Hemigeniayalgensis,a new species from the Mid-west region of Western Australia (Lamiaceae: Westringieae)

Greg R. Guerin
The Environment Institute, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005
Email: greg.guerin@adelaide.edu.au

Abstract
Hemigenia yalgensis G.R.Guerin is described from the Mid-west region of Western Australia. The species is morphologically similar to H. macphersonii Luehm. and under the current classification of Hemigenia, is placed in section Homalochilus. Hemigenia yalgensis is not currently considered to be threatened. Reference information and typification are also provided for H. macphersonii along with illustration and an occurrence map for the two species.

Keywords: Hemigenia, Lamiaceae, Labiatae, Mid-west, Western Australia.

Introduction
This paper describes a new species of Hemigenia R.Br. from the Mid-west region of Western Australia, H. yalgensis. Under the current classification, the species is placed in sect. Homalochilus Benth., based on whorled leaves and a strongly zygomorphic calyx with reduced lobes (Guerin 2008). A key to species in this section, including undescribed species (as phrase names), was presented in Guerin (2013) and a description and illustration of corolla and stamen morphology was given in Guerin (2005).

Hemigenia yalgensis has been recognised as a separate entity from the morphologically similar species H. macphersonii Luehm. (Luehmann 1898) since 1998, but was formerly undescribed. The main purpose of formally describing the species is to provide more detailed comparative information for identification than is currently available.

Herbarium voucher specimens were examined from the herbaria: AD, CANB, MEL, NSW and PERTH. Dried material was measured by hand or under light microscope. Reference information and material was compiled and compared for Hemigenia macphersonii, morphologically the most similar species to H. yalgensis.

Taxonomy
1. Hemigenia yalgensis G.R.Guerin, sp. nov.

Open, spindly shrubs 0.4–3 m high; branches glabrous except for short pubescence restricted to the leaf bases, somewhat angular to rounded in cross-section. Leaves 24–68 mm long, 0.5–0.8 (–2 when unfolded) mm wide, 3-whorled, sessile, erect to patent, straight or recurved, most prominently towards the apex, glabrous; lamina conduplicate but sometimes opening a little, narrowly linear; base straight; apex tapering to an acute point. Inflorescence a raceme-like thyrs with single flowers subtended by leaf-like bracts. Pedicels 2–3 mm long, pubescent, sparsely glandular or glabrous, usually with hairs becoming denser and longer distally; bracteole pairs 2 mm long (shorter than the calyx tube), deciduous, inserted at the mid-point of the pedicel, erect, linear and conduplicate (or partly opening), apex acute. Calyx (5–) 6.5–9 mm long, usually densely covered with multicellular hairs to 2.5 mm long concentrated towards the base, ± short stalked glands but sometimes glabrous, calyx lobes sparsely ciliate, glandular or glabrous, the inner surface sparsely glandular-pubescent, somewhat lengthening and becoming papery (but persistent) at fruiting stage; tube 3–3.5 mm long, obtriangular to funnel-shaped, with ribs which become more distinct in fruit; adaxial and abaxial lips deeply divided; abaxial lip 2–3.5 mm long, 2–2.8 mm wide, elliptic to suborbicular, with 2 narrowly triangular, acute lobes c. 0.8 mm long, 0.5–0.9 times the length of the adaxial lip; adaxial lip 3.5–6 mm long, c. 3.5 mm wide, widely ovate, and with the 2 lateral lobes distinct from, but...
much smaller than, the median lobe (rarely the lateral lobes barely distinguished), the lobe apices apiculate or obtuse to rounded. Corolla 10–13 mm long, with tube 6–7 mm long, variable in colour, recorded as green and yellow, white tinged pink, or white with purple veins or brown/pink spots on the lower lip and throat or mauve to purple, the exterior surface pubescent, the interior surface densely bearded between the filaments; abaxial median lobe 4–4.8 mm long, 5.2–6 mm wide, widely elliptic, sinus 1 mm long; lateral lobes 3.1–4 mm long, 2.5–2.8 mm wide, oblong–obovate, apex rounded; adaxial median lobe pair 2.5–5 mm long, 3–5.6 mm wide, oblate, sinus 1 mm long, apex rounded. Androecium with the abaxial stamens inserted 4–5 mm from the base of the corolla, filaments 2.5–4 mm long, anthers 2 mm long, upper (adaxial) theca 0.6 mm long, lower (abaxial) theca smaller; adaxial stamens inserted 3–4 mm from the base of the corolla, filaments 1.5–2.5 mm long, anthers 2 mm long, fertile (adaxial) theca 0.7 mm long, the lower (abaxial) end sterile and shortly bearded. Style c. 7–8 mm long. Mericarps 2 mm long, obconic to obovoid but somewhat angular, flattened apex shallowly reticate, distal portion glandular-pubescent, attachment scar slightly more that half the length of the mericarp. Fig. 1, 3B.

Diagnostic features. Hemigenia yalgensis is distinguished by long, narrowly linear leaves, corolla not (or barely) exceeding the calyx lobes and the calyx, which is deeply 2-lipped but 5-lobed. The abaxial lip of the calyx is usually half or more the length of the adaxial lip.

