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1. Introduction 

Monitoring the breeding activity of Australian sea lions (ASL; Neophoca cinerea) provides 

an estimate of the breeding effort and success of the species. These data can be used to 

estimate population status and trends, as well as to investigate the drivers of changes in ASL 

abundance (Goldsworthy et al. 2021). However, collecting breeding data of ASL presents a 

number of challenges. Variations in colony sizes, densities and timing of breeding as well as 

the accessibility of sites mean a suite of monitoring techniques that reduce survey error may 

be more effective than relying on one approach across all breeding sites. In combination, 

these techniques could provide increased statistical power to detect changes in population 

trends of this endangered pinniped.  

 

Ground-based surveys are commonly used to estimate pinniped breeding effort and success. 

In the ASL context, standard ground counts of pups is the most universal method used to 

monitor pup production. Such surveys are conducted by a small team of observers who locate 

and tally all pups via a systematic search of a site. If undertaken at the end of the breeding 

season, ground counts can provide a good estimate of pup abundance in small- to 

medium-sized populations with a 4-5 month breeding season, where the maximum count of 

pups occurs at the very end of the breeding season (Goldsworthy et al. 2021). However, in 

the largest breeding colonies (>150 pups), the duration of the breeding season can last 6-9+ 

months, and it is usual for fully moulted pups to be present alongside newborn pups. In these 

breeding sites, the peak in pup numbers usually occurs well before the end of the breeding 

season, and multiple within season surveys may be needed in order to ensure a count occurs 

during this ‘peak’ window (Goldsworthy et al. 2021). For these larger breeding sites, multiple 

capture-mark-resight (CMR) surveys can improve estimates of pup production as they seek to 

account for availability and detectability biases, as well as pup survival, so that net-pup 

production between surveys can be estimated. However, these surveys require considerably 

more investment in time and effort as a sizeable proportion of pups in an isolated and distinct 

colony need to be temporarily marked and allowed to mix freely within the colony. Multiple, 

independent observations are then made of a haphazard sub-sample of pups to assess the 

abundance and ratio of marked to unmarked pups. Both these ground-based techniques are 

most effective with experienced field personnel and can pose risks to animals and 

researchers.  

 



As many pinniped species aggregate to breed in relatively open habitats that are largely 

unobstructed from above (e.g. rocky islands, beaches), there has been an increasing interest in 

using remotely sensed data to complement ground-based surveys. Observations from 

traditional aircraft and using satellite and drone-derived imagery have yielded beneficial 

results. For example, high-resolution satellite imagery has been shown to provide abundance 

estimates of southern elephant seals (Mirounga leonina) that are comparable to concurrent 

ground counts (McMahon et al. 2014). While satellite imagery is extremely useful, it can lack 

the spatial resolution needed to monitor most small- to medium-sized pinniped species. It can 

also be compromised by local weather conditions such as cloud cover. Drone-derived 

imagery can overcome these limitations, which has resulted in many researchers adopting this 

technology to monitor pinnipeds in recent years. For example, research on grey seals 

(Halichoerus grypus) has demonstrated that drone-derived abundance estimates are 

comparable to traditional aircraft surveys (Johnston et al. 2017), automating the detection of 

the species in drone-acquired thermal imagery is possible (Seymour et al. 2017) and 

entangled individuals can be identified at known haul-outs (Martins et al. 2019). Similar 

research has shown the suitability of drones as a research and monitoring platform for a 

variety of other species including Stellar sea lions (Eumetopias jubatus) (Sweeney et al. 

2016), Antarctic fur seals (Arctocephalus gazella) (Goebel et al. 2015), Australian fur seals 

(A. pusillus doriferus) (Allan et al. 2019; McIntosh et al. 2018; Sorrell et al. 2019), and New 

Zealand fur seals (A. forsteri) (Gooday et al. 2018). In combination, these studies 

demonstrate that remotely sensed imagery is very useful for monitoring marine mammals.  

 

Australian sea lion researchers have capitalised on the utility of observing the coastal 

pinniped from above for some time. For example, helicopter-facilitated observations have: a) 

provided useful demographic insights of sites that can be overflown but where shore-based 

landings are problematic, b) yielded rapid insights into the breeding stage of colonies, as well 

as c) the opportunistic discovery of new breeding and haul-out sites across a large spatial 

extent. More recently, drones have been used to make opportunistic observations of breeding 

at a number of sites (e.g. Seal Bay, Nuyts Reef, Olive Island, Bunda Cliffs) and develop a 

non-invasive technique to assess body condition (Hodgson et al. 2020). Notably, 

drone-facilitated monitoring of ASL along the Bunda Cliffs has provided breeding data of 

sites that are essentially unavailable for ground survey. The promising results achieved across 

these diverse sites suggest that drone-facilitated monitoring of ASL could be viable and 

useful, particularly at large breeding sites.  



