targeted management are typically located in rolling hills with low to medium rainfall (~400–450 mm/year) containing local patches of 10 to 25% vegetation cover. These patches occur in broader landscapes with between 6 and 10% vegetation cover and have some variability in landscape–scale patchiness of native vegetation.

	Study area				Highest	priority lan	dscapes
Environmental variable	Minim	ium	Ma	iximum	-1 SD	Mean	+1 SD
Landform (Topographic wetness index, landscape)	ranges	6.2	12.7	floodouts	8.2	8.7	9.1
Mean annual rainfall (mm/year)	low	309	743	high	401	424	447
Mean annual temperature (°C)	cool	13.4	16.5	warm	15.2	15.4	15.6
Topographic wetness index, local	runoff	5.0	15.7	runon	7.7	8.8	9.9
Soil texture index, landscape	clay	0.03	0.53	sand	0.11	0.15	0.19
Soil pH, landscape	acid	5.0	8.1	alkaline	5.8	6.3	6.8
Tree crown cover (%), local	low	0.0	100.0	high	0.0	16.4	33.8
Tree crown cover (%), landscape	low	0.0	78.0	high	0.0	11.2	22.9
Tree crown cover (% SD), local variability Tree crown cover (% SD), landscape	uniform	0.0	50.0	variable	5.2	13.5	21.8
variability	uniform	0.0	48.6	variable	6.9	15.1	23.4
Woody vegetation cover (%), local	low	0.0	96.6	high	9.2	16.0	22.7
Woody vegetation cover (%), landscape	low	0.0	80.7	high	6.8	11.0	15.1
Woody veg. cover (% SD), local variability Woody veg. cover (% SD), landscape	uniform	0.0	33.4	variable	5.9	8.1	10.3
variability	uniform	0.3	33.9	variable	7.4	9.6	11.8

Table 3.15.	Summary of environmental attributes for highest priority landscapes (i.e. landscape priority index >0.75)
for high prid	ority (level 1) bird species in the north-eastern Mount Lofty Ranges

3.6 Digital data package

The consolidated bird record database, local subsets of environmental raster data (and their derivatives), landscape stratification layers, species distribution models for seven high priority (level 1) plus 14 medium priority (level 2) bird species, and landscape prioritisation layers have been provided in ESRI ArcGIS Version 10.2 File Geodatabases. An ArcGIS Version 10.2 Map Document contains the layers and display schemes used in this report. All new bird survey records (including incidental fauna records) have been loaded into BDBSA.

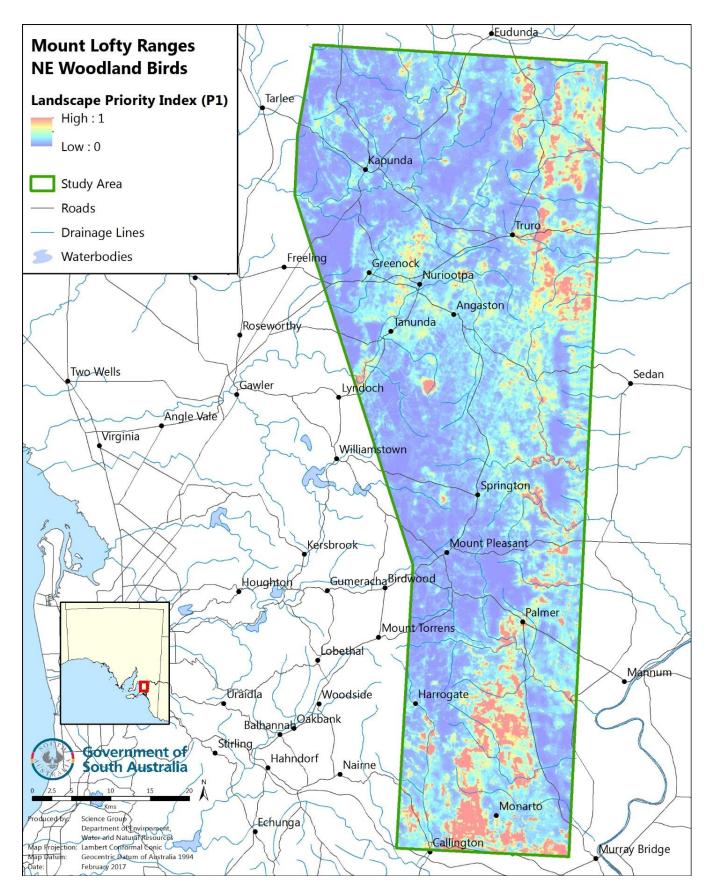


Figure 3.18. Priority landscapes of the north-eastern Mount Lofty Ranges, based on the mean likelihood values of 7 priority bird species (mean values rescaled to an index of 0–1)

4 Conclusions

Reducing the decline, and increasing the resilience, of many woodland bird species is a high priority for conservation and natural resource management in the Mount Lofty Ranges region. Several natural resource management agencies across the region are investing in large-scale, long-term habitat restoration and management programs to relieve pressure on their declining woodland birds.

Several high priority bird species known from north-eastern parts of Mount Lofty Ranges (i.e. Brown Treecreeper, Chestnut-rumped Thornbill, Diamond Firetail, Hooded Robin, Jacky Winter, Restless Flycatcher, Southern Whiteface) have been identified as the intended beneficiaries of these management programs.

Historic knowledge on the distribution and environmental drivers of these species, and the locations or landscapes preferred by these species, have been constrained by gaps or biases in bird observations across the region. If not addressed by appropriate new surveys and analyses these gaps and biases can result in misleading information on the locations and environments that are important to priority bird species, and where investments in land management programs should be prioritised.

4.1 Improvements in bird data

This study has stratified landscapes of the region based on important ecological drivers of faunal distributions (i.e. landforms, rainfall, water redistribution and native vegetation cover) and undertaken analyses using a consolidated database of bird records to identify landscapes that have historically been poorly represented by surveys. Using recent bird record data (2006–15), area-weighted proportional representation calculations and spatial optimisation methods we located 100 new survey sites that would improve the representativeness of new bird surveys in the region.

These new "stratified site" surveys (and supplemented by spatially targeted opportune observation) conducted by DEWNR Science and Information Group (SIG) staff in autumn and springs of 2016 have increased the number of priority bird species records in the region and expanded their known distributions.

4.2 Better species distribution information

Through improved bird data and analytical techniques, the spatial and temporal biases of bird records have been greatly reduced, allowing for the influence of environmental attributes on individual priority bird species distributions to be more clearly identified, and significant improvements on potential species distribution mapping in the region. Species distribution modelling using MaxEnt software has identified and quantified a range topographic, soil, climate and vegetation cover attributes that influence each priority bird species of the region. Individual species distribution models and maps have been created for seven high priority bird species and 14 medium priority bird species of north-eastern Mount Lofty Ranges. Individual species' response curves to environmental variables (both as single and combined variable responses) demonstrate drivers and interactions that influence each species' landscape preferences.

Areas identified by each of these species distribution models with a high likelihood of occurrence, but have not been previously surveyed, should become a focus for future surveys to affirm or refute the existence of priority bird species in those areas. Areas with sub-optimal likelihood of occurrence values should be further evaluated to determine if the currently limiting factor to the occurrence of priority bird relate to vegetation cover or plant species which could be addressed by revegetation or other management activities.

The individual priority species distribution maps produced during this study identify locations, landscapes and spatial extent of landscapes or habitats suitable for each species. The size, patchiness and connectivity of preferred landscapes for each species can be used to inform the planning of management activities or ecological

interventions focussed on single-species management. The efficiency of management activities or interventions within the region can be increased by identifying landscapes where multiple-species benefits are likely be achieved. Information on landscape and environmental preferences of several different priority species (e.g. species distribution maps and likelihood of occurrence statistics) can be integrated and used to prioritise locations for conservation efforts.

In this study, we have presented one possible measure (i.e. Landscape priority index, P1) to prioritise the location of management activities or ecological interventions in north-eastern Mount Lofty Ranges (Figure 3.18). This index uses information based on the mean likelihood statistics across the seven highest priority bird species (level 1) in the region. This simple landscape priority index suggests that most effective generic areas for management activities or ecological interventions are mainly located west, north and south-east of Monarto, south of Palmer, and north-east and south-east of Truro. Additional priority landscapes include eastwards flowing drainage lines/valleys to the east of Springton. These priority areas are typically located in rolling hills with low to medium rainfall (~400-450 mm/year) containing local patches of 10 to 25% native vegetation cover within broader landscapes with between 6 and 10% native vegetation cover.

5 Appendices

A. All bird species recorded in the north-eastern Mount Lofty Ranges

Table 5.1. All bird species recorded in the north-eastern Mount Lofty Ranges (consolidated dataset)

			Prior-	Consolidated dataset records		
		NSX	ity	pre–	2000-	Total
Bird species	Scientific name	code	level	2000	2016	records
High priority (7 species)				9446	724	10170
Brown Treecreeper	Climacteris picumnus	G04171	1	3385	241	3626
Chestnut-rumped Thornbill	, Acanthiza uropygialis	S00481	1	280	18	298
Diamond Firetail	Stagonopleura guttata	A00652	1	2521	187	2708
Hooded Robin	Melanodryas cucullata	S00385	1	1287	88	1375
Jacky Winter	Microeca fascinans	S00377	1	179	44	223
Restless Flycatcher	Myiagra inquieta	K04173	1	217	25	242
Southern Whiteface	Aphelocephala leucopsis	U00466	1	1577	121	1698
Other native (231 species)				111262	16356	127618
Apostlebird	Struthidea cinerea	Z00675		8	1	9
Australasian Bittern	Botaurus poiciloptilus	K00197		3	2	5
Australasian Darter	Anhinga novaehollandiae	K00101		3	2	5
Australasian Grebe	Tachybaptus novaehollandiae	C00061		208	46	254
Australasian Shoveler	Anas rhynchotis	M04182		318	16	334
Australian Bustard	Ardeotis australis	A00176		2	6	8
Australian Crake	Porzana fluminea	K00049		5	1	6
(Australian Spotted Crake)		1000015		5	-	0
Australian Golden Whistler (Golden Whistler)	Pachycephala pectoralis	E00398		315	74	389
Australian Hobby	Falco longipennis	Z00235		122	20	142
Australian Magpie	Gymnorhina tibicen	S00705		6355	874	7229
Australian Masked Owl	Tyto novaehollandiae	Q04248		0555	1	1
Australian Owlet-nightjar	Aegotheles cristatus	S00317	2	243	33	276
Australian Painted-snipe	Rostratula australis	M00170	2	2	55	2/0
Australian Pelican	Pelecanus conspicillatus	U00106		38	16	54
Australian Pipit	Anthus australis	G00100		532	130	662
Australian Raven	Corvus coronoides	A04144		1334	96	1430
Australian Reed Warbler	Acrocephalus australis	C04233		189	28	217
Australian Ringneck	Barnardius zonarius	M00294		1889	97	1986
Australian Shelduck	Tadorna tadornoides	G00207		41	1	42
Australian White Ibis	Threskiornis moluccus	A04216		36	9	45
(Australian) Pied Cormorant	Phalacrocorax varius	G00099		46	8	43 54
Baillon's Crake	Porzana pusilla	U00050		40	0	1
Banded Lapwing	Vanellus tricolor	G00135		68	10	78
Banded Stilt	Cladorhynchus leucocephalus	Z00133		3	2	5
Bassian Thrush	Zoothera lunulata					
Beautiful Firetail	Stagonopleura bella	Q04140 A04056		9 2	3	12 2
Black Falcon	Falco subniger	U00238		2 148	24	2 172
	5	S00589		148	24 20	35
Black Honeyeater	Sugomel niger Miluus miarans					
Black Kite	Milvus migrans	\$00229		229	18	247 251
Black Swan	Cygnus atratus Molithrontus gularis	W00203	r	247	4	251
Black-chinned Honeyeater	Melithreptus gularis	A00580	2	24	14	38

