JOURNAL of the
ADELAIDE
BOTANIC GARDENS

AN OPEN ACCESS JOURNAL FOR AUSTRALIAN SYSTEMATIC BOTANY

flora.sa.gov.au/jabg

Published by the
STATE HERBARIUM OF SOUTH AUSTRALIA
on behalf of the
BOARD OF THE BOTANIC GARDENS AND STATE HERBARIUM

© Board of the Botanic Gardens and State Herbarium,
Adelaide, South Australia

© Department of Environment, Water and Natural Resources,
Government of South Australia

All rights reserved

State Herbarium of South Australia
PO Box 2732
Kent Town SA 5071
Australia
TAXONOMIC ACCOUNT OF NICANDRA (SOLANACEAE) IN AUSTRALIA

Philippa Horton
Waite Agricultural Research Institute, University of Adelaide, P. Bag 1, Glen Osmond, South Australia 5064

Abstract
Nicandra, of which there is only one species, N. physalodes (L.) Gaertn., is a native of Peru and has become naturalized in many tropical and temperate regions of the world. In Australia it is a weedy species occurring mainly in cleared or disturbed sites and on cultivated ground, mostly in the eastern coastal region. A description of the species based on Australian material is presented and its distribution in Australia is mapped.

Introduction
Nicandra physalodes, the only species in the genus (family Solanaceae) and native to Peru, has become a well-established member of the Australian flora. It has been cultivated as an ornamental garden plant in Australia and elsewhere, and is now widely dispersed in tropical and temperate areas. N. physalodes has been suspected of poisoning stock, but feeding experiments in New South Wales in which the green berries and the plant were tested on sheep and a goat gave negative results (Hurst, 1942). Cohen (1970) documented a case of two ewes having died apparently as a result of grazing in a yard heavily infested with N. physalodes; their ruminal contents consisted almost entirely of fragments of N. physalodes. The plant is also said to be used as a fly poison (Hurst, 1942), but its poisonous principle is unknown (Everist, 1974), although believed to be an alkaloid (Willaman, 1961). The most recent Australia-wide account of Nicandra is that of Bentham (1868) who reported it as occurring only in New South Wales. Nicandra has become considerably more widespread since then and occurs, for instance, in South Australia although it is not listed in a flora of this State.

As a continuation of taxonomic reviews of solanaceous genera in Australia currently being conducted at the Herbarium of the Waite Institute, a taxonomic account of N. physalodes is presented here. Dried material examined for this study was from the following herbaria: AD, ADW, BRI, NSW and PERTH; material cultivated or adventive at the Waite Institute was also studied.

This plant was described as a species of Atropa, A. physalodes, by Linnaeus (1753). Boehmer (1760) and Adanson (1763) recognized it as being distinct from Atropa and described the genera Physalodes and Nicandra respectively to contain it; they did not publish specific epithets. Although Physalodes Boehmer antedates Nicandra Adans., the latter is conserved (ICBN, 1972, p.356). Gaertner (1791) referred Linnaeus’ species Atropa physalodes to Nicandra Adans., but published it as N. physaloides. This spelling has been followed by a number of authors, but the original spelling must be retained (ICBN, 1972, article 62). Schönbeck-Temesy (1972) uses the name Wicandera Adans., Fam. 2:219(1763) "Nicandra"; orth. mut. Cothen., Disp. 21 (1790). However, according to the ICBN (1972) articles 62 and 73, the original spelling is not to be changed or “corrected”.

The following key separates Nicandra from other solanaceous genera in Australia, from most of which it is readily distinguished.

1a. Fruit enclosed in a distinctly inflated calyx ... 2
1b. Fruit not enclosed in a distinctly inflated calyx ... other genera

2a. Stems and leaves with prickles and stellate hairs ... Solanum (A few species)
2b. Stems and leaves without prickles and stellate hairs, almost or entirely glabrous ... 3

3a. Corolla white or yellow; base of calyx lobes not, or shallowly, lobed or cordate ... 4

3b. Corolla blue to violet; base of calyx lobes deeply cordate or sagittate .. Nicandra

4a. Flowers solitary ... Physalis

4b. Flowers clustered .. Withania

NICANDRA Adans.