 

The objective of this pilot study was to investigate the suitability of monitoring breeding 

activity of ASL using drone-acquired imagery at Dangerous Reef. The University of 

Adelaide in collaboration with the Department for Environment and Water, conducted 

approximately monthly surveys at Dangerous Reef (ex-Port Lincoln) during the 2018-19 

breeding season. Drone-acquired imagery was collected on each survey, with ground counts 

completed when possible. Using the data collected at Dangerous Reef, this study sought to: 

1. Investigate the best parameters for processing the digital photographs to create 

outputs that could be used for estimating abundance (e.g. orthomosaics, which are 

geo-referenced maps that are free of distortion) 

2. Process all imagery using the best parameters 

3. Develop a protocol for detecting and counting animals, concentrating on the pup 

cohort 

4. Based on these findings, evaluate the utility of drone-facilitated monitoring of 

ASL relative to other methods and provide recommendation for next steps. 

 

Dangerous Reef was considered an ideal location to develop a drone counting approach and 

compare the results with ground collected abundances given the large size and high density of 

the ASL colony. We hypothesised that pup detection probability using the drone-facilitated 

approach would be higher at Dangerous Reef compared to many other breeding sites, as the 

main island is relatively flat, almost devoid of vegetation and has less complex terrain than 

other colonies. Prior to this study, the suitability of using drone imagery to estimate pup 

abundance at Dangerous Reef was not known. 

  



2. Methods 

2.1 Study site 

Fieldwork was completed at Dangerous Reef (-34.82oS, 136.21oE) which is part of the Sir 

Joseph Banks Group Conservation Park in the Spencer Gulf, South Australia. The main, 

rocky island of the reef was the focus of the study as it supports one of the largest breeding 

colonies of ASL (Goldsworthy et al. 2021). Researchers accessed the island by small boat 

opportunistically ex-Port Lincoln to monitor the 2018-19 breeding season. Public access to 

the island is prohibited.   

 

2.2 Ground counting approach 

Counts of pups were made on foot when weather conditions allowed safe landing on the main 

island. A small team which consisted of the same two personnel experienced in ASL 

population monitoring (JH, DH) conducted each survey and were assisted by one to three 

additional observers. Counts were completed using a standard technique employed across the 

ASL range (Goldsworthy et al. 2021). The team walked in a line and maintained as even a 

spacing as possible while navigating the rocky terrain and avoiding causing unnecessary ASL 

disturbance. A circuit adjacent to the perimeter was searched first, followed by one to two 

additional smaller concentric circuits. Care was taken to ensure all areas of the island, 

including in small caves and between boulders, were searched systematically to reduce the 

likelihood of missing pups, double counting or causing pups to move long distances. 

Observers used visual, acoustic (e.g. pups calling) and behavioural (e.g. mate-guarding) cues 

to aid detection of individuals. Handheld VHF radios were used to ensure clear 

communication was maintained between surveyors.  

 

A scribe recorded all pups that were detected by the survey team. Each pup was assigned to a 

pelage category to provide an indication of the survey timing relative to the stage of the 

breeding season. The categories utilised in this study adopt those in Goldsworthy et al. (2021) 

except the ‘moulting’ class. The five pup age-classes were defined as: 

1. Black mate-guarded – a young pup (~0-10 days) who is accompanied by their mother 

who herself is being mate-guarded by an adult male. These pups typically have 

poorly developed motor-skills and have a darker, sometimes almost black or grey, 

appearance.  

2. Black – post mate-guarded pups (1-4 weeks). The mother may or may not be present. 



3. Brown – noticeably older (~4-20 weeks), stronger and larger pups with a brown 

appearance. The mother may or may not be present. 

4. Moulted – pups who have moulted (>20 weeks). These pups are highly mobile and 

capable of dispersing from their birth location (e.g. swimming to rock outcrops and 

nearby islands).  

5. Dead – dead pups were recorded and semi-permanently marked (using biodegradable 

spray paint in attempt to make them visible in subsequent drone surveys) when 

possible.  

 

2.3 Drone-facilitated counting approach 

a. Drone flight protocol 

A small, off-the-shelf quadcopter drone (Phantom 4 Pro, DJI) was used as a platform to 

collect high resolution, digital imagery of the main island. Imagery was captured using the 

aircraft’s integrated, gimballed sensor and lens (sensor: CMOS; sensor size: 13.2 x 8.8 mm; 

lens focal length (35 mm equivalent): 24 mm). The aircraft, including remote controller with 

tablet (iPad Mini 2, Apple) and hood, was prepared and calibrated for flight prior to each 

survey.  