			Prior-	Consolidated dataset records		
Bird species	Scientific name	NSX code	ity level	pre– 2000	2000– 2016	Total records
Black-eared Cuckoo	Chalcites osculans	S00341		13	1	14
Black-faced Cuckooshrike	Coracina novaehollandiae	Y04120		1106	251	1357
Black-faced Woodswallow	Artamus cinereus	Z04115		8	2	10
Black-fronted Dotterel	Elseyornis melanops	Y00144		390	32	422
Black-shouldered Kite	Elanus axillaris	A04196		325	104	429
Black-tailed Nativehen	Tribonyx ventralis	G00055		535	53	588
Blue-billed Duck	Oxyura australis	Y00216		118	10	128
Bluebonnet	Northiella haematogaster	S00297		26	2	28
Blue-faced Honeyeater	Entomyzon cyanotis	Y04200		1	-	1
Blue-winged Parrot	Neophema chrysostoma	M00306		10	4	14
Brown Falcon	Falco berigora	W00239		753	114	867
Brown Goshawk	Accipiter fasciatus	A04152		445	45	490
Brown Honeyeater	Lichmera indistincta	M04166		1		1
Brown Quail	Coturnix ypsilophora	G00011		10		10
Brown Songlark	Cincloramphus cruralis	Y00508	2	188	61	249
Brown Thornbill	Acanthiza pusilla	W00475	_	43	20	63
Brown-headed Honeyeater	Melithreptus brevirostris	G00583		764	138	902
Brush Bronzewing	Phaps elegans	U04142		15	3	18
Budgerigar	Melopsittacus undulatus	E00310		162	70	232
Buff-banded Rail	Gallirallus philippensis	E00046		6	1	7
Buff-rumped Thornbill	Acanthiza reguloides	E04170		210	112	322
Bush Stonecurlew	Burhinus grallarius	U00174		1		1
Cape Barren Goose	Cereopsis novaehollandiae	Y04164		1		1
Caspian Tern	Hydroprogne caspia	Q00112		4		4
Chestnut Teal	Anas castanea	U00210		33	5	38
Chestnut-backed Quailthrush (Chestnut Quailthrush)	Cinclosoma castanotum	K00437			1	1
Chestnut-crowned Babbler	Pomatostomus ruficeps	M00446		39		39
Cockatiel	Nymphicus hollandicus	E00274		222	93	315
Collared Sparrowhawk	Accipiter cirrocephalus	S04125		106	20	126
Common Bronzewing	Phaps chalcoptera	U00034		920	112	1032
Common Greenshank	Tringa nebularia	U00158		3		3
Common Sandpiper	Actitis hypoleucos	S00157		6		6
Crescent Honeyeater	Phylidonyris pyrrhopterus	M00630		289	117	406
Crested Bellbird	Oreoica gutturalis	G00419		30	7	37
Crested Pigeon	Ocyphaps lophotes	W00043		2641	434	3075
Crested Shriketit	Falcunculus frontatus	K04181	2	35	36	71
Crimson Chat	Epthianura tricolor	S00449		4	10	14
Crimson Rosella	Platycercus elegans	E00282		6390	741	7131
Diamond Dove	Geopelia cuneata	Z00031		4		4
Dusky Moorhen	Gallinula tenebrosa	C04145		336	16	352
Dusky Woodswallow	Artamus cyanopterus	W00547		624	106	730
Eastern Barn Owl	Tyto delicatula	C00249		77	18	95
Eastern Rosella	Platycercus eximius	S04177		32	6	38
Eastern Spinebill	Acanthorhynchus tenuirostris	W04143		313	135	448
Elegant Parrot	Neophema elegans	Z00307	2	117	12	129
Emu	Dromaius novaehollandiae	C00001		46	1	47
Eurasian Coot	Fulica atra	Z00059		562	40	602
Fairy Martin	Petrochelidon ariel	A00360		102	41	143
Fan-tailed Cuckoo	Cacomantis flabelliformis	S04141		59	18	77
Flame Robin	Petroica phoenicea	M00382		2	3	5

			Prior-	Consolidated datase		et records
Bird species	Scientific name	NSX code	ity level	pre– 2000	2000– 2016	Total records
Freckled Duck	Stictonetta naevosa	E00214		31	6	37
Fuscous Honeyeater	Ptilotula fusca	K00613			1	1
Galah	Eolophus roseicapilla	C00273		5188	663	5851
Gang-gang Cockatoo	Callocephalon fimbriatum	Y00268		1	005	1
Gilbert's Whistler	Pachycephala inornata	Z00403		9	1	10
Great Cormorant	Phalacrocorax carbo	A00096		28	6	34
Great Egret	Ardea alba	G00187		13	4	17
Greater Crested Tern	Thalasseus bergii	W00115		13	2	3
Grey Butcherbird	Cracticus torquatus	W00115 W04151		279	47	326
	•	C00697		483	47 92	575
Grey Currawong	Strepera versicolor					
Grey Falcon	Falco hypoleucos	Q00236		1	2	3
Grey Fantail	Rhipidura albiscapa	C00361		952	186	1138
Grey Shrikethrush	Colluricincla harmonica	A00408		3282	353	3635
Grey Teal	Anas gracilis	Y04148		722	68	790
Grey-fronted Honeyeater	Ptilotula plumula	Z00623		3	2	5
Ground Cuckooshrike	Coracina maxima	W00423		4		4
Hardhead	Aythya australis	G00215		415	27	442
Hoary-headed Grebe	Poliocephalus poliocephalus	E00062		395	29	424
Horsfield's Bronze Cuckoo	Chalcites basalis	U00342		306	102	408
Horsfield's Bush Lark	Mirafra javanica	Y00648		148	28	176
Inland Thornbill	Acanthiza apicalis	A00476		4	3	7
Intermediate Egret	Ardea intermedia	E00186		3		3
Kerguelen Petrel	Aphrodroma brevirostris	W00935			1	1
Laughing Kookaburra	Dacelo novaeguineae	S04169		1220	311	1531
Lewin's Rail	Lewinia pectoralis	Z04203		1		1
Little Black Cormorant	Phalacrocorax sulcirostris	C00097		51	8	59
Little Buttonguail	Turnix velox	U00018		66	2	68
Little Corella	Cacatua sanguinea	W00271		535	91	626
Little Crow	Corvus bennetti	Z00691			1	1
Little Eagle	Hieraaetus morphnoides	K04077		90	10	100
Little Grassbird	Megalurus gramineus	E00522		78	11	89
Little Lorikeet	Glossopsitta pusilla	Q00260		3		3
Little Pied Cormorant	Microcarbo melanoleucos	C04137		180	64	244
Little Raven	Corvus mellori	E00954		2705	499	3204
Little Wattlebird		G04163		114	499	162
	Anthochaera chrysoptera	A00272		114		102
Long-billed Corella	Cacatua tenuirostris				3	
Magpielark	Grallina cyanoleuca	W00415		1891	450	2341
Major Mitchell's Cockatoo	Cacatua leadbeateri	U00270		1	170	1
Maned Duck (Australian Wood Duck)	Chenonetta jubata	U00202		1305	176	1481
Marsh Sandpiper	Tringa stagnatilis	W00159		1		1
Masked Lapwing	Vanellus miles	G04219		721	78	799
Masked Woodswallow	Artamus personatus	Q00544		110	42	152
Mistletoebird	Dicaeum hirundinaceum	U04150		471	107	578
Mulga Parrot	Psephotus varius	Q00296		14	12	26
Musk Duck	Biziura lobata	K00217		35	1	36
Musk Lorikeet	Glossopsitta concinna	E00258		1173	184	1357
Nankeen Kestrel	, Falco cenchroides	C04129		536	180	716
Nankeen Night Heron	Nycticorax caledonicus	A00192		118	3	121
New Holland Honeyeater	Phylidonyris novaehollandiae	U04126		2534	289	2823
Noisy Friarbird	Philemon corniculatus	Y04228		3		3