Nicandra Adans., Fam. P1. 2: 219 (1763) (nom. cons.).
Alkekengi amplo flore violaceo Feuill., J.Obs. 2:724, pl.16 (1714) (pre-Linnaean phrase name).

Type citation: “Habitat in Peru. D.B.Jussieu”.

Lectotype: LINN 246/3 (Schönbeck-Temesy, 1972) (n.v., microfiche AD!).

Physalis peruviana Mill., Gard. Dict. ed. 8, “PHY” no.16 (1768) (non L.) (fide Dunal, 1852).
Physalis daturaefolia Lam., Encycl. Meth. 2:102(1768) (fide Dunal, 1852).

"Atropa daturaefolia Thore" (cited by Domin, 1929, in synonymy; in fact Thore (1803) was referring to, and used the name, Physalis daturaefolia.).

Nicandra minor hort. ex Fisch. et al., Index Sem. Hort. Petrop. 9:81. (1835) “N. physalodes” (fide Fischer et al., 1835; Dunal, 1852).

N. macrocalyx Bitter, l.c. :169.
N. nana Bitter, l.c. :171.
N. nebulosa Bitter, l.c. :170.
N. parvimaculata Bitter, l.c. :168.
N. undulata Bitter, l.c. :176.

N. violacea André ex Lemoine, Rev. Hortic. 208(1906).

N. physalodes var. ar biflora (author not traced) quoted by Sinha (1951), perhaps in error for “albiflora”?

N. physalodes var. latifolia Dun. in DC., Prodr. 13:434(1852) “folis late ovatis majoribus. Ex insula Mauritii”.

N. physalodes f. typica Dahlgren, Hereditas 5:228(1924) (nom. illeg.)

N. physalodes f. immaculata Dahlgren, l.c.

Common Name: “Apple of Peru”

Annual herb with upright, sulcate, glabrous stems, to 2 m high or more. Leaves alternate petiolate, narrowly to broadly ovate; lamina (2-)34-21(-31) cm long x (1-)2-10(-18) cm wide; apex acute to acuminate, rarely obtuse; base cuneate to narrowly cuneate or attenuate, rarely obtuse; margin usually widely, irregularly and shallowly dentate or sinuate-dentate. Occasionally deeply so (rarely cleft), or almost entire; upper laminal surface sparsely to very sparsely covered with short, inflated, eglandular trichomes 2-4 cells long, the basal cell subglobular, lower laminal surface glabrous or nearly so; petiole (0.5-)1.5-6.5 (-9)cm long, usually narrowly winged distally to almost terete proximally.

Inflorescence pseudaxillary or rarely interfoliar, flowers solitary, pedicellate and somewhat cernuous; pedicel 6-24 mm long (longer in fruit), recurved and sparsely to moderately puberulent (becoming glabrous in fruit). Calyx usually glabrous, occasionally sparsely puberulent, 5-lobed; lobes (7-)9-20(-22) mm long, ovate, acute to acuminate (rarely obtuse) and often slightly mucronate at the apex, sagittate (occasionally cordate) at the base and often mucronate at the basal tips, lobes mutually adpressed along margins to form longitudinal wings (and also fused along the margins for 1/3(-1/2) their length from basal tips). Corolla 5-lobed, broadly campanulate, pale blue to mauve on limb and upper tube, and
on lower part of tube whitish with blue spot near base of each lobe; **limb** slightly lobed, plicate in bud; **lobes** alternate with calyx-lobes, 12-23(-30) mm long, 5-15(-22) mm wide, margin usually entire and obtuse, occasionally slightly emarginate. **Stamens** 5, included, alternate with corolla lobes; **filaments** 3-5.5 mm long, inserted near base of corolla tube, densely pubescent on dilated bases; **anthers** yellow, ovate or oblong-ovate with 2 parallel thecae, 1.8-4 mm long, dorsifixed, longitudinally dehiscent. **Ovary** divided (often irregularly) into 3-5 locules; ovules numerous; **disc** hypogynous, flattened, annular; **style** 3-6 mm long, relatively thick; **stigma** capitate with 3-5 prominent stigmatic areas. **Fruit** a globular, pale yellowish, almost dry berry, the outer wall chartaceous and when ripe splitting irregularly at the base (which is usually uppermost in the pendulous fruit), (5-) 11-22 mm diameter, enclosed in the accrescent, chartaceous, reticulate calyx. **Seeds** brown, numerous (in 6 berries counted, the number of seeds ranged from 69 to 638), compressed, subdiscoid to broadly reniform and usually asymmetrically so, 1.2-2.1 mm long, testa reticulate-foveate. (Fig. 1)

