Carbon Sequestration from Revegetation:

South Australian Agricultural Regions

Trevor J. Hobbs, Craig R. Neumann, Merv Tucker and Katelyn T. Ryan 2013

DEWNR Technical Report 2013/14

Government of South Australia Department of Environment, Water and Natural Resources

www.environment.sa.gov.au

Department of Environment, Water and Natural Resources

~ ~ ~ ~ ~ ~

25 Grenfell Street, Adelaide GPO Box 1047, Adelaide SA 5001 Telephone National (08) 8463 6946

	International	+61 8 8463 6946		
Fax	National	(08) 8463 6999		
	International	+61 8 8463 6999		
Website	www.environment.sa	.dov.au		

Disclaimer

The Department of Environment, Water and Natural Resources and its employees do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability, currency or otherwise. The Department of Environment, Water and Natural Resources and its employees expressly disclaims all liability or responsibility to any person using the information or advice. Information contained in this document is correct at the time of writing.

© Crown in right of the State of South Australia, through the Department of Environment, Water and Natural Resources 2013

This work is Copyright. Apart from any use permitted under the Copyright Act 1968 (Cwlth), no part may be reproduced by any process without prior written permission obtained from the Department of Environment, Water and Natural Resources. Requests and enquiries concerning reproduction and rights should be directed to the Chief Executive, Department of Environment, Water and Natural Resources, GPO Box 1047, Adelaide SA 5001.

ISBN 978-1-922174-20-8

Preferred way to cite this publication

Hobbs TJ, Neumann CR, Tucker M, Ryan KT, 2013, Carbon sequestration from revegetation: South Australian Agricultural Regions, DEWNR Technical Report 2013/14, Government of South Australia, through Department of Environment, Water and Natural Resources, Adelaide & Future Farm Industries Cooperative Research Centre.

Download this document at: http://www.environment.sa.gov.au

Sugar Gum Eucalyptus cladocalyx woodlot at Leighton Forest, SA (Photo: C.R. Neumann)

FOREWORD

The Department of Environment, Water and Natural Resources (DEWNR) is responsible for the management of the State's natural resources, ranging from policy leadership to on-ground delivery in consultation with government, industry and communities.

High-quality science and effective monitoring provides the foundation for the successful management of our environment and natural resources. This is achieved through undertaking appropriate research, investigations, assessments, monitoring and evaluation.

DEWNR's strong partnerships with educational and research institutions, industries, government agencies, Natural Resources Management Boards and the community ensures that there is continual capacity building across the sector, and that the best skills and expertise are used to inform decision making.

Alla CHIEF EXECUTIVE DEPARTMENT OF ENVIRONMENT, WATER AND NATURAL RESOURCES

EXECUTIVE SUMMARY

What the report is about

This study focuses on providing reliable estimates of carbon sequestration rates from revegetation activities using Australian native plants in the low to medium rainfall (250 - 650mm/year) dryland agriculture zones of South Australia. The purpose, design, species composition and carbon sequestration potential of revegetation is extremely diverse. The potential revegetation continuum ranges from the simplicity of woodlot monocultures to the complexity of fully biodiverse plantings. This report aims to address these issues by developing techniques and models that are flexible and robust in a wide range of conditions.

To rapidly assess carbon stocks and sequestration rates across different revegetation types DEWNR have developed reliable techniques to estimate plant biomass from simple plant measurements. The productivity of revegetation sites were surveyed across a wide range of types, environments and ages. This data has been used to quantify and model the relationships between driving variables and carbon sequestration rates.

Resulting productivity models have been applied to the cleared agricultural regions of the State to estimate their carbon sequestration potential using woodlots and tree-dominated environmental plantings. Reference tables, summarising these estimates, have been collated for NRM Regions, rainfall zones and other administrative or environmental zones.

The report also delivers preliminary estimates of carbon stocks currently held in remnant vegetation on public and private lands in the agricultural regions of the State.

Who is the report targeted at?