			Prior-	Consolid	ated datas	dataset records	
Bird species	Scientific name	NSX code	ity level	pre– 2000	2000– 2016	Total records	
Noisy Miner	Manorina melanocephala	U00634		836	162	998	
Olive-backed Oriole	Oriolus sagittatus	G00671		1		1	
Oriental Dollarbird	Eurystomus orientalis	U00318			3	3	
Oriental Plover	Charadrius veredus	E00142			1	1	
Pacific Black Duck	Anas superciliosa	E04146		1229	121	1350	
Pacific Swift (Fork-tailed Swift)	Apus pacificus	W04179		4		4	
Painted Buttonquail	Turnix varius	U04178		32	6	38	
Pallid Cuckoo	Cacomantis pallidus	C00337		72	29	101	
Peaceful Dove	Geopelia placida	Q04168	2	933	88	1021	
Peregrine Falcon	Falco peregrinus	S00237		150	9	159	
Pied Butcherbird	Cracticus nigrogularis	Y00700		20		20	
Pied Honeyeater	Certhionyx variegatus	E00602		3	8	11	
Pink-eared Duck	Malacorhynchus membranaceus	C00213		297	20	317	
Purple Swamphen	Porphyrio porphyrio	M00058		35	8	43	
Purple-crowned Lorikeet	Glossopsitta porphyrocephala	G00259		1390	153	1543	
Purple-gaped Honeyeater	Lichenostomus cratitius	Y00620		3	8	11	
Rainbow Bee-eater	Merops ornatus	C00329	2	724	94	818	
Rainbow Lorikeet	Trichoglossus haematodus	U00254		159	4	163	
Red Wattlebird	Anthochaera carunculata	W04127		3155	465	3620	
Red-backed Kingfisher	Todiramphus pyrrhopygius	S00325		18	16	34	
Red-browed Finch	Neochmia temporalis	G04075		234	127	361	
Red-capped Robin	Petroica goodenovii	K00381		1069	85	1154	
Red-chested Buttonquail	Turnix pyrrhothorax	W00019			1	1	
Red-kneed Dotterel	Erythrogonys cinctus	A00132		137	9	146	
Red-necked Avocet	Recurvirostra novaehollandiae	Q00148		56	1	57	
Red-necked Stint	Calidris ruficollis	M00162		3		3	
Red-rumped Parrot	Psephotus haematonotus	Z00295		3251	422	3673	
Redthroat	, Pyrrholaemus brunneus	K00497			2	2	
Regent Parrot	Polytelis anthopeplus	U04206			3	3	
Rose Robin	Petroica rosea	Q00384		2		2	
Royal Spoonbill	Platalea regia	S00181		4		4	
Rufous Songlark	Cincloramphus mathewsi	K00509	2	365	35	400	
Rufous Whistler	, Pachycephala rufiventris	K04149		1306	191	1497	
Sacred Kingfisher	Todiramphus sanctus	U00326	2	148	44	192	
Scarlet Robin	, Petroica boodang	Y00380		134	102	236	
Scarlet-chested Parrot	Neophema splendida	G00303			1	1	
Sharp-tailed Sandpiper	Calidris acuminata	Z00163		5		5	
Shining Bronze Cuckoo	Chalcites lucidus	A00344		11	4	15	
Shy Heathwren	Calamanthus (Hylacola) cautus	Z00499		3	3	6	
Silver Gull	Chroicocephalus novaehollandiae	C04065		29	2	31	
Silvereye	Zosterops lateralis	E00574		527	169	696	
Singing Honeyeater	Gavicalis virescens	Q00608		3382	271	3653	
Southern Boobook	Ninox boobook	M00242		205	36	241	
Southern Scrub Robin	Drymodes brunneopygia	C00441		15	5	20	
Spinifex Pigeon	Geophaps plumifera	U00042		1	-	1	
Spiny-cheeked Honeyeater	Acanthagenys rufogularis	S04117		961	86	1047	
Splendid Fairywren	Malurus splendens	Y00532		1		1	
Spotless Crake	Porzana tabuensis	W00051		2		2	
Spotted Harrier	Circus assimilis	M000001		160	11	171	
Spotted Nightjar	Eurostopodus argus	Z00331		7	4	11	
Spotted Pardalote	Pardalotus punctatus	G04227		230	68	298	

				Consolidated dataset records		
Bird species	Scientific name	NSX code	Prior- ity level	pre– 2000	2000– 2016	Total records
Spotted Quailthrush	Cinclosoma punctatum	K04229			1	1
Square-tailed Kite	Lophoictinia isura	E00230		17	2	19
' Straw-necked Ibis	, Threskiornis spinicollis	Q00180		40	19	59
Striated Pardalote	, Pardalotus striatus	Q00976		3959	470	4429
Striated Thornbill	Acanthiza lineata	M00470		262	122	384
Striped Honeyeater	Plectorhyncha lanceolata	K00585		17	1	18
Stubble Quail	Coturnix pectoralis	A04240		175	19	194
Sulphur-crested Cockatoo	, Cacatua galerita	Q04176		426	103	529
Superb Fairywren	Malurus cyaneus	S00529		1081	201	1282
Swamp Harrier	Circus approximans	Z00219		17	6	23
Tawny Frogmouth	Podargus strigoides	K00313		61	15	76
Tawny-crowned Honeyeater	Gliciphila melanops	K00593		15	23	38
Tree Martin	Petrochelidon nigricans	A04128		2063	318	2381
Varied Sittella	Daphoenositta chrysoptera	C00549	2	493	73	566
Variegated Fairywren	Malurus lamberti	Q00536		742	30	772
Wedge-tailed Eagle	Aquila audax	G04139		479	78	557
Weebill	Smicrornis brevirostris	S00465		1417	147	1564
Welcome Swallow	Hirundo neoxena	K00357		1457	329	1786
Western Gerygone	Gerygone fusca	Z00463			2	2
Whistling Kite	Haliastur sphenurus	Q00228		108	19	127
White-backed Swallow	Cheramoeca leucosterna	M00358		5	2	7
White-bellied Sea Eagle	Haliaeetus leucogaster	M00226		2	-	2
White-breasted Woodswallow	Artamus leucorynchus	Z00543		-	1	1
White-browed Babbler	Pomatostomus superciliosus	K00445	2	2117	204	2321
White-browed Scrubwren	Sericornis frontalis	G04251		18	4	22
White-browed Treecreeper	Climacteris affinis	S00561		2	1	3
White-browed Woodswallow	Artamus superciliosus	S00545		194	48	242
White-eared Honeyeater	Nesoptilotis leucotis	E04218		4	7	11
White-faced Heron	Egretta novaehollandiae	G04199		627	110	737
White-fronted Chat	Epthianura albifrons	Z04131		180	77	257
White-fronted Honeyeater	Purnella albifrons	M00594		124	51	175
White-headed Stilt	Himantopus leucocephalus	M00146		119	11	130
White-naped Honeyeater	Melithreptus lunatus	S04133		269	119	388
White-necked Heron	Ardea pacifica	K00189		44	7	51
White-plumed Honeyeater	Ptilotula penicillata	S00625		4516	541	5057
White-throated Needletail	Hirundapus caudacutus	Q04184			4	4
White-throated Treecreeper	Cormobates leucophaea	Y04172		168	92	260
White-winged Chough	Corcorax melanorhamphos	S00693	2	2385	159	2544
White-winged Fairywren	Malurus leucopterus	Z00535	-	5	200	5
White-winged Tern	Chlidonias leucopterus	C00109		0	24	24
White-winged Triller	Lalage tricolor	Z04255	2	232	26	258
Willie Wagtail	Rhipidura leucophrys	M04114	-	4378	562	4940
Yellow Thornbill	Acanthiza nana	Z00471		1524	83	1607
Yellow-billed Spoonbill	Platalea flavipes	U00182		42	1	43
Yellow-faced Honeyeater	Caligavis chrysops	M00614		339	124	463
Yellow-plumed Honeyeater	Ptilotula ornata	M00622		117	36	153
Yellow-rumped Thornbill	Acanthiza chrysorrhoa	E00486		2276	383	2659
Yellow-tailed Black Cockatoo	Calyptorhynchus funereus	G00267		15		15
Yellow-throated Miner	Manorina flavigula	U04118		390	44	434
Zebra Finch	Taeniopygia guttata	C00653	2	124	36	160

			Prior-	Consolida	ated datas	et records
Bird species	Scientific name	NSX code	ity level	pre– 2000	2000– 2016	Total records
Non-native (11 species)				7566	1770	9336
Common Blackbird	Turdus merula	W04135		1014	225	1239
Common Starling	Sturnus vulgaris	M04130		2804	590	3394
Eurasian Skylark	Alauda arvensis	S00993		186	61	247
European (Common) Greenfinch	Chloris chloris	Z04175		29	4	33
European Goldfinch	Carduelis carduelis	A00996		511	130	641
Feral Pigeon (Rock Dove)	Columba livia	K00957		470	139	609
Greylag Goose	Anser anser	W04531		19	2	21
House Sparrow	Passer domesticus	Q04116		1894	482	2376
Mallard (Northern Mallard)	Anas platyrhynchos	Y00948		36	4	40
Muscovy Duck	Cairina moschata	C04533		16	2	18
Spotted Dove	Spilopelia chinensis	C00989		587	131	718
Total (249 species)				128274	18850	147124

B. Medium priority (level 2) species responses to environment

Table 5.2.Response of Australian Owlet-nightjar to environmental variables in the north-eastern Mount LoftyRanges

	MaxEnt model (n=97, AUC=0.981)					
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve		
Rainfall	50	40.8	sa_rain_r500m_mean	sa_rain_r500m_mean		
Woody vegetation cover, local	25.2	15	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean		
Temperature	7.7	2.4	sa_temp_r500m_mean	sa_temp_r500m_mean		
Topographic wetness, landscape	4.2	4.3	twi_f500m_mean	1.0 0.5 0.0		
Soil texture, landscape	2.7	6.4	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean		
Woody veg. cover, landscape variability	2.5	2.3	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std		
Woody vegetation cover, local variability	1.6	4	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std		
Tree crown cover, landscape	1.4	7.1	trees_f500m_mean	trees_r500m_mean		
Tree crown cover, local variability	1.3	3	trees_4ha_std	trees_4ha_std		
Soil pH, landscape	1	2.6	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean		
Tree crown cover, landscape variability	0.8	3.9	trees_r500m_std	trees_r500m_std		
Woody vegetation cover, landscape	0.8	1	sa_woody_veg_r500m_mean	sa woody_veg_r500m_mean		
Tree crown cover, local	0.5	6.6	trees_4ha_mean	trees_4ha_mean		
Topographic wetness, local	0.5	0.5	10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	twi_4ha_mean		

Table 5.3.Response of Black-chinned Honeyeater to environmental variables in the north-eastern Mount LoftyRanges

	MaxEnt model (n=12, AUC=0.978)					
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve		
Woody vegetation cover, local	38.1	51.7	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean		
Soil texture, landscape	24.2	0	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean		
Temperature	22.1	26.4	sa_temp_r500m_mean	sa_temp_r500m_mean		
Soil pH, landscape	5.8	10.3	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean		
Woody vegetation cover, landscape	4	7	sa_woody_veg_f500m_mean	sa_woody_veg_r500m_mean		
Tree crown cover, local	1.8	0.1	trees_4ha_mean	trees_4ha_mean		
Tree crown cover, landscape	1.5	0.7	trees_r500m_mean	trees_f500m_mean		
Woody veg. cover, landscape variability	1.2	1.8	sa_woody_veg_r500m_std	sa_woody_veg_f500m_std		
Woody vegetation cover, local variability	0.8	1.5	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std		
Topographic wetness, landscape	0.5	0.4	twi_r500m_mean	twi_f500m_mean		
Tree crown cover, local variability	0	0	1.0 0.5 0.0	trees_tha_std		
Tree crown cover, landscape variability	0	0	trees_r500m_std	trees_r500m_std		
Topographic wetness, local	0	0	twi_4ha_mean	twi_4ha_mean		
Rainfall	0	0	sa_rain_r500m_mean	sa_rain_r500m_mean		