Chromosome number

Several authors have obtained the somatic chromosome number \(2n = 20\) (e.g. Vilmorin & Simonet, 1928; Darlington & Janaki-Ammal, 1945; Venkateswarlu & Rao, 1963). However, the chromosome number still seems to be uncertain, as Darlington & Janaki-Ammal (1945) found it sometimes to be \(2n = 19\) by loss of one of a pair of isochromosomes; Sinha (1951) obtained counts of \(2n = 21\) in the variants "arbiflora" and "violacea"; Gill (1971) found the haploid number to be \(10 + 1B\), and Sharma and Sarkar (1967-68) reported a count of \(n = 11\). No counts based on Australian material have been noted.

Distribution and habitat in Australia

Nicandra in Australia is primarily a summer- and autumn-growing annual and occurs principally in higher rainfall areas of the eastern states, particularly around populous
centres. Most collections of *N. physalodes* have been made from New South Wales and Queensland, with fewer specimens from Victoria, Tasmania, South Australia and Western Australia (Fig. 2). Two of the South Australian collections, *J.M. Black*, 19.v.1932 (AD 97615160) and *B. Frost*, 6.iv.1970 (AD 97015458), are annotated as being adventive in gardens. Likewise at the Waite Institute the species persisted in 1978 around the area where it had been cultivated the previous year. Possibly most or all of the southern and western collections are of plants persisting after cultivation, and can be considered as naturalized in these areas. No collection of *N. physalodes* from the Northern Territory has been located, (none are held at DNA or NT), but Holtze (1892) reported it as having been introduced there. *N. physalodes* grows in a wide variety of soil types, often on the margins of paddocks or amongst pasture or crops such as lucerne, oats, peas and maize, or on cleared or disturbed land. It has been reported as an important pest species in maize crops on the Atherton Tableland in Queensland (Hawton, 1976).

Notes

Bitter (1903) studied *Nicandra* in detail and distinguished a number of different species, listed previously. The characteristics by which he distinguished these species seem to fall within a range of continuous variation normally encountered in *N. physalodes* and to be insufficient to justify specific rank.

N. violacea André ex Lemoine was distinguished from *N. physalodes* by its prominently blue corolla and suffused purple of the calyx, stems, petioles and peduncles, and the scattered coloured hairs on the upper surface of the leaves. Darlington & Janaki-Ammal

![Fig. 2. Distribution of *Nicandra physalodes* in Australia.](image)
(1945) consider that this variation does not constitute a distinct species, and suggested, as did Bailey (1943), that it may be merely a variety or variant of N. physalodes. It may be no more than a variant with well developed anthocyanin pigment.

Darlington & Janaki-Ammal (1945) considered that N. physalodes f. immaculata Dahlgren (which lacks the corolla spots) is merely a simple genetic variant, similar to two additional variants which they listed: violacea (corresponding with N. violacea André ex Lemoine) and alba (with white instead of blue flowers). There is no evidence to suggest that any of these form stable populations or have a geographical basis.

Recent authors (often flora-writers such as Gentry & Standley, 1974, and MacBride, 1962) consider the genus Nicandra to be monotypic, and in the absence of a monographic treatment since that of Bitter (1903) this view is followed here. Most recent authors also do not recognize varieties or forms of N. physalodes.

Of the Australian specimens seen, only one is distinct (R. Coveny 6574, annotated: "... stems violet, fruit calyx papery and violet-coloured at base"); it corresponds with Bailey's (1943) concept of "N. violacea André". However, in all other characteristics it resembles the other specimens seen, and its separation as a distinct species or even variety seems unjustified; it appears to constitute nothing more than a variant, such as Darlington & Janaki-Ammal (1945) proposed. No other Australian specimens are distinct, therefore they are all considered to be N. physalodes. This lends support for current considerations of Nicandra as a monotypic genus.