 

For each survey, the same automated mission was flown to collect digital photographs at 

nadir. The missions were planned and subsequently executed using Maps Made Easy. The 

mission had an intended height of 40 m above surface level using ‘terrain awareness’. This 

height was selected as a balance between sufficient ground sample distance (~9-10 mm/px) 

and mitigating any potential disturbance to wildlife. Front and side overlap were both set to 

85%, with photographs (jpeg format, 5472 x 3648 px) captured using the ‘at equal distance 

interval’ mode which produced an intended flight speed of 4.0 m/s and a capture interval of 

approximately 2 seconds. The aircraft was launched from a stationary boat, anchored near the 

shore on the lee side of the island so that the pilot could maintain visual line of sight with the 

aircraft at all times. Drone-derived imagery was always captured prior to personnel landing 

on the island, and as close to solar noon (± 2 hours) as possible. One opportunistic survey 

was flown late in the day (~1700 hrs) and resulted in long shadows – these prevented 

consistent detection of individuals and so the survey was omitted from the dataset. Flights 

were in accordance with local regulations and permits, and flown by the same licensed pilots. 

  



b. Data processing 

Digital photographs were grouped by survey. Each group was visually reviewed and 

unsatisfactory images (e.g. overexposed photographs due to light reflecting on water) were 

omitted. Datasets were then batch processed using a python script in the photogrammetry 

pipeline software Agisoft Metashape Professional (version 1.5.2, Agisoft, LLC, St. 

Petersburg, Russia)(Appendix 1). After initial processing, a selection of the same, discrete 

natural features from each survey were labelled and used as ground control points (GCPs) for 

co-registration of survey products (e.g. to ensure each orthomosaic was in approximately the 

same position in 2-dimensional space; Figure 1, Appendix 2 and 3). Ground control could be 

automated if coded targets of known positions were placed in the study site (e.g. see 

Supplementary Information in Hodgson et al. (2020)), although this would likely require 

island access before each survey which could cause unwanted colony disturbance. Then, 

batch processing was resumed to generate a variety of products at medium to high quality 

(see Appendix A4 for processing parameters). 

 

 

Figure 1. Processing drone-derived imagery and developing a standardised counting 

approach. Imagery was co-registered using discrete natural features for ground control 

points (yellow circles; Appendix 2 and 3). This was a key part of the processing as it ensured 

each survey’s outputs (e.g. orthomosaics) were in the same spatial dimension. An 8 m square 

grid (yellow grid) was overlaid to aid counting all individuals within a standardised area of 

the main island (red polygon). 

 



c. Digitising individuals 

Orthomosaics (n = 8) were imported as raster layers into an open-source geographical 

information system application, QGIS (version 3.16.0, QGIS Development Team). After 

ensuring orthomosaics were free of processing artefacts, a protocol was developed to estimate 

the abundance of ASL for each survey.  

 

To do this, an 8 m grid was overlaid on the orthomosaics (Figure 1) and individuals were 

manually detected and digitised using a point shapefile (one file per class, per survey). Points 

were located as close to the centre of the torso as possible, in line with the fore flippers. Two 

experienced observers independently annotated all surveys by moving cell-by-cell (left-to-

right, top-to-bottom) across the island and zooming as needed to error check detections. 

When necessary, the annotator toggled between sequential surveys to differentiate ASL from 

other features (e.g. a rock) and to assist categorisation (e.g. dead versus live animals). The 

brightness tool was utilised to investigate areas of shadow as needed. The search area was 

standardised for each survey to approximately the extent of ground surveys, being all land 

and some areas of water (red polygon; Figure 1).  

 

By categorising pups into age-classes, ground surveys are useful for quickly determining how 

progressed a colony is through a breeding season. This information can be used to infer if a 

count was completed before, during or after the optimum survey time (i.e. when pup 

abundance was at a maximum). It would be advantageous if a similar indication could be 

achieved with the drone-facilitated approach, especially if a drone-only survey was 

completed or if only part of the season was surveyed (this distinction between classes though 

valuable, is less important if surveys are conducted at regular intervals over the entire 

season). Accordingly, we trialled categorising pups into the same age-classes used for ground 

counts. While some individuals could be differentiated confidently into these classes, we 

found it to be subjective and considered it would be very problematic for inexperienced 

observers. We were also keen to establish classes that were non-subjective, thereby 

increasing the likelihood of accurate categorisation by non-experienced personnel (e.g. 

citizen scientists) or via an automated approach (e.g. machine learning) should this be 

desirable in the future. After a structured process of trial and error, we defined two key pup 

classes differentiated by the presence and proximity of the assumed mother. We also digitised 

and categorised all other animals into one of another five classes. The classes used in this 

study were (Figure 2):  



1. Accompanied pup – a pup with an adult female (i.e. an ‘attendant female’) within 

1.5 m, measured using the shortest horizontal distance between the two animals. 

2. Unaccompanied pup – a pup with no adult female within a proximity of 1.5 m. 

3. Attendant female – an adult female with a pup (i.e. an ‘accompanied pup’) or 

juvenile (i.e. an ‘accompanied juvenile’) within 1.5 m. If multiple adult females 

were present, the closest female to the pup was categorised as the attendant 

female.  

4. Adult male – an individual that could be confidently considered an adult male 

(e.g. by a visible blonde ‘cap’, considerably larger with darker pelage than adult 

females). 