	MaxEnt model (n=65, AUC=0.823)					
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve		
Temperature	41.6	11.5	sa_temp_r500m_mean	sa_temp_r500m_mean		
Rainfall	21	28	s_rain_r500m_mean	s_rain_r500m_mean		
Tree crown cover, landscape	10.7	0.7	10 00 ARI 10 720 720 trees_f500m_mean 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 0.0 AMI 7.0 77.0 trees_r500m_mean 0.5 0.0 0.0 0.0 0.773		
Topographic wetness, landscape	6.3	7.8	1.0 twi_r500m_mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.0 0.5 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1		
Woody vegetation cover, local	5.8	22.7	sa woody_veg_4ha_mean	sa_woody_veg_4ha_mean		
Woody vegetation cover, landscape	4.7	13.5	sa_woody_veg_r500m_mean	sa woody_veg_r500m_mean		
Soil pH, landscape	4.2	6.4	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean		
Tree crown cover, local variability	1.8	1.3	1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	trees_4ha_std		
Woody veg. cover, landscape variability	1.3	2.2	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std		
Tree crown cover, local	0.9	2	trees_4ha_mean	trees_4ha_mean		
Topographic wetness, local	0.8	1.5	twi_4ha_mean	1.0 0.5 6.174 14764		
Tree crown cover, landscape variability	0.5	0.9	trees_r500m_std	trees_r500m_std		
Soil texture, landscape	0.3	1	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean		
Woody vegetation cover, local variability	0.1	0.6	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std		

Table 5.4. Response of Brown Songlark to environmental variables in the north-eastern Mount Lofty Ranges

	MaxEnt model (n=18, AUC=0.955)					
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve		
Woody vegetation cover, local	55.9	76.2	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean		
Tree crown cover, local	13.2	0	trees_4ha_mean	trees_4ha_mean		
Temperature	8.6	4.2	sa_temp_r500m_mean	sa_temp_r500m_mean		
Tree crown cover, local variability	6	0	1.0 trees_4ha_std	1.0 trees_4ha_std		
Soil pH, landscape	5.6	6.5	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean		
Tree crown cover, landscape	4.8	4.9	trees_r500m_mean	Trees_r500m_mean		
Topographic wetness, local	4.1	7.2	10 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10		
Tree crown cover, landscape variability	1.1	0	trees_r500m_std	trees_r500m_std		
Woody veg. cover, landscape variability	0.4	0.2	sa_woody_veg_r500m_std	sa woody_veg_r500m_std		
Rainfall	0.2	0	sa_rain_r500m_mean	10 10 10 10 10 10 10 10 10 10		
Soil texture, landscape	0.1	0.8	sa_snd_index_r500m_mean	sa_nd_index_r500m_mean		
Topographic wetness, landscape	0	0	twi_r500m_mean	twi_f500m_mean		
Woody vegetation cover, local variability	0	0	8.21 12.228 sa_woody_veg_4ha_std	A 21 12 228 Sa_woody_veg_4ha_std		
Woody vegetation cover, landscape	0	0	0 24.66 sa_woody_veg_r500m_mean 1.0 0.5 0.7 0.48 276.869	n 2466 sa_woody_veg_r500m_mean 10 0.0 0.0 0.140 276.600		

Table 5.5. Response of Crested Shriketit to environmental variables in the north-eastern Mount Lofty Ranges

	MaxEnt model (n=37, AUC=0.885)					
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve		
Rainfall	43.3	24.1	sa_rain_r500m_mean	sa_rain_r500m_mean		
Woody vegetation cover, local	28	44	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean		
Soil texture, landscape	8.2	3.4	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean		
Temperature	7.3	7.5	sa_temp_r500m_mean	sa_temp_r500m_mean		
Topographic wetness, landscape	6.2	4.3	twi_r500m_mean	twi_r500m_mean		
Woody vegetation cover, landscape	1.6	8.2	sa_woody_veg_f00m_mean	sa_woody_veg_r500m_mean		
Tree crown cover, local variability	1.5	0.1	trees_4ha_std	trees_4ha_std		
Tree crown cover, landscape	1.3	3.2	rees_r500m_mean	trees_r500m_mean		
Woody vegetation cover, local variability	1.3	2.6	sa_woody_veg_4ha_std	Sa_woody_veg_4ha_std		
Tree crown cover, local	0.6	0.2	trees_4ha_mean	trees_4ha_mean		
Soil pH, landscape	0.5	1.7	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean		
Tree crown cover, landscape variability	0.1	0.1	trees_r500m_std	trees_r500m_std		
Topographic wetness, local	0.1	0.7	twi_4ha_mean	twi_4ha_mean		
Woody veg. cover, landscape variability	0	0	sa_woody_veg_r500m_std	sa_woody_yeg_r500m_std		

Table 5.6. Response of Elegant Parrot to environmental variables in the north-eastern Mount Lofty Ranges

	MaxEnt model (n=242, AUC=0.937)					
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve		
Woody vegetation cover, local	28.1	9	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean		
Temperature	21	4.2	sa_temp_r500m_mean	sa_temp_r500m_mean		
Rainfall	15.8	39.5	sa_rain_r500m_mean	sa_rain_r500m_mean		
Woody veg. cover, landscape variability	12.6	15.1	sa_woody_veg_r500m_std	sa_woody_veg_f500m_std		
Soil pH, landscape	5.2	14.7	sa_bh_avg_r500m_mean	sa_ph_avg_r500m_mean		
Soil texture, landscape	5	2.1	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean		
Topographic wetness, landscape	5	6.7	twi_r500m_mean	twi_f500m_mean		
Tree crown cover, landscape variability	2.5	1	trees_r500m_std	trees_f500m_std		
Tree crown cover, landscape	1.9	3.9	trees_f500m_mean	trees_f500m_mean		
Woody vegetation cover, landscape	1.4	0.9	sa_woody_veg_r500m_mean	sa_woody_veg_r500m_mean		
Topographic wetness, local	0.7	0.7	twi_4ha_mean	twi_fha_mean		
Tree crown cover, local variability	0.6	1	trees_tha_std	trees_tha_std		
Tree crown cover, local	0.3	1	trees_4ha_mean	trees_4ha_mean		
Woody vegetation cover, local variability	0.1	0.3	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std		

Table 5.7. Response of Peaceful Dove to environmental variables in the north-eastern Mount Lofty Ranges

	MaxEnt model (n=268, AUC=0.911)					
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve		
Woody vegetation cover, local	41.2	34.8	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean		
Rainfall	21.9	29.5	sa_rain_r500m_mean	sa_rain_r500m_mean		
Tree crown cover, local	8.2	0.3	trees_4ha_mean	trees_4ha_mean		
Temperature	5.7	1.7	sa_temp_r500m_mean	sa_temp_r500m_mean		
Soil texture, landscape	5.2	7.3	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean		
Woody veg. cover, landscape variability	3.7	4.5	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std		
Tree crown cover, landscape variability	2.7	1.1	trees_r500m_std	trees_r500m_std		
Topographic wetness, local	2.5	1.5	twi_4ha_mean	twi_4ha_mean		
Soil pH, landscape	2.3	3.1	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean		
Topographic wetness, landscape	2.1	1.1	twi_r500m_mean	twi_r500m_mean		
Woody vegetation cover, local variability	1.9	1.3	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std		
Tree crown cover, landscape	1.2	11.4	rrees_r500m_mean	trees_r500m_mean		
Tree crown cover, local variability	1	0.5	1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
Woody vegetation cover, landscape	0.6	1.8	sa_woody_veg_r500m_mean	sa_woody_veg_r500m_mean		

Table 5.8. Response of Rainbow Bee-eater to environmental variables in the north-eastern Mount Lofty Ranges

	MaxEnt model (n=92, AUC=0.918)			
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve
Temperature	32.2	10	sa_temp_r500m_mean	sa_temp_r500m_mean
Woody vegetation cover, local	18.5	13.3	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean
Tree crown cover, local variability	10.6	13.9	1.0	trees_4ha_std
Soil texture, landscape	7.9	5.5	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean
Tree crown cover, local	6.3	4.7	trees_4ha_mean	trees_4ha_mean
Soil pH, landscape	5.3	5.4	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean
Rainfall	5.3	9.6	1.0 Sarain_r500m_mean 1.0 Sarain_r500m_mean 0.5 Sarain_r500m_mean 0.0 Sarain_r500m_mean 0.0 Sarain_r500m_mean	10 10 10 10 10 10 10 10 10 10
Topographic wetness, local	3.6	1.4	1.0 twi_4ha_mean 0.5 tyte 0.0 5 174 tyte	1.0 0.5 0.0 6.174 1.4 1.4 1.4 1.4 764
Topographic wetness, landscape	3.4	3.7	1.0 0.5 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	10 10 10 10 10 10 10 10 10 10
Tree crown cover, landscape	1.8	8.2	1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	10 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Woody veg. cover, landscape variability	1.6	10.6	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std
Woody vegetation cover, local variability	1.6	0.9	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std
Tree crown cover, landscape variability	1.6	8.7	10 10 10 10 10 10 10 10 10 10	10 trees_r500m_std 10 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.
Woody vegetation cover, landscape	0.3	4.2	sa_woody_veg_r500m_mean	1.0 0.0 0.149 77,879

Table 5.9. Response of Rufous Songlark to environmental variables in the north-eastern Mount Lofty Ranges

	MaxEnt model (n=73, AUC=0.943)			
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve
Tree crown cover, landscape	42.3	38.1	trees_r500m_mean	trees_r500m_mean
Woody vegetation cover, local	28.8	5.1	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean
Woody vegetation cover, landscape	6.6	17.9	sa_woody_veg_r500m_mean	sa_woody_veg_r500m_mean
Tree crown cover, local	5.2	0.5	trees_4ha_mean	trees_4ha_mean
Soil texture, landscape	4.7	5.4	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean
Tree crown cover, local variability	3.7	22.8	1.0 trees_4ha_std	trees_4ha_std
Rainfall	2.6	3.4	sa_rain_r500m_mean	sa_rain_r500m_mean
Temperature	1.8	2	sa_temp_r500m_mean	sa_temp_r500m_mean
Tree crown cover, landscape variability	1.6	0.3	trees_r500m_std	trees_r500m_std
Topographic wetness, landscape	1.1	2.6	twi_f500m_mean	twi_f500m_mean
Soil pH, landscape	0.8	1.7	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean
Topographic wetness, local	0.8	0	twi_4ha_mean	twi_4ha_mean
Woody veg. cover, landscape variability	0	0.2	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std
Woody vegetation cover, local variability	0	0	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std

Table 5.10. Response of Sacred Kingfisher to environmental variables in the north-eastern Mount Lofty Ranges

