Sub Soil Modification 2015 Point Pass Agricultural Bureau

David Woodard February 2016

Government of South Australia South Australian Murray-Darling Basin Natural Resources Management Board

Natural Resources SA Murray-Darling Basin

Australian Government

Government of South Australia

Primary Industries and Regions SA

NRM Agricultural and Fishing Innovation Grant **Point Pass Agricultural Bureau**

Government of South Australia

South Australian Murray-Darling Basin Natural Resources Management Board

Sub soil Modification

Based on work conducted by Rick Peries DEPI Victoria and Researchers from Southern Farming Systems, La Trobe University, Victoria

Targeting a range of hostile clays – heavy textured, sodic, slightly saline, those with bleached A2, also hard capped – delved and not delved

Clay modification by microorganisms and organic matter to increase size of macro pores - improve clay ped structure, infiltration, drainage, root access & volume, air supply

Proof of concept stage – under a range of soils and conditions, lower rainfall than early Victorian sites

Clay subsoil changes – P Sale, R Peries, et al

4 years after Lucerne pellets at 30 -40 cm in clay Before After

Subsoil treatments

- Control
- Rip Only
- Plant based compost 20 to 40 t/ha
- Plant and Animal manure based compost 20 to 40 t/ha
- Neutrog Chicken Manure pellets 20 40 t/ha
- Gypsum 10 t/ha
- Brew Mixture of Compost, chicken manure pellets and gypsum – 40t/ha
- TPR and Grape Marc mixtures
- Compost and Biochar
- Pig Manure Compost

Robertstown Site – Low OC, Sodic

Depth cm	Texture	Colour	Gravel %	рН H ₂ O	pH CaCl₂	Acid Reactio n Free % Lime		Ece dS/m		NO3 N mg/kg		Cl mg/kg	Avail. K mg/kg	mg/kg	SO₄-S mg/kg	Trace Elements (DTPA) mg/kg			CEC cmol(+) /kg	Exchangeable cations cmol(+)kg					
																Cu	Zn	Fe	Mn		Ca	Mg	Na	K	ESP
Paddock	FSCL	Orange																							
0-10	FSCL	Orange	5-Jan	7	6.2	0.18 N	0.109	1.58	0.43	15	32	65	275	0.87	7.2	0.91	0.37	10.8	11.7	5.68	3.08	1.31	0.64	0.7	11.3
10-30	MClay	Dk Red	0	9	8	0.28 N	0.452	3.42	0.48	5	3	395.3	412	5.8	29.1					19.91	6.68	7.22	4.95	1.1	24.8
30-40	LMClay	Dk Red	0	9.2	8.3	2.5 Mod	1.109	6.06	0.32	3	5	893	572	16.52	128					31.05	8.56	10.9	10.2	1.5	32.7
70+	LMClay	BrOr	0	9.3	8.3	31 V High	0.978	7.1	0.17	2	3	825.6	390	9.69	138					24.92	9.29	6.91	7.72	1	31
Cr	s	6-8	5-7		≪0.7	8	1.5		35		120	<15	6	0.2	0.5		1.0	15	75%o fCEC	20% of CEC	<6% of CEC	5% of CEC	<6		

Robertstown site

Dry matter relative to Control treatment

Point Pass – Lentils after 30mm rain

Lentil yield as % of Control

Ebenezer Sub soil Modification site

Normally Waterlogged, not in 015, heavy textured clay

Yield as % of Control

Giles Corner – Cracking clay, No-Till, stubble retained, Controlled Traffic 15 years

Taller crop, Pod height 20 to 30cms Higher

Alma South – Beans growth response

Rip only – similar to Control

Brew – Compost, Gypsum & Chicken Manure

Long Plains – Barley limited by rainfall

Halbury – Barley 6t/ha

Halbury - Control

Stockport Sub soil Modification site

Waterlogging variability due to slope, heavy textured clay

Dry matter relative to Control treatment

DM ave % of Control

Dry matter yield Kg/ha

Stockport Subsoil dry matter yield