5. Other – all other ASL individuals. This included juveniles not in the proximity of 

an attendant female, females not attending a pup or juvenile, sub-adult males and 

any other individual who could not be confidently categorised into another class.  

6. Dead – dead animals of any age or sex.  

7. Accompanied juvenile – juveniles within a 1.5 m proximity of an adult female 

(i.e. an ‘attendant female’).  

 

Shapefiles were exported to provide a total count of each class per survey, per observer. 

 



 

Figure 2. Examples of individuals from one survey (T05) categorised into six different 

classes. a) Accompanied pups and attendant females, b) unaccompanied pups, c) adult males, 

d) other and e) dead. All insets are at the same scale.  

 

2.4 Analysis 

We were interested in determining how a) ground counts of pups compare to those made 

using the drone counting approach and b) the similarity (precision) between counts of 

animals in orthomosaics by independent, experienced observers. Accordingly: 

a. To compare count approaches, we calculated the percentage difference between the 

counting approaches’ estimated total live pup abundance for each time point with 

concurrent surveys. We also calculated the percentage difference between the two 

maximum counts for each approach. For the ground surveys, pups from all 

age-classes were pooled to give an estimate of total live pups. For the drone surveys, 

the mean (rounded up to an integer) of the two independent counts per survey was 

taken to be the approaches’ best estimate. The two observers’ detections were not 

compared on an individual animal basis to maintain the independence of the 



detections (e.g. avoiding the subjectivity of comparing detections where one observer 

disagrees that the detection is accurate).   

b. To assess the precision of independent counts made using the drone-facilitated 

counting approach for each time point, we calculated percentage differences between 

observers for counts of total animals, as well as the subset categories of pups and 

non-pups.  

 

Counts of dead pups were omitted from analyses. The ground count of ‘dead’ pups was 

opportunistic and therefore was not suitable as a metric of cumulative dead. Similarly, due to 

the mobility and density of animals on the island, marked carcasses moved or disappeared 

throughout the drone surveys preventing a digital metric. The problematic nature of 

consistently categorising dependent juveniles meant they were also excluded from analyses.  

  



3. Results 

Dangerous Reef was surveyed approximately monthly between July 2018 and February 2019 

(Table 1). Of the eight visits to the site, drone-derived imagery was collected on all visits, 

however, ground counts were only performed when environmental conditions allowed safe 

island access and when adequate personnel were available (n = 5; Table 1).  

 

On average, drone surveys captured 413.6 ± 35.1 digital photographs per survey. Processing 

resulted in a mean of 380.4 ± 40.3 of these images being utilised (i.e. being ‘cameras’) in 

orthomosaics due to the area of water sampled during surveys. The ground sample distance 

averaged 1.03 ± 0.07 cm/px.  

 

3.1 Estimated pup abundance 

Ground counts estimated peak pup abundance in December 2018 (327 pups; Table 1). The 

concurrent drone survey estimated a similar number with a negligible percentage difference 

between the estimates (3.31%; Table 1). The drone-facilitated approach, however, observed 

the highest number of pups 61 days later in the final survey (T08). The absolute percentage 

difference between the two maximum counts was 12.88% (Table 1).  

 

Table 1. Pup abundance at Dangerous Reef across the 2018-19 breeding season 

estimated from ground and drone-derived counting approaches. 

Survey Date Ground 

count 

Mean drone count1 

(min – max) 

% diff. 

(G:D) 

T01 2 July 2018 - 2 (2 – 2) - 

T02 16 August 2018 - 24 (23 – 24) - 

T03 20 September 2018 - 97 (95 – 99) - 

T04 10 October 2018 192 184 (179 – 189) 4.26 

T05 16 November 2018 261 257 (247 – 266) 1.54 

T06 21 December 2018 327 338 (335 – 341) -3.31 

T07 17 January 2019 263 344 (344 – 344) -26.69 

T08 20 February 2019 299 372 (371 – 373) -21.76 

1 This is the mean of two independent counts of the drone imagery, rounded up to an integer. 

 



Of the five time points with both ground and drone counts, the first three shared relatively 

similar pup abundance estimates (4.26, 1.54 and -3.31% difference; Table 1). On the next two 

surveys, however, the approaches had dissimilar abundance estimates with the drone 

approach estimating 81 and 73 more pups respectively (Table 1).  

 

3.2 Pup classes for each counting approach 

The ground surveys demonstrate the progression of the breeding season at Dangerous Reef 

(Figure 1a). The first ground survey (T04) observed predominantly black pups, with similar 

numbers each of black mate-guarded and brown pups. The third ground survey (T06) 

recorded mainly brown pups with fewer recent births than previous surveys. Moulted pups 

were in the largest proportion in the final survey (T08).  