	MaxEnt model (n=179, AUC=0.957)			
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve
Rainfall	38.8	41.1	sa_rain_r500m_mean	sa_rain_r500m_mean
Woody vegetation cover, local	30.3	17	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean
Temperature	7	8	sa_temp_r500m_mean	sa_temp_r500m_mean
Tree crown cover, local	4.8	1	trees_4ha_mean	trees_4ha_mean
Topographic wetness, landscape	4.4	1.6	twi_r500m_mean	twi_r500m_mean
Soil texture, landscape	3.7	5.6	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean
Soil pH, landscape	3	3.7	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean
Woody vegetation cover, local variability	1.9	1.3	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std
Tree crown cover, landscape	1.5	13.5	trees_r500m_mean	trees_r500m_mean
Tree crown cover, landscape variability	1.5	5.8	1.0 trees_r500m_std	1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Tree crown cover, local variability	1.2	0.4	1.0 trees_4ha_std	1.0 trees_4ha_std
Woody veg. cover, landscape variability	1.1	0.1	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std
Topographic wetness, local	0.7	0.1	10 10 10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10 10 10
Woody vegetation cover, landscape	0.2	0.7	sa_woody_veg_r500m_mean	1.12 <u>1.45</u> 1.4 <u>1.45</u> 1.5 <u>1.45</u> 1.5 <u>1.45</u> 1.6 <u>1.45</u> 1.4 <u>1.45</u> 1.45} 1.45 1.45 1.45 1.45

Table 5.11. Response of Varied Sittella to environmental variables in the north-eastern Mount Lofty Ranges

	MaxEnt model (n=743, AUC=0.935)			
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve
Rainfall	39.5	48.5	sa_rain_r500m_mean	sa_rain_r500m_mean
Woody vegetation cover, local	24.3	11.7	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean
Temperature	8.4	7.5	sa_temp_r500m_mean	sa_temp_r500m_mean
Woody veg. cover, landscape variability	7.8	5.6	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std
Woody vegetation cover, landscape	4.7	0.5	sa_woody_veg_r500m_mean	sa_woody_veg_r500m_mean
Topographic wetness, landscape	4.1	3.9	twi_r500m_mean	twi_f500m_mean
Soil texture, landscape	3.5	9.4	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean
Soil pH, landscape	2.7	4.8	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean
Tree crown cover, landscape	2.2	5.4	trees_f500m_mean	trees_r500m_mean
Tree crown cover, local	1.4	1	trees_4ha_mean	trees_4ha_mean
Tree crown cover, local variability	0.6	0.9	trees_4ha_std	trees_4ha_std
Topographic wetness, local	0.4	0.1	twi_4ha_mean	twi_4ha_mean
Tree crown cover, landscape variability	0.3	0.4	trees_r500m_std	trees_r500m_std
Woody vegetation cover, local variability	0.1	0.4	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std

Table 5.12. Response of White-browed Babbler to environmental variables in the north-eastern Mount Lofty Ranges

	MaxEnt model (n=481, AUC=0.912)			
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve
Rainfall	32.1	49.4	sa_rain_r500m_mean	sa_rain_r500m_mean
Woody vegetation cover, local	29	13.3	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean
Tree crown cover, local	13	1.7	trees_4ha_mean	trees_4ha_mean
Woody vegetation cover, local variability	7.3	2	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std
Temperature	4.8	9.5	sa_temp_r500m_mean	sa_temp_r500m_mean
Tree crown cover, landscape	3.2	6.7	trees_r500m_mean	trees_r500m_mean
Topographic wetness, landscape	3	2.6	twi_r500m_mean	twi_f500m_mean
Topographic wetness, local	2.4	0.9	twi_4ha_mean	twi_4ha_mean
Soil pH, landscape	1.3	1.1	sa_ph_avg_f500m_mean	sa_ph_avg_r500m_mean
Woody veg. cover, landscape variability	1.3	7.7	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std
Soil texture, landscape	0.9	0.5	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean
Woody vegetation cover, landscape	0.8	3.4	sa_woody_veg_f500m_mean	sa_woody_veg_r500m_mean
Tree crown cover, landscape variability	0.5	0.3	trees_r500m_std	trees_f500m_std
Tree crown cover, local variability	0.4	0.8	trees_4ha_std	1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

Table 5.13. Response of White-winged Chough to environmental variables in the north-eastern Mount Lofty Ranges

	MaxEnt model (n=78, AUC=0.937)			
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve
Rainfall	37	56.4	sa_rain_r500m_mean	sa_rain_r500m_mean
Woody vegetation cover, local	22	6	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean
Woody veg. cover, landscape variability	9.1	6.4	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std
Temperature	8.8	6.8	sa_temp_r500m_mean	sa_temp_r500m_mean
Tree crown cover, local variability	5.2	2.8	trees_4ha_std	1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Soil pH, landscape	4.9	6.3	sa_ph_avg_r500m_mean	sa_ph_avg_r500m_mean
Topographic wetness, landscape	4.1	1.7	twi_r500m_mean	twi_f500m_mean
Woody vegetation cover, landscape	3.3	6.5	sa_woody_veg_r500m_mean	sa_woody_veg_r500m_mean
Tree crown cover, landscape variability	2.2	3.9	1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Soil texture, landscape	1.6	0	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean
Tree crown cover, local	1	1.7	trees_4ha_mean	trees_4ha_mean
Tree crown cover, landscape	0.4	0.1	trees_r500m_mean	trees_r500m_mean
Woody vegetation cover, local variability	0.3	1	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std
Topographic wetness, local	0.1	0.3	twi_4ha_mean	twi_4ha_mean

Table 5.14. Response of White-winged Triller to environmental variables in the north-eastern Mount Lofty Ranges

	MaxEnt model (n=38, AUC=0.905)			
Environmental variable	Percent contribution	Permutation importance	Single response curve	Combined response curve
Woody vegetation cover, local	29	12.1	sa_woody_veg_4ha_mean	sa_woody_veg_4ha_mean
Soil pH, landscape	22.7	24.8	sa_ph_avg_f500m_mean	sa_ph_avg500m_mean
Tree crown cover, landscape variability	10.1	7.1	trees_r500m_std	trees_r500m_std
Topographic wetness, landscape	9	16.1	twi_r500m_mean	twi_r500m_mean
Tree crown cover, landscape	8.6	6	rees_r500m_mean	trees_r500m_mean
Soil texture, landscape	7.3	10.5	sa_snd_index_r500m_mean	sa_snd_index_r500m_mean
Temperature	4.9	2.7	sa_temp_r500m_mean	sa_temp_r500m_mean
Topographic wetness, local	3.7	5.6	twi_4ha_mean	twi_4ha_mean
Woody vegetation cover, landscape	2.7	12.5	sa_woody_veg_r500m_mean	sa_woody_veg_r500m_mean
Tree crown cover, local variability	1.2	1.6	1.0	1.0 0.5 0.0 0.0 0.0 0.0
Woody veg. cover, landscape variability	0.8	0	sa_woody_veg_r500m_std	sa_woody_veg_r500m_std
Tree crown cover, local	0.1	0.2	trees_4ha_mean	trees_4ha_mean
Woody vegetation cover, local variability	0	0.8	sa_woody_veg_4ha_std	sa_woody_veg_4ha_std
Rainfall	0	0	0 3404 sa_rain_r500m_mean 0.5 0.6 0.6 0.6 0.6 0.740.774	0 24 864 sa_rain_r500m_mean 1.0 0.5 0.0 300.061 740.774

Table 5.15. Response of Zebra Finch to environmental variables in the north-eastern Mount Lofty Ranges

C. Medium priority (level 2) species distributions

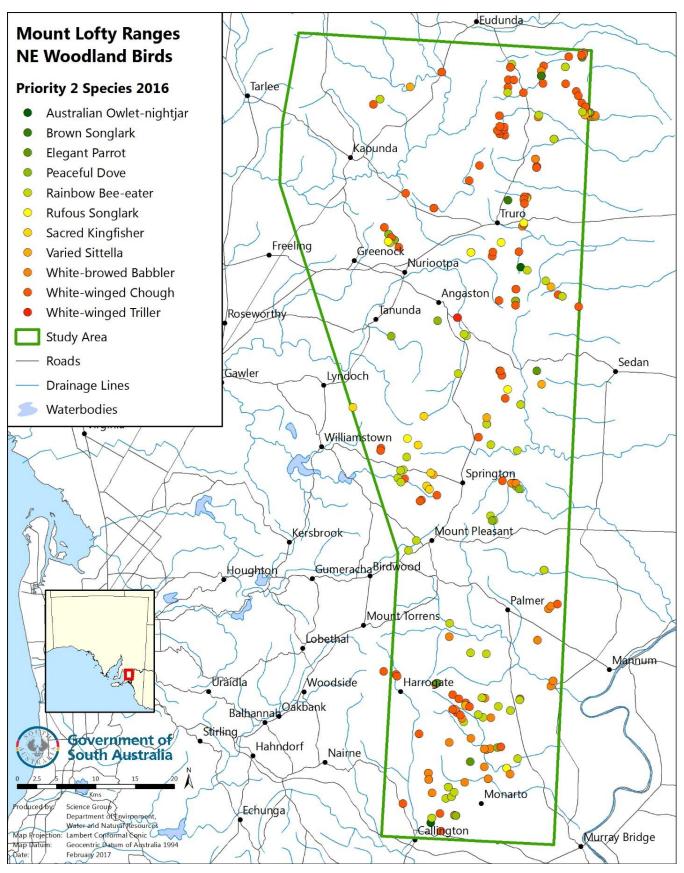


Figure 5.1. Medium priority (level 2) species observations from DEWNR SIG 2016 surveys in the north-eastern Mount Lofty Ranges

DEWNR Technical report 2017/02

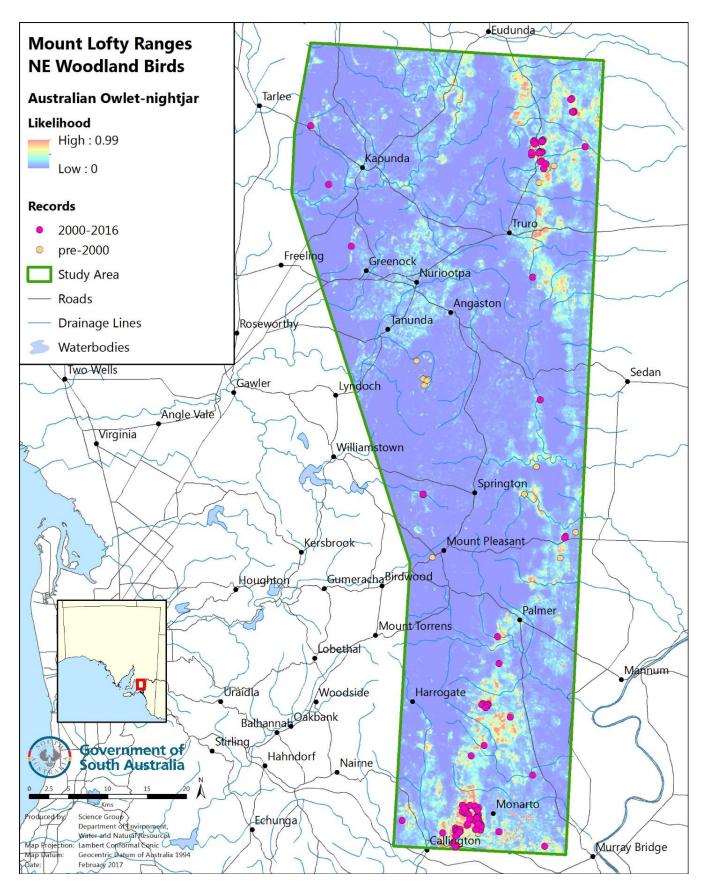


Figure 5.2. Potential distribution of Australian Owlet-nightjar in the north-eastern Mount Lofty Ranges