This report is intended to assist natural resource managers, revegetation and carbon industries, rural landholders, government agencies and researchers to make informed decisions about the potential for revegetation activities and remnant vegetation to contribute to carbon stocks in the agricultural regions of South Australia.

Background

South Australia has the potential to sequester a significant amount of carbon in revegetation and managed remnant vegetation in our agricultural landscapes. Dedicated woody carbon crops, sustainable agroforestry, environmental plantings and managed native plant communities can be used to store atmospheric carbon, deliver economic and environmental benefits, enhance biodiversity and provide greater resilience to climate change for our rural communities.

The influence of climate change on traditional farming businesses, expected expansion of carbon markets, and trends towards more sustainable land use options suggest that future agricultural landscapes will contain greater diversity of land uses, including carbon crops, woodlots, environmental revegetation and conservation. To evaluate the economic and potential expansion of these crops and native plants, land managers and governments require reliable information on the carbon sequestration potential of revegetation and native carbon stocks.

Historically, production rates of a few forestry species have dominated studies of carbon sequestration from revegetation in Australia, with higher rainfall forestry observations being extrapolated into drier regions and to represent mixed species environmental plantings. The production rates of local native species found in environmental plantings are poorly represented in most current models used to estimate carbon sequestration from revegetation. Carbon stocks of remnant vegetation are even more poorly understood or documented.

Department of Environment, Water and Natural Resources (DEWNR) Science Monitoring and Knowledge (SMK) staff have established collaborations with allied researchers and natural resource managers, undertaken numerous surveys of revegetation and remnant vegetation sites over many years, and undertaken investigations into carbon assessment techniques and accounting methodologies to inform and refine our understanding of carbon sequestration from native plants in South Australia.

Aims and Objectives

This report aims to provide reliable techniques and models to assess carbon stocks and sequestration rates from revegetation activities and native plant communities in the agricultural regions of South Australia. Key objectives of this study are:

- Provide regional species lists and identify those species currently used in revegetation activities across the State.
- Develop and refine methods to assess carbon sequestration from Australian native plant species.
- Develop carbon sequestration from revegetation models that are relevant for South Australian agricultural regions and are calibrated to local conditions.
- Report on the regional potential of carbon sequestration by summarising the results of model predictions on cleared agricultural landscapes across the State.
- Improve the reliability of Australian carbon accounting methodologies approved by the Domestic Offset Integrity Commission.

Methods Used

Revegetation Species

Plant information from DEWNR herbarium records and the biological database of South Australia were analysed to identify naturally occurring, structurally dominant and most frequently encountered native plant species for each non-arid NRM Region and rainfall zone. Revegetation activity data from Trees For Life between 1999-2008 were analysed to identify structurally dominant and most frequently planted revegetation species for each NRM Region.

Carbon Assessment Techniques

Quantifying the relationships (allometrics) between simple plant measurements (e.g. height, basal area, crown width) and plant biomass (or carbon content) has been achieved by measuring and destructively sampling the above-ground biomass of 535 individual plant across a range of species, lifeforms, ages and revegetation sites in South Australia. Measurements and destructive samples of above-ground and root biomass for 41 individual plants were also undertaken across 2 sites to create allometric models for root biomass.

Productivity Surveys

Total above-ground plant biomass and carbon content of 264 revegetation sites (132 woodlots, 132 mixed species) of known age and 37 remnant vegetation sites in the agricultural regions of South Australia were assessed using measurements of 36 (monoculture) or 60 (mixed species) plants at each site and applying non-destructive DEWNR allometric models.

Carbon Sequestration Models

Plant density, tree/shrub proportions, revegetation age, remnant average height, climate and soil information from these 301 productivity surveys were analysed to identify key influences on sequestration rates or carbon stocks in remnant vegetation. Stepwise regression modelling techniques were used to identify the best combination of variables to predict carbon sequestration rates or carbon stocks.

More detailed research and analysis on sampling intensity, allometrics and root biomass was conducted by DEWNR and CSIRO on 2 reference sites in SA to update national carbon accounting models.