 

The drone approach also provided an insight into the progression of the breeding season 

(Figure 1b). Estimated pup abundance increased steadily over the first six surveys, before 

plateauing in the final three surveys. Accompanied pups were more common in the first four 

surveys (between 50 – 77.3 % of observed pups), while unaccompanied pups were in higher 

numbers for the last four surveys (between 57.3 – 62.9 % of observed pups). 

  



A 

B 

 

 

Figure 1. Pup abundance at Dangerous Reef across the 2018-19 breeding season 

estimated from a) ground and b) drone-derived counting approaches. 

 

3.3 Drone-derived colony demographics 

While ground counts were constrained to pups, the drone approach estimated the number of 

animals in several other age and sex classes (Figure 2). Pups increased in proportion each 

survey, starting at 3% and progressing to 53.4% of all animals by T08 (Figure 2b).  
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Figure 2. Drone-derived estimates of pup and non-pup abundance at Dangerous Reef 

across the 2018-19 breeding season. Data are presented as a) counts and b) proportions. 

‘Pups’ includes the classes of accompanied pup and unaccompanied pup, while ‘non-pups’ 

includes attendant female, adult male and other.  
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3.4 Precision of independent drone-derived counts 

Independent estimates of ASL abundances in drone imagery were relatively precise 

(Table 2). Pup abundance estimates were slightly more variable than non-pup estimates 

(mean percentage difference: 2.94 vs 1.79%; Table 2).  

 

Table 2. Absolute percentage difference between the estimates of abundance made by 

two independent observers. ‘Pups’ includes the classes of accompanied pup and 

unaccompanied pup, while ‘non-pups’ includes attendant female, adult male and other. 

 

Survey Pups Non-pups Total animals 

T01 0.00 6.19 5.41 

T02 4.26 1.50 0.00 

T03 4.12 0.00 2.05 

T04 5.43 0.00 2.40 

T05 7.41 1.67 4.45 

T06 1.78 0.54 2.25 

T07 0.00 0.64 0.45 

T08 0.54 3.79 0.72 

Mean 2.94 1.79 2.22 

  



4. Discussion 

4.1 Estimated pup abundance 

The negligible percentage difference between the maximum ground count (T06) and the 

comparable drone estimate suggests there is a level of similarity between the approaches at 

this point in the breeding season. Interestingly, although our dataset is constrained to just five 

time points with concurrent surveys, the relationship between the estimates is not linear over 

time or consistently biased. Early in the breeding season, drone counts were marginally 

below ground counts (T04 and T05). For the subsequent three time points, drone counts 

increasingly exceeded ground estimates. This is likely attributable to differences in the 

detection probability of pups for each technique, and the variation in this probability over 

time for each technique. We expected ground counts to have a higher rate of detection than 

drone counts early in the season. This is because black mate-guarded and black pups are more 

likely to be obscured from above (e.g. by their mother, stashed under a rock ledge), making 

them unavailable for drone detection but still able to be detected by ground counters. After a 

certain age, it is likely that the probability of detection of pups decreases for ground counts, 

principally resulting from their increased mobility. This can make ground counting difficult, 

especially if pups are disturbed and enter the water, move into areas already surveyed or 

cause animals well ahead of the search team to move. For drone counts, detection probability 

at this point in the season is likely to be greater as pups are less obscured (e.g. reduced 

‘hiding’ behaviour), larger and at times have a greater contrast to the background. At this 

point in the breeding season, drone counts are also at an advantage as the technique itself is 

not known to initiate behavioural responses meaning that considerably more pups are resting 

in the open when captured in photographs.  

  

The accuracy of ASL pup abundance estimates is dependent on survey timing (Goldsworthy 

et al. 2021). Surveys conducted too early in the season typically return underestimates as a 

considerable number of pups are born after the survey. Experience also indicates that surveys 

completed too late in the season are confounded by the increased mobility of pups who are 

harder to detect (e.g. more aquatic) or are not available for observation (e.g. have dispersed to 

nearby islands). However, ground counts remain ideal for small to medium colonies, which 

accounts for the majority of breeding sites. But for those few sites with large numbers of pups 

(i.e. >100 pups, n = 4), the optimum window is relatively small, it varies between colonies 

and can be hard to predict for colonies that are infrequently visited. It is likely that 



drone-facilitated monitoring is most useful for improving estimates of pup production at these 

sites.   

 

In this study, the changes in the proportions of pups in each age-class over the five surveys 

demonstrates that ground sampling was well timed. This provides the opportunity to contrast 

the level of susceptibility of drone surveys to timing in the breeding season. The maximum 

ground count was observed in December 2018 (T06) at which time the drone survey estimate 

was just 11 pups more (3.3% difference). In the next and final two time points, ground counts 

were less than this maximum, however, drone counts continued to increase. Interestingly, 

drone-derived counts in the final three surveys were relatively consistent, increasing by 34 

pups. This may suggest the drone-facilitated approach has a longer window during which 

reliable abundance estimates can be collected – a considerable advantage on a practical level, 

especially for sites that cannot be visited regularly throughout the breeding season. While 

timing ground counts at some sites is relatively easy (e.g. at Dangerous Reef through reports 

of animals returning to the colony), timing just one or two visits within the optimum survey 

window is difficult for the vast majority of colonies.  