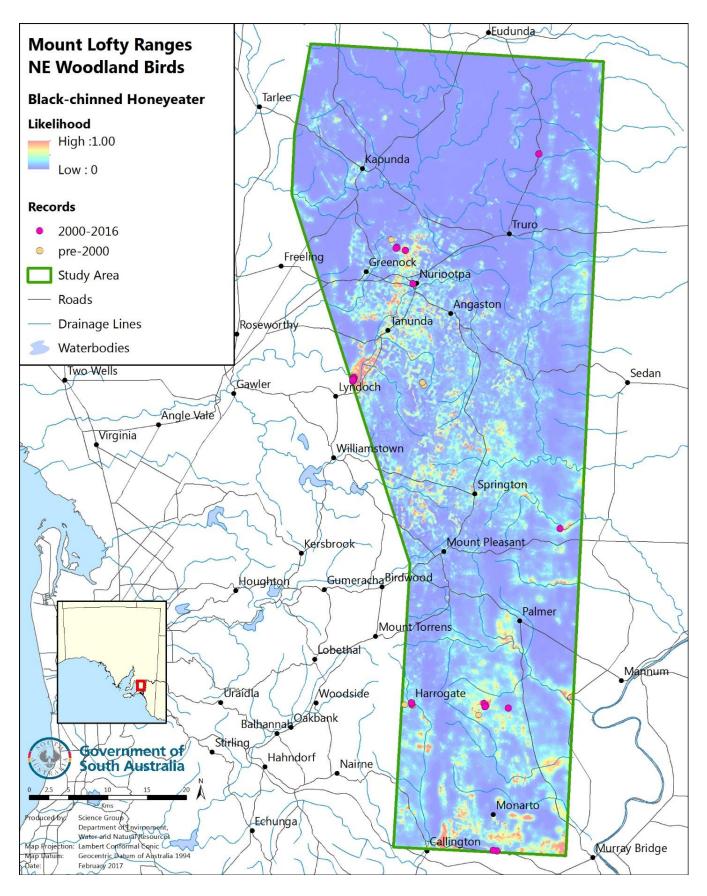


Figure 5.3. Potential distribution of Black-chinned Honeyeater in the north-eastern Mount Lofty Ranges

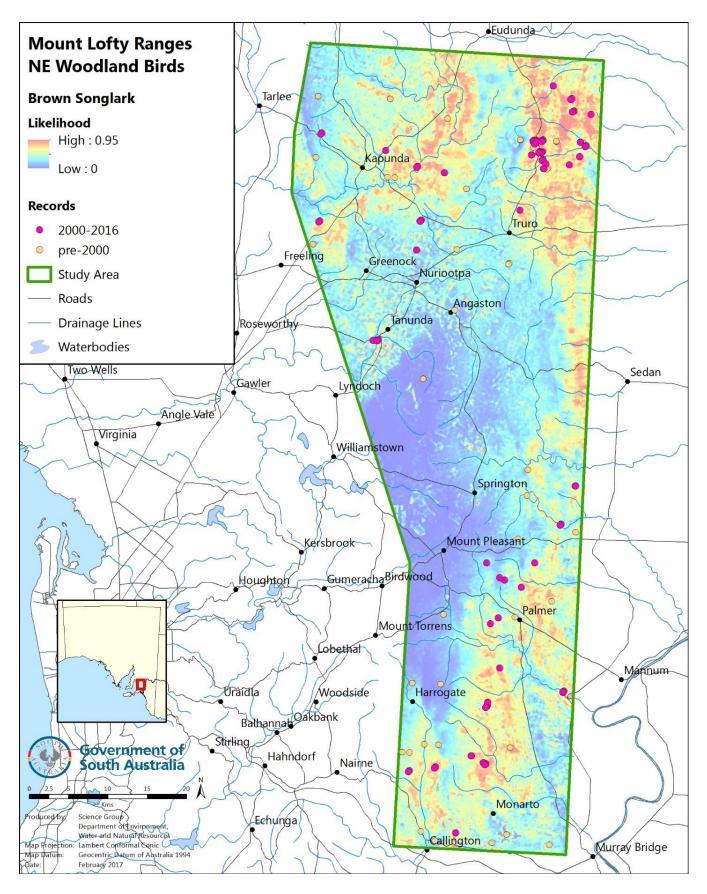


Figure 5.4. Potential distribution of Brown Songlark in the north-eastern Mount Lofty Ranges

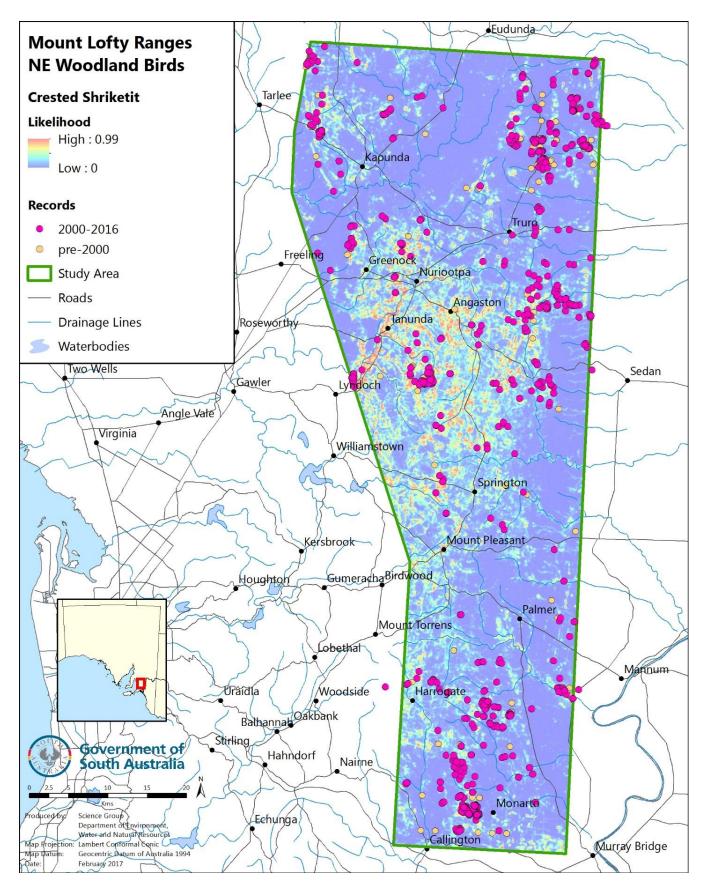


Figure 5.5. Potential distribution of Crested Shriketit in the north-eastern Mount Lofty Ranges

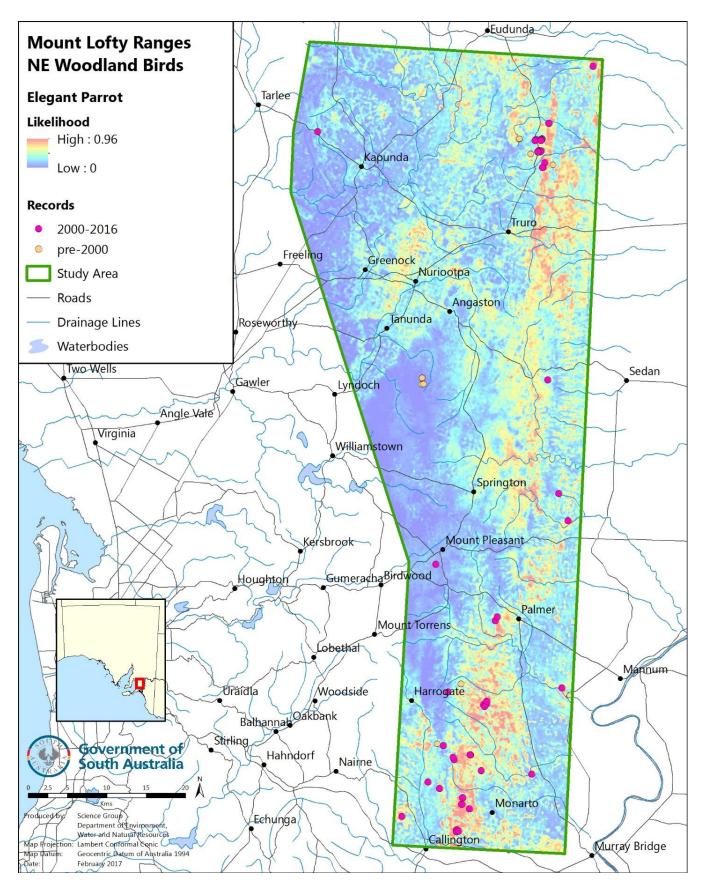


Figure 5.6. Potential distribution of Elegant Parrot in the north-eastern Mount Lofty Ranges

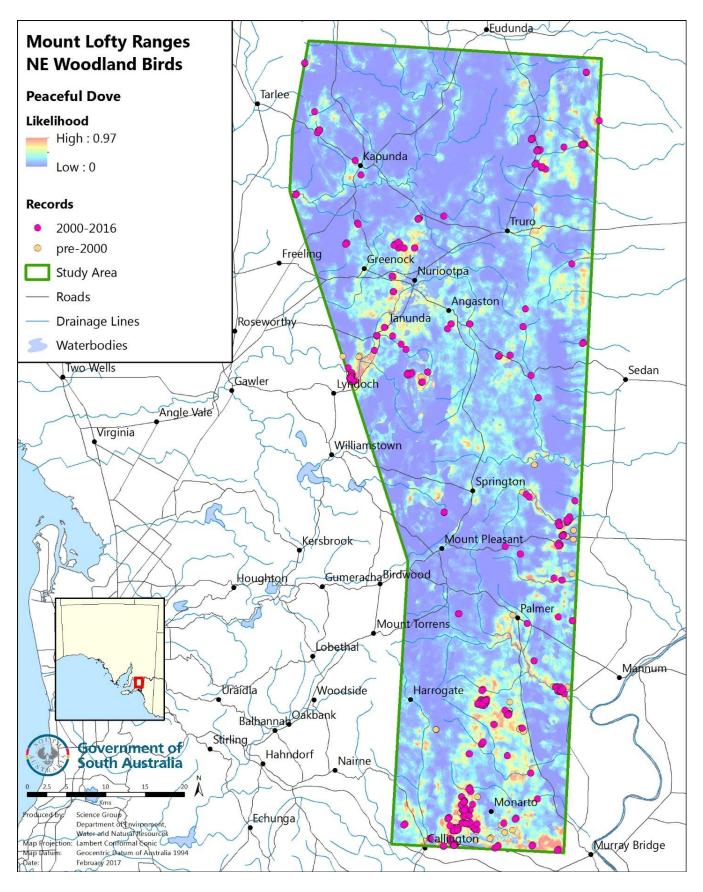


Figure 5.7. Potential distribution of Peaceful Dove in the north-eastern Mount Lofty Ranges