Phenology. Flowering is recorded between August and October.

Distribution and habitat. Occurs in the Mid-west region of Western Australia in the Geraldton Sandplains (GS), Yalgoo (YAL), Avon Wheatbelt (AW) and Murchison (MUR) IBRA bioregions. Recorded on a range of substrates including banded iron hills, granite, red loam and stony ground in low open woodland and shrubland with Callitris, Eucalyptus, Eremophila, Acacia, Melaleuca, Dodonaea and Allocasuarina (Fig. 2).

Conservation status. Hemigenia yalgensis is relatively widespread and well collected. It is not currently considered threatened.

Etymology. Named for the Yalgoo IBRA bioregion (and locality), around which the distribution of H. yalgensis is centred.

Affinities. Hemigenia yalgensis shares a similar geographic distribution as well as many characters with H. macphersonii Luehm. Hemigenia yalgensis has a shorter corolla, 10–13 mm long, with a tube which is not (or is barely) exerted from the calyx lobes (vs H. macphersonii corolla c. 20–25 mm long with tube significantly exerted from calyx lobes). The flowering calyx of H. yalgensis has an abaxial lip at least half the length of the adaxial lip, whereas H. macphersonii usually has an abaxial lip less than half the length of the adaxial lip. Post-flowering specimens can be difficult to identify, since the calyx abaxial:adaxial lip length ratio of both species can be near 0.5 and because the adaxial lip increases in length in fruiting stage (Fig. 3).
New species of Hemigenia from W.A. (Lamiaceae)

Selected other specimens examined:

**Western Australia.** 150 km east of Geraldton on the Yalgoo Road, **A.M.Ashby 2573**, 1 Sep. 1968 (AD 97109348); Murchison River Bridge, No. 1 Highway. The west road first turn left going north just over the bridge, **A.C.Burns 38**, 4 Sep. 1984 (PERTH 03722449); East Yuna Reserve, NE of Geraldton, **A.C.Burns 95**, 4 Oct. 1967 (PERTH 03672751); Mt Campbell, **R.Cranfield & P.Spencer 7856**, 25 Sep. 1990 (PERTH 01180428, CBG 9103634 at CANB, MEL 1603505); Mt Campbell repeater station on the Carnamah-Morawa Road, **L.A.Craven 7009**, 1 Oct. 1981 (MEL 302563, AD 98925185, PERTH 03672905, CANB 379607); Lakeside Stn 5m 1527, **A.L.Payne 412**, 13 Aug. 1987 (PERTH 03672816); Wanarra Station, **A.L.Payne 3864**, 28 Aug. 1993 (PERTH 04446356); 7.5 km N of Murchison Shire Office, **P.G.Wilson 1175 & R.Rowe**, 20 Sep. 1991 (PERTH 02116413, NSW 249958, AD 9220157).

2. **Hemigenia macphersonii** Luehm.


**Distribution and habitat.** Occurs in the Mid-west region of Western Australia in the Avon Wheatbelt (AW), Yalgoo (YAL) and Murchison (MUR) IBRA bioregions. Recorded on various substrates including red/brown loam, clay, granite, sandstone and gravel, sometimes in association with banded ironstone formation (Meissner & Caruso 2008), often along water-courses, in *Acacia* scrub and tall shrubland (Fig. 2).

**Conservation status.** Hemigenia macphersonii is poorly collected but not currently considered threatened, despite being recognised as distinct from *H. yalgensis* since 1998.

**Note.** Diels described *H. macphersonii* in 1904 from a specimen cited as coming from “Mount Margaret”. However, it seems that this is a mis-reading of “Mt Magnet”, as all other specimens at MEL collected by W.S. Macpherson were collected from Mt Magnet (P. Milne, pers. comm., Oct. 2015). It is possible that Diels had a duplicate of Luehmann’s type specimen available when describing his new species. The type specimen in Berlin was presumably destroyed during World War II, but from the description and illustration in Diels’ publication, it is unambiguously the same as Luehmann’s species. In addition, Diels noted in the index of his work, which was published several months after the description, that *H. macphersonii* had been described previously and he accepted that his new taxon was a synonym of Luehmann’s species.

**Other specimens examined:**

**Western Australia.** 10 km N of Mount Magnet, **K.Ashby s.n.**, 20 Sep. 1996 (PERTH 04663578); 5.9 km N of Murchison Roadhouse, **R.J.Chinnock & G.S.Richmond RJC 8536**, 23 Oct. 1993 (AD 99350007, PERTH 05481155); Prope Yalgoo, **C.A.Gardner s.n.**, Aug. 1960 (PERTH 03672778).

**Acknowledgements**

The State Herbarium of South Australia (AD) provided support and resources for this work. Loans were provided by PERTH, MEL, NSW, CANB. Barbara L. Rye originally determined specimens as *Hemigenia* sp. Yuna in 1998. Pina Milne (MEL) is thanked for checking Macpherson specimens.
References