 

4.2 Drone-facilitated monitoring 

Overall, the drone-facilitated approach developed in this study was highly successful. 

High-quality imagery was captured for all time points and at sufficient ground sample 

distance for confident detections of individuals across the ASL size range. The co-registration 

process produced orthomosaics that were highly correlated spatially, allowing observers to 

toggle between time points to clarify detections (e.g. confirm if a potential pup was a rock). 

This was an excellent result given ground control was limited to natural features.  

 

This study presents a number of other benefits and limitations of the drone-facilitated 

counting approach, including: 

o Drone surveys can be completed without landing on islands/entering an ASL colony – 

this reduces potential disturbance to ASL, reduces the number of personnel required 

and mitigates in-colony risks.  

o Drone-only surveys can be collected by personnel with less ASL experience 

o Imagery and data (e.g. detections of animals) are reviewable – this is particularly 

useful for reanalysing data, investigating questions retrospectively, obtaining expert 

review of imagery post survey and at a convenient time etc. 



o Drone survey success will vary across sites due to changes in the detection probability 

of ASL – for example, at sites with complex habitat (e.g. caves, boulders, thick 

vegetation) it is likely that the approach will detect a lower proportion of animals. 

Similarly, for colonies with very few animals, the effect of low detection probability 

could have a considerable negative influence on the abundance estimate. While it may 

be possible to calibrate for detection probability on site level, this would likely require 

a considerable number of concurrent counts per site. 

o Ground counts allow on island observations which cannot be achieved with a drone 

(e.g. detecting young pups that are stashed via their calls; these are unavailable for 

drone detection) 

o Drone surveys may still be possible from a vessel nearby the island even when ocean 

conditions prevent boat-facilitated landing (N.B. access to ASL sites via helicopter 

overcomes the difficulties of boat-facilitated island landings).  

o Presently, drone counts take longer to complete – there is a potential for machine 

learning or citizen science to reduce this investment, although this would likely need 

experienced personnel input to establish the protocol and error-check detections.  

 

Automating drone-facilitated monitoring is key to unlocking the technique’s full potential 

and implementation on a larger scale. Data collection is already achievable with minimal 

user-input thanks to stable and advanced flight programming software and, regulations 

permitting, this step could be fully automated (e.g. a remotely deployed drone that docks at a 

base to recharge from a self-sustaining power source and upload data). Similarly, image 

processing can be completed without user input (e.g. to create products of interest such as 

geo-referenced orthomosaics). However, the automatic and accurate extraction of required 

data, such as the detection and counting of pups, is a challenge yet to be fully resolved 

(Hollings et al. 2018). An array of studies have reported semi-automated approaches using 

‘off-the-shelf’ object-based image analysis and supervised classifications (Afán et al. 2018; 

Chabot et al. 2018) through to more advanced machine learning approaches with promising 

results (Francis et al. 2020; Gray et al. 2019; Kellenberger et al. 2018; Lyons et al. 2019). 

Dujon and Schofield (2019) reviewed manuscripts in ecology that used drones (n = 213), 

reporting that 42% used machine learning to assess the visual data. They concluded that 

while drone use has recently rapidly increased in ecology studies, with 93% of the 

manuscripts that were reviewed being published between 2012 and 2018, the uptake of 

machine learning to process imagery has been slower. Fully harnessing artificial intelligence, 



including machine learning (Lamba et al. 2019), will be key to overcoming manual 

processing and thereby creating a truly powerful tool for ASL monitoring and ecological 

science more broadly. 

 

4.3 Recommendations 

1. Future surveys of Dangerous Reef should complete both survey approaches whenever 

possible. This will provide a more extensive dataset to analyse the relationship 

between the count approaches at this site. This calibration is essential so that data 

continuity between the approaches can be ensured (see Hodgson et al. (2016) for an 

indication of the number of duplicate counts of colonial birds needed to achieve a 

given margin of error between counting approaches). The collection of drone imagery 

typically adds 60-90 minutes at the site, and processing and analyses can be 

completed later if resources are limited.  

2. Ground counting approach 

a. Due to the size and complexity of the Dangerous Reef colony especially at 

peak-breeding, it is recommended that a minimum of two people complete 

ground counts including at least one experienced observer. Ideally, the survey 

team would consist of three to four capable observers.  