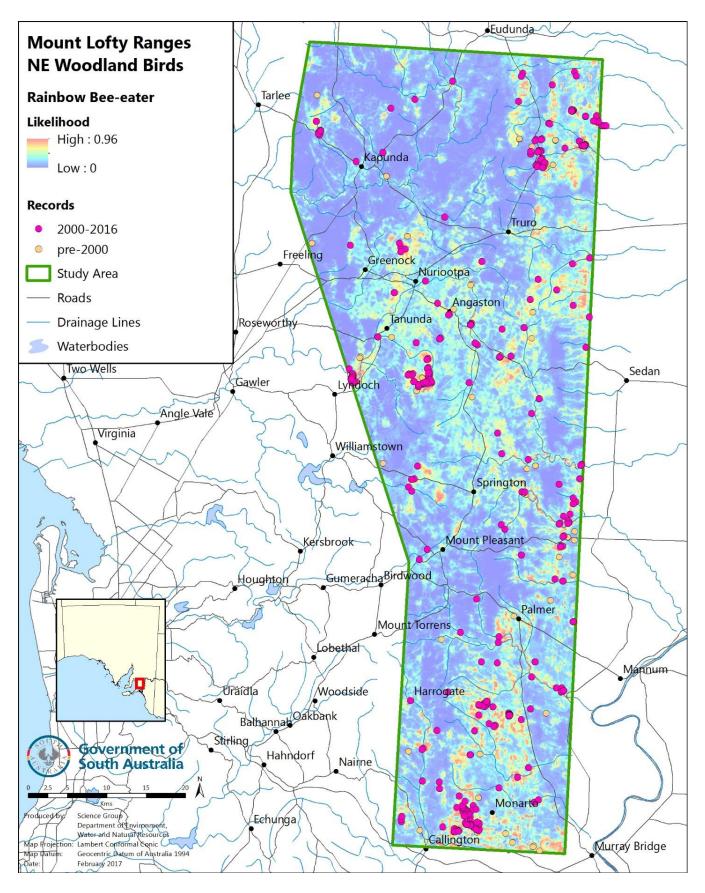


Figure 5.8. Potential distribution of Rainbow Bee-eater in the north-eastern Mount Lofty Ranges

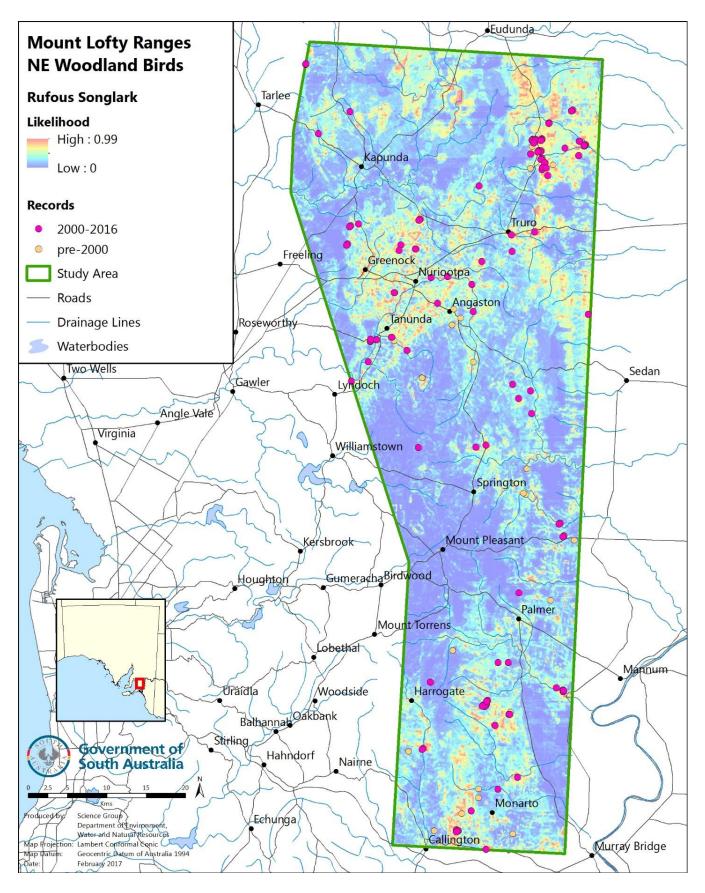


Figure 5.9. Potential distribution of Rufous Songlark in the north-eastern Mount Lofty Ranges

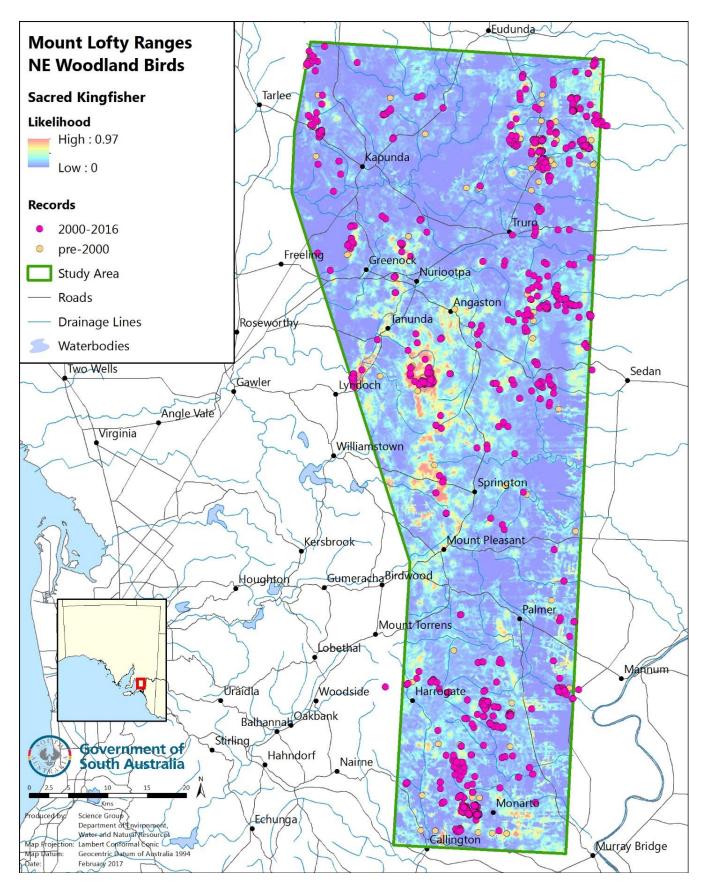


Figure 5.10. Potential distribution of Sacred Kingfisher in the north-eastern Mount Lofty Ranges

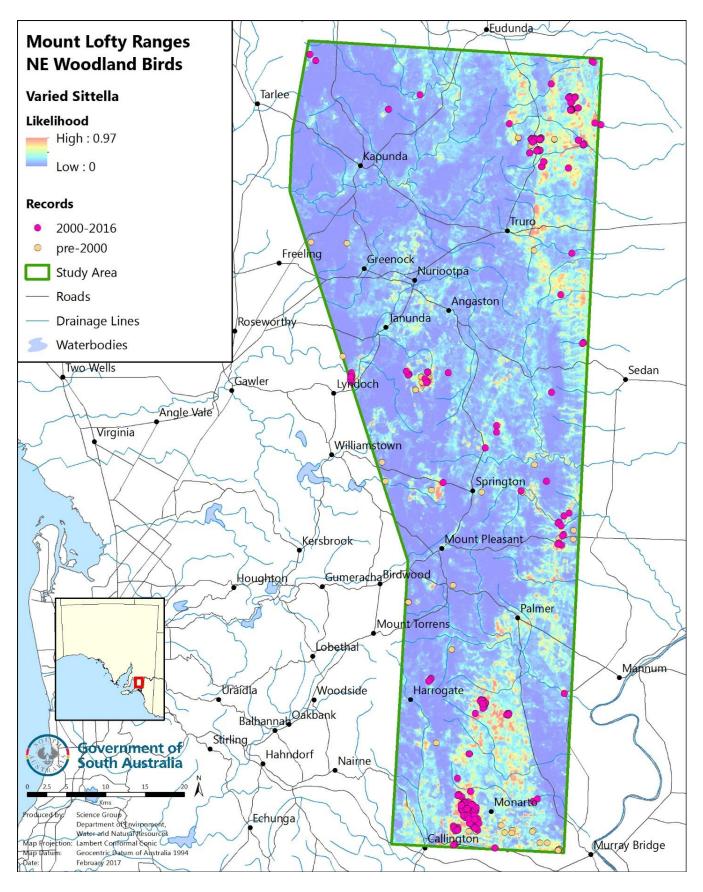


Figure 5.11. Potential distribution of Varied Sittella in the north-eastern Mount Lofty Ranges

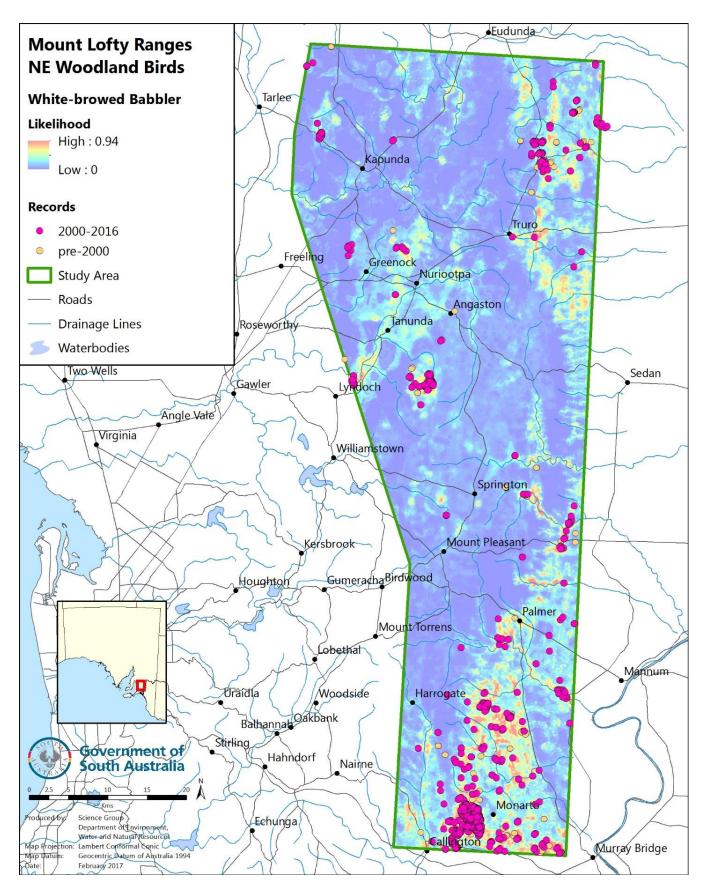


Figure 5.12. Potential distribution of White-browed Babbler in the north-eastern Mount Lofty Ranges