N. physalodes in Australia corresponds closely in morphology with its representatives in other countries, according to descriptions of the latter such as in MacBride (1962), Gentry & Standley (1947), etc. The only exception appears to be in the dimensions of the flower, which on average are slightly smaller in Australian specimens. As in other regions, the species in Australia is very variable in morphology. For instance, in cultivation, individual plants have matured when only about 10 cm high whereas others grow to more than 2 m. The leaf dimensions vary in proportion with the size of the plant and as in a number of solanaceous plants the juvenile leaves may be very large and lush when compared with leaves on distal flowering branches. This range in leaf size is rarely represented in herbarium specimens. The degree of variability shown by N. physalodes is common in widely spread weedy species (such as Chenopodium album L., Solanum americanum Mill. and Sonchus oleraceus L.) and like these N. physalodes is adaptable to many different environments.

Selection of Specimens (Total Seen: 76)

NEW SOUTH WALES: D. F. Blaxell 1335, Dr George Mountain, 20.IV.1974 (NSW); J. L. Boorman s.n., Jerseyville, Macleay River, June 1910 (NSW 141341); E. Breakwell s.n., Muruya, Dec. 1913 (NSW 141327); S. Chadwick s.n., Scone, Jan. 1931 (NSW 141325); J. B. Cleland s.n., Kendall, 13.V.1917 (AD 9754836); R. G. Coveny 6574, Elderslie & Branxton roads junction, 1 km E-S-E. of Elderslie, 12.V.1975 (ADW, BRI); F. Duguid s.n., Narrabri, Jan. 1922 (NSW 141324); J. J. Fletcher s.n., Elizabeth Bay, Sydney, 30.V.1890 (NSW 141337); T. G. Hewitt s.n., Lismore, May 1912 (NSW 141342); L. A. S. Johnson & B. G. Briggs s.n., Yarramundi Lagoon, 2.5 miles (ca. 4 km) S-S-W. of Richmond, 22.X.1966 (NSW 141335); E. N. McKie s.n., Llangothlin, 20.IV.1941 (NSW 141326); F. A. Rodway 6543, Pyree, Shoalhaven River flats, 2.VII.1933 (NSW); H. Wenholz s.n., Grafton, March 1918 (NSW 141338).

VICTORIA: Department of Agriculture s.n., Bruthen, s.d. (MEL, n.v.); F. M. Reader s.n., Warracknabeal, 11.II.1904 (MEL, n.v.); H. S. Wheeler s.n., Neerim, Gippsland, 12.II.1912 (MEL, n.v.);

TASMANIA: L. V. Lester Garland s.n., Lagana, Jan. 1931 (K, n.v.).

SOUTH AUSTRALIA: J. M. Black s.n., Unley, Adelaide, 19.V.1932 (AD 97615160); Department of Agriculture 500, Millicent, 13.IV.1964 (ADW); B. Frost s.n., Bethel, 6.IV.1970 (AD 97015458); W. E. Johnston s.n., Port Lincoln, 22.II.1949 (ADW 6293).
WESTERN AUSTRALIA: Mrs Austin s.n., Middlesex, Mar. 1964 (PERTH); J.N. Hutchinson s.n., Carnarvon, Sept, 1965 (PERTH); S. Wilkes s.n., Busselton, Feb. 1969 (PERTH).

Nomina Exclusa

N. indica (Lam.) Roem, & Schult., Syst. 4: 682 (1819) (basionym Physalis indica Lam., Encycl. meth. 2: 102 (1786)). Dunal (1852) considered this to be a species of Physalis (P. minima L.) Neither Lamarck nor Roemer & Schultes describe the corolla of this species, this being unknown to them, but from their descriptions of the remainder of the plant, it is likely to be a species of Physalis.

N. anomalala Link & Otto, Lc. Pl. Sel. 77, t.35 (1828) = Scopolia lurida Dun. (fide Dunal, 1852). From Link & Otto’s description, this species appears to belong to the genus Scopolia, not Nicandra.

Acknowledgements

My gratitude is extended to the curators of herbaria who arranged for material to be sent on loan or who made available the facilities of their institutions. Special thanks are given to Mr D.E.Symon who offered valuable guidance and advice throughout the course of this study. Thanks also to Mr P.M. Kloot for obtaining for me the collection data of Nicandra specimens held at the National Herbarium of Victoria, Melbourne.

This work was supported by an Australian Biological Resources Study Grant.

References