3. Drone counting approach: 

a. Consider redefining the ‘dependent juvenile’ age-class. This class was 

included primarily to differentiate nursing juveniles present in the first few 

surveys and in the event that naïve observers were completing counts (i.e. to 

reduce the likelihood of nursing juveniles from the preceding breeding season 

being classified as ‘accompanied pups’). However, we noticed that the 

accompanied juvenile class can be problematic in late season surveys as there 

were instances of animals that could be arguably considered an ‘accompanied 

pup’, ‘accompanied juvenile’ or ‘other’.  

b. Developing a semi- or automated counting technique would improve the 

efficiency of this technique. Machine learning may provide a solution and/or a 

citizen science approach may be beneficial. 

c. Investigate if other classes of animals provide an indication of breeding 

timing, or correlate with pup abundance or similar. A larger dataset would be 

useful for these types of investigations.  



4. Trialling drone surveys at other suitable ASL colonies (e.g. The Pages – which can 

also be accessed via boat with boat launched drones) and near-shore/coastal colonies 

where drones can be launch from the mainland (e.g. Nicolas Baudin Island, Point 

Labatt). Larger colonies should be prioritised.  
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Appendix 1. Agisoft Metashape processing script  

import os 

import Metashape 

 

#path where images are stored 

main_path = r"D:\Data"  # Alter this as needed 

 

#path where the scalebars.csv file is stored 

#scalebar_path = r"D:\Data\Scalebars\scalebars.csv" 

 

paths = os.listdir(main_path) 

 

lstpaths = [os.path.join(main_path, x) for x in paths] 

 

print(lstpaths) 

 

basedir, imagedir = os.path.split(main_path) 

print(basedir) 

 

if not os.path.exists(basedir + r"\Projects"): 

    os.makedirs(basedir + r'\Projects') 

 

if not os.path.exists(basedir + r"\Exports"): 

    os.makedirs(basedir + r"\Exports") 

 

def process(input_path): 

 

    print(input_path) 

    project_name = os.path.basename(input_path) 

    print(project_name) 

    project_path = basedir + r"\Projects\\" + os.path.basename(os.path.normpath(input_path)) 

    global doc 

    doc = Metashape.app.document 

    doc.save(project_path + "_project.psx") 

 

    #app = QtGui.QApplication.instance() 

    #parent = app.activeWindow() 

 

    #path to photos 

    path_photos = input_path 

    path_export = basedir + r"\Exports\\" + os.path.basename(os.path.normpath(input_path)) 

    #print(path_export) diagnostic 

 

 #####################################################################

#################################### 

 

    #processing parameters 

    accuracy = Metashape.Accuracy.HighAccuracy  #align photos accuracy 

    #preselection = Metashape.Preselection.GenericPreselection 



    keypoints = 40000 #align photos key point limit 

    tiepoints = 4000 #align photos tie point limit 

    source = Metashape.DataSource.DenseCloudData #build mesh source 

    surface = Metashape.SurfaceType.HeightField #build mesh surface type 

    quality = Metashape.Quality.HighQuality #build dense cloud quality 

    filtering = Metashape.FilterMode.MildFiltering #depth filtering 

    interpolation = Metashape.Interpolation.EnabledInterpolation #build mesh interpolation 

    face_num = Metashape.FaceCount.HighFaceCount #build mesh polygon count 

    mapping = Metashape.MappingMode.AdaptiveOrthophotoMapping #build texture 

mapping 

    surface1 = Metashape.DataSource.ElevationData #build ortho surface type 

    pointformat = Metashape.PointsFormat.PointsFormatLAZ 

    rasterformat = Metashape.RasterFormat.RasterFormatTiles 

    tiff_compression = Metashape.TiffCompression.TiffCompressionNone 

    #cref = Metashape.CoordinateSystem 

    #projection = Metashape.CoordinateSystem("EPSG::4326") 

    #atlas_size = 8192 

    blending = Metashape.BlendingMode.MosaicBlending #blending mode 

    color_corr = False 

    #elevation_data = Metashape. 

 

 #####################################################################

#################################### 

 

    #LOAD IMAGES 

  

    print("Script started") 

 

    #remove existing chunk 

    chunk = doc.chunk 

    doc.remove(chunk) 

    #creating new chunk 

    doc.addChunk() 

    chunk = doc.chunks[-1] 

    chunk.label = input_path 

    #chunk.crs = Metashape.CoordinateSystem("EPSG::4326") 

 

 #camera.label = camera.path.rsplit("/",1)[1] 

 

    #loading images 

    image_list = os.listdir(path_photos) 

    photo_list = list() 

    for photo in image_list: 

        if ("jpg" or "jpeg" or "JPG" or "JPEG") in photo.lower(): 

            photo_list.append(path_photos + "\\" + photo) 

 

    chunk.addPhotos(photo_list) 

    chunk.addSensor() 

    doc.save(chunks = [doc.chunk]) 

    sensor = chunk.addSensor() 



 

 #####################################################################

#################################### 

 

 #CALCULATE AND OUTPUT IMAGE QUALITY 

    chunk.estimateImageQuality() 

 

    file = open(path_export + "_Cameras.txt", "wt") 

    for camera in chunk.cameras: 

        if "Image/Quality" in camera.meta.keys(): 

            file.write(path_export + ", " + project_name + ", " + camera.label + ", " + 

camera.meta["Image/Quality"]+ "\n") 

        else: 

            file.write("There are no camera quality values to export - why not?") 