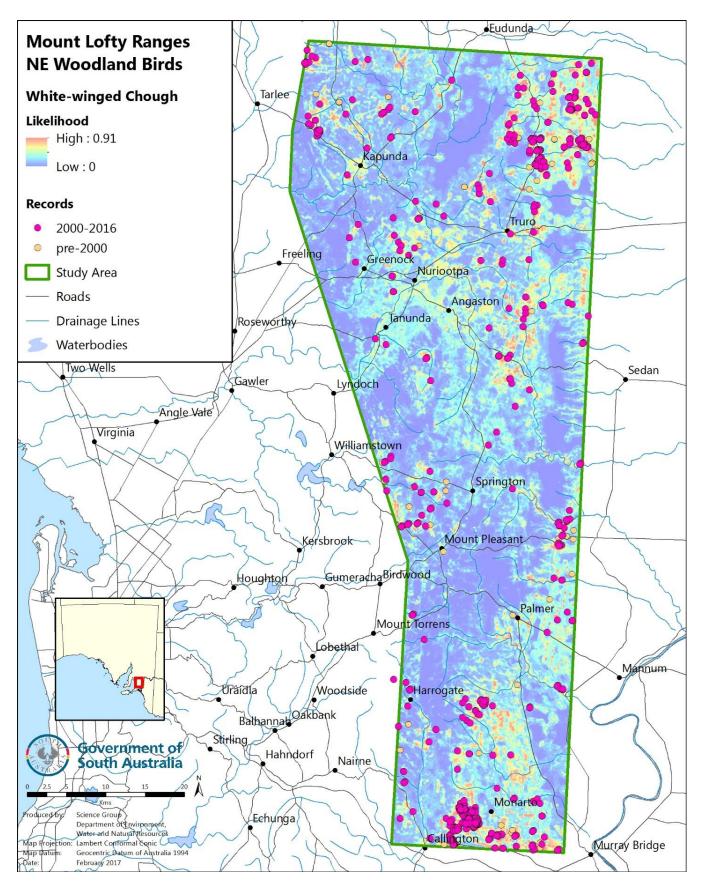


Figure 5.13. Potential distribution of White-winged Chough in the north-eastern Mount Lofty Ranges

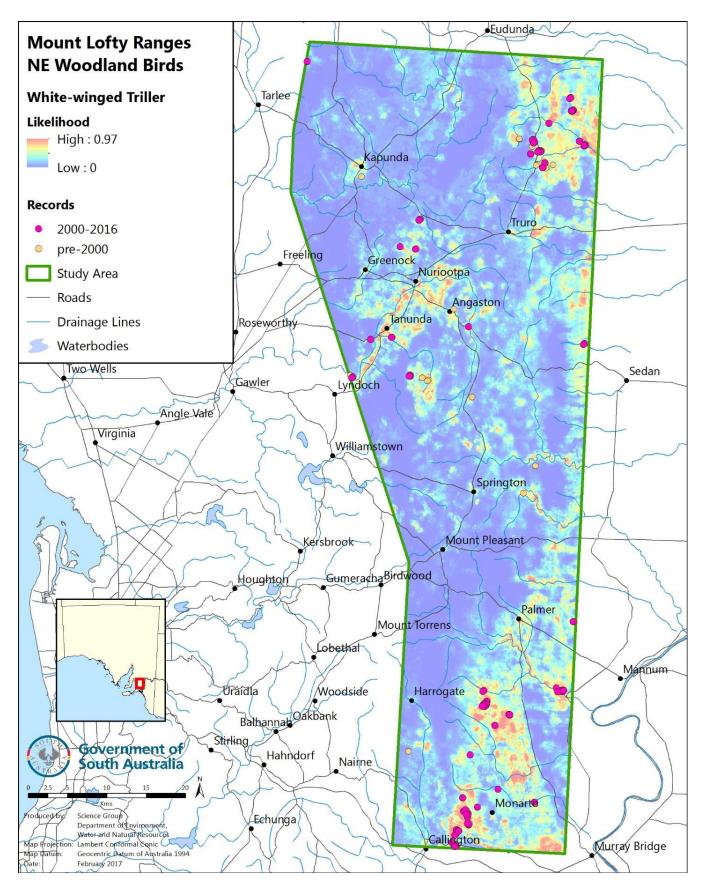


Figure 5.14. Potential distribution of White-winged Triller in the north-eastern Mount Lofty Ranges

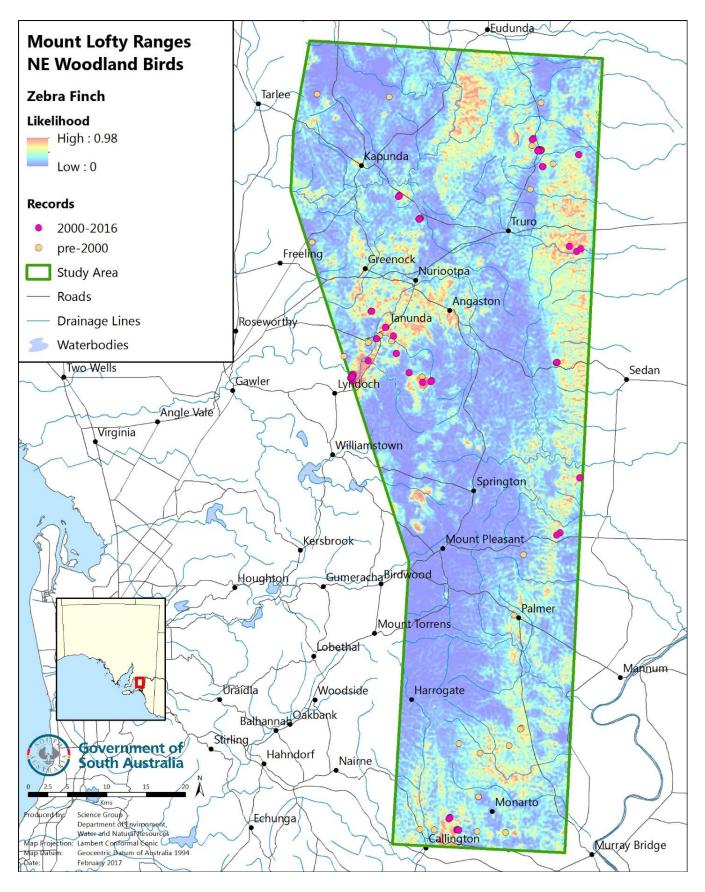


Figure 5.15. Potential distribution of Zebra Finch in the north-eastern Mount Lofty Ranges

6 References

Auscover (2016). *Australian woody vegetation cover: Landsat 2000-2010 woody vegetation cover*. Terrestrial Ecosystem Research Network. <u>http://auscover.org.au/purl/landsat-persistent-green-2000-2010</u>.

Birdlife Australia (2016). Atlas and Birdata. Birdlife Australia. http://birdlife.org.au/projects/atlas-and-birdata/.

Bonifacio RS, Hobbs TJ, Rogers D, Jellinek S, Willoughby N &Thompson D (2016). *An assessment of ecosystems within the Coorong, Lower Lakes and Murray Mouth (CLLMM) region*. DEWNR Technical note 2016/32, Government of South Australia, Department of Environment, Water and Natural Resources, Adelaide.

DEWNR (2016). *Biological Databases of South Australia (BDBSA)*. Department of Environment, Water and Natural Resources (DEWNR), Government of South Australia, Adelaide. <u>https://www.environment.sa.gov.au/Science/Information data/Biological databases of South Australia</u>.

DotE (2012). *Australia's bioregions (IBRA)*. Commonwealth of Australia, Department of the Environment (DotE), Canberra. <u>http://www.environment.gov.au/land/nrs/science/ibra</u>.

CSIRO (2015). *Soil and Landscape Grid of Australia*. CSIRO & Terrestrial Ecosystem Research Network, Canberra. <u>http://www.clw.csiro.au/aclep/soilandlandscapegrid/index.html</u>.

Ford HA & Howe R (1980). The future of birds in the Mount Lofty Ranges. *South Australian Ornithologist, 28*, 85-89.

Gill T, Johansen K, Phinn S, Trevithick R, Scarth P & Armston J (2017). A method for mapping Australian woody vegetation cover by linking continental-scale field data and long-term Landsat time series. *International Journal of Remote Sensing*, *38*, 679-705. doi: 10.1080/01431161.2016.1266112

Hijmans RJ, Cameron SE, Parra JL, Jones PG & Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, *25*, 1965–1978. <u>http://worldclim.org/bioclim</u>.

Hobbs TJ, Naby N & Schutz A (2015). *Mingkiri – Developing a rapid assessment technique for Native Vegetation Council clearance and offset applications in the arid zone*. DEWNR Technical note 2015, Government of South Australia, Department of Environment, Water and Natural Resources, Adelaide.

Loyn RH (1986). The 20-minute search : a simple method for counting forest birds. Corella, 10, 58-60.

Paton DC, Carpenter G & Sinclair RG (1994). A second bird atlas of the Adelaide region. Part 2: distribution maps 1984-85. *South Australian Ornithologist*, *31*, 195–265.

Paton DC, Rogers DJ & Harris W (2004). Birdscaping the environment: restoring the woodland systems of the Mt Lofty region, South Australia. In: *Conservation of Australia's Forest Fauna* (ed D. Lunney), pp. 331–358, Royal Zoological Society of New South Wales: Mosman, NSW, Australia.

Phillips SJ (2015). A brief tutorial on Maxent. http://biodiversityinformatics.amnh.org/open_source/maxent/.

Phillips SJ, Anderson RP & Schapire RE (2006). Maximum entropy modeling of species graphic distributions. *Ecological Modelling*, 190, 231-259

Rogers DJ (2011). A landscape assessment for the Southern Mt Lofty Ranges Landscape. Version 2.2. Government of South Australia, Department of Environment and Natural Resources, Adelaide.

SA Government (2015). *Land Use Generalised 2015*. Data SA, SA Government Data Directory, Government of South Australia. <u>https://data.sa.gov.au/data/dataset/generalised-land-use</u>.

Speight JG (2009). Landform. In: *Australian Soil and Land Survey Field Handbook*, 3rd Edition (ed. National Committee on Soil and Terrain, CSIRO Publishing, Melbourne.

Szabo JK, Vesk PA, Baxter PWJ & Possingham HP (2011). Paying the extinction debt: woodland birds in the Mount Lofty Ranges, South Australia. *Emu*, *111*, 59–70.

Xu T & Hutchinson MF (2013). New developments and applications in the ANUCLIM spatial climatic and bioclimatic modelling package. *Environmental Modelling and Software, 40*, 267–279