Regional Carbon Sequestration

Carbon sequestration models were applied to the cleared agricultural regions for 2 common revegetation types (i.e. woodlots & tree dominated environmental plantings) and remnant vegetation. Several administrative and environmental divisions of the State, relevant to wide range of stakeholders, were identified for reporting results.

Results / Key Findings

Revegetation Species

Reference lists of structurally dominant and frequently occurring native plant species have been generated for rainfall zones within each non-arid NRM Region to guide plant selections for future revegetation activities. Dominant plant species used for revegetation, based on Trees For Life data, has also been summarised for each NRM Region. There is high level of concurrence between these lists.

Carbon Assessment Techniques

Several highly significant allometric models have been identified from this applied research (r^2 =0.58-0.97). Stemwood volume (derived from height and basal area measurements) provides the single strongest predictor of above-ground plant biomass (r^2 =0.95). This model is improved by a further 2% if crown area data is also included. Plant height and crown area data provides the best model for predicting root biomass (r^2 =0.86).

Productivity Surveys

The average plant density within all surveyed revegetation sites was 894 plants/ha (at 22 years), 714 plants/ha for woodlot plantings (at 26 years), 1074 plants/ha for environmental plantings (at 17 years) and 669 plants/ha in remnant vegetation. The average above-ground carbon sequestration rate of all revegetation sites was 9.5 tonnes of carbon dioxide equivalents per hectare per year (CO₂-e t/ha/year; mean annual rainfall 429mm/year), 11.4 CO₂-e t/ha/year in woodlots (441mm/year) and 7.6 CO₂-e t/ha/year in environmental plantings (418mm/year). Above-ground plant carbon stocks from remnant vegetation surveys was observed to be around 428 CO₂-e t/ha (515mm/year) on average.

Carbon Sequestration Models

Analysis of relationships between carbon sequestration and planting designs, climates and soils has allowed the development of models to predict average aboveground carbon sequestration rates from revegetation $(r^2=0.60)$ and carbon stocks in remnant vegetation $(r^2=0.59)$ for the agricultural regions of South Australia. Revegetation models have been embedded within a simplified tool (i.e. MS Excel Spreadsheet "*DEWNR Carbon Sequestration from Revegetation Estimator*") that allows individuals to estimate carbon sequestration rates and stocks over time using regional average or localised site data. These models can be applied to climate change scenarios to estimate likely impacts of climate change on carbon sequestration rates.

Collaborative applied research between DEWNR and CSIRO has facilitated a significant improvement in the models used by the National Carbon Accounting System and the Carbon Farming Initiative's Reforestation Modelling Tool.

Regional Carbon Sequestration

This report provides maps of typical sequestration rates for the State and within each Natural Resource Management (NRM) region. Summaries of these predictions for cleared agricultural lands have been tabulated for each NRM Region, rainfall zone, cropping district, State planning division, local government region, biogeographic subregion and revegetation zone. Preliminary estimates of current carbon stocks in publicly and privately managed remnant vegetation is also reported for non-arid NRM Regions.

Recommendations and Conclusions

Those seeking to evaluate the feasibility of developing woody carbon crops, environmental revegetation and biomass industries in agricultural regions of South Australia may be guided by the information contained within this report. Potential productivity in the region can be highly variable and is influenced by species choices, planting designs, land management practices and climatic conditions.

This research provides a valuable step towards understanding carbon sequestration rates from revegetation using woodlots and environmental plantings in South Australia, and provides preliminary estimates of carbon stocks held in remnant vegetation. Land managers, policy makers and investors should consider potential impacts that revegetation could have on agricultural production, rural communities and the environment. It is important that these new industries are targeted in areas where they maximise economic and environmental benefits for whole farm enterprises, regions and South Australia.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the State NRM Program and SA Department of Environment, Water and Natural Resources (DEWNR) for funding this project. Support for this project was also provided by the Future Farm Industries Cooperative Research Centre – New Woody Crop Industries Program.