    file.close() 

 

    

###########################################################################

############################## 

 

 #ALIGN PHOTOS 

    #align photos 

    chunk.matchPhotos(accuracy = accuracy, generic_preselection = True, 

reference_preselection = False, filter_mask = False, keypoint_limit = keypoints, 

tiepoint_limit = tiepoints) 

    chunk.alignCameras(adaptive_fitting = True) 

 

    

###########################################################################

############################## 

 

 ##COREGISTER HERE IF NEEDED 

  

 #####################################################################

#################################### 

 

 #BUILD PRODUCTS AND EXPORT 

 

    #building dense cloud 

    Metashape.app.gpu_mask = 1  #GPU devices binary mask 

    Metashape.app.cpu_enable = True 

    chunk.buildDepthMaps(quality = quality, filter = filtering) 

    chunk.buildDenseCloud(point_colors = True) 

 

    doc.save(chunks = [doc.chunk]) 

 

 #building mesh 

    chunk.buildModel(surface = surface, source = source, interpolation = interpolation, 

face_count = face_num) 

 



    #build texture 

    chunk.buildUV(mapping = mapping, count = 1) 

    chunk.buildTexture(blending = blending) 

 

    doc.save(chunks = [doc.chunk]) 

 

 #build DEM 

    chunk.buildDem(source = source, interpolation = interpolation) 

 

    #Build Orthomosaic 

    chunk.buildOrthomosaic(surface = surface1, blending = blending, fill_holes = True) 

 

    doc.save(chunks = [doc.chunk]) 

 

    Metashape.app.update() 

 

 #####################################################################

#################################### 

 

    #EXPORT PRODUCTS 

 

    chunk.exportPoints(path_export + ".laz", source = source, format = pointformat, colors = 

True, projection = projection) 

    chunk.exportOrthomosaic(path_export + "_Ortho.tif", format = rasterformat, 

tiff_compression = tiff_compression) 

    chunk.exportDem(path_export + "_DEM.tif", format = rasterformat) 

    chunk.exportReport(path_export + "_Report.pdf", title = project_name) 

 

    doc.save(chunks = [doc.chunk]) 

 

    print("Script finished") 

 

    #Metashape.app.addMenuItem("Process #", process) 

 

 

for path in lstpaths: 

    process(path) 

 

print('Congratulations, all projects have finished! The script is complete') 

  



 

Appendix 2a. Natural features on main island used as ground control points (GCPs) during drone imagery processing.  

Ground control points 1 – 4. Refer to Appendix 2 for GCP co-ordinates. 



 

Appendix 2b. Natural features on main island used as ground control points (GCPs) during drone imagery processing.  

Ground control points 5 – 8. Refer to Appendix 2 for GCP co-ordinates. 



 

Appendix 2c. Natural features on main island used as ground control points (GCPs) during drone imagery processing.  

Ground control points 9-10. Refer to Appendix 2 for GCP co-ordinates. 



Appendix 3. Co-ordinates of the ground control points on main island, Dangerous Reef. 

This is formatted as input code for Agisoft Metashape.  

 

GCP05,136.212606,-34.815143,5.094273,0.005000 

GCP02,136.211667,-34.814830,3.028042,0.005000 

GCP01,136.211270,-34.815110,2.637009,0.005000 

GCP03,136.211882,-34.815105,4.438187,0.005000 

GCP04,136.212501,-34.815432,2.760357,0.005000 

GCP06,136.212614,-34.814733,2.943722,0.005000 

GCP08,136.213424,-34.815141,2.864223,0.005000 

GCP07,136.213246,-34.815464,2.126972,0.005000 

GCP09,136.213698,-34.815337,2.373287,0.005000 

GCP10,136.214063,-34.815201,1.364697,0.005000 

 

  



Appendix 4. Agisoft Metashape processing parameters. Parameters for initial (prior to co-

registration) and final batch processing of imagery.  

Parameters Processing parameters 

Initial stage Final stage 

Point cloud – alignment   

   Accuracy High High 

   Generic preselection Yes Yes 

   Reference preselection No No 

   Key point limit 40,000 40,000 

   Tie point limit 4,000 4,000 

   Adaptive camera model fitting Yes Yes 

Dense point cloud   

   Depth map quality  High 

   Depth map filtering mode  Mild 

Model – reconstruction   

   Surface type  Height field 

   Source data  Dense cloud 

   Interpolation  Enabled 

   Strict volumetric masks  No 

Texturing   

   Blending mode  Mosaic 

   Enable hole filling  Yes 

   Enable ghosting filter  Yes 

DEM   

   Source data  Dense cloud 

   Interpolation  Enabled 

Orthomosaic   

   Blending mode  Mosaic 

   Surface  DEM 

   Enable hole filling  Yes 

 



  



  



  



  



  



  



  



 