We are grateful to many landholders in agricultural districts of South Australia for sharing their wealth of knowledge and access to their lands, especially, Allan Piggott, Ted Bell, Kirribilli Viticulture, Brenton Mosey, Ted Nettleton, Janet Pedler (Bushland Conservation Company), Liam Pratt (District Council of Malalla), Ryan & Geoff Schell, Erica Sturman-Davis, Rodger Wheaton, Rob Stevens, Sue & Rohan Giles, John Chandler, Kym & Sarah & Mandal Tiver, Dennis Chandler, Jack & Gwenda Hassell, Rohan Parker, Andrew Hoskyns, Errol Schensher, Joe Standford, Cameron Grundy, Guy Cunningham, Chris Cowan, Jock Duncan, Ian Sparks, G & B Foster, David Jericho, Geoff Holman, Barrie Stirling, David Jericho, Mark Schilling, Tom Dunsford, Greg Stevens, Alex Sampson, Peter Davis, M & A Cook, B Mitchell, D Van De Vorstenbosch, Allan Thomas, Annette Florence, Andrew & Tracie Heinrich, Loxton Council, Gary Frahn, Mick Saville, SA Water, and DEWNR National Parks and Wildlife.

We greatly appreciate the support of Tim Herrmann, Glenn Gale, James Hall, Craig Liddicoat, Susan Sweeney, Stephen Laird, Rohan Hamden, Kirsty Bevan, Phil Pisanu, Brad Page, Jeff Foulkes, Sandy Carruthers, Stuart Beinke, Danny Doyle, Andrew Fisher, Rob Wallace, Simon Oster and Russell Seaman (DEWNR); Karen Paltridge, Di Pech, Angela Rouse and Steve Wenham (Forestry SA); Amy McMurren and Noel Richards (PIRSA); Peter Pavy and Louisa Perrin (SA Water); Tony Richman (SE NRM Board); Graeme Gates (Coorong District Council); Bertram Ostendorf and Wayne Meyers (University of Adelaide); and Brenton Lewis (Regional Development Australia).

We are indebted to Trees For Life (Bernie Omodei and Maureen Redfern) for their willingness to provide us access to native plants sales and distribution information for South Australia. Sincere thanks to Alison Fairlamb, Keith Johnston, Stuart Collard, Dimitri Argiridis and Kylie Neumann for their help with field measurements and data entry. Many thanks to CSIRO (Keryn Paul, John Larmour, Jacqui England) and DOTE (Rob deLigt) for the opportunity to develop partnerships and collaborative research activities (e.g. Moorlands surveys & analysis), that have enhanced the value of SA survey data, and contributed to the redesign and significant improvement of FullCAM models used in nation carbon accounting methodologies.

ABBREVIATIONS

CFI — Carbon Farming Initiative

CO2-e — carbon dioxide equivalent

CRC — Cooperative Research Centre

CSIRO — Commonwealth Scientific and Industrial Research Organisation

DCCEE — Department of Climate Change and Energy Efficiency (now DOTE)

DEWNR — Department of Environment, Water and Natural Resources

DOA — Department of Agriculture

DOIC — Domestic Offsets Integrity Committee

DOTE — Department of the Environment

DSEWPC — Department of Sustainability, Environment, Water, Population and Communities (now DOTE)

FPI — Forest Productivity Index

GIS — Geographic Information System

IBRA — Interim Biogeographic Regions of Australia

MAI — mean annual increment

NCAT — National Carbon Accounting Toolbox

NRM — Natural Resource Management

NVIS — National Vegetation Information System

PIRSA — Primary Industries and Resources South Australia

RIRDC — Rural Industries Research and Development Corporation

RMT — Reforestation Modelling Tool

TFL — Trees For Life

CONTENTS

Foreword	i
Executive Summary	iii
Acknowledgements	vi
Abbreviations	vi
Contents	vii
List of Figures	ix
List of Tables	х
1. Introduction	1
Natural Resource Management and Seguestering Carbon in Vegetation	1
Filling the Knowledge Gap	2
Purpose of Revegetation	4
Carbon Assessments	5
Carbon Accounting	5
Aims and Objectives	6
2. Local Revegetation Species and Activities	7
Local Native Species	7
Species used in Revegetation	7
Revegetation Activities	8
3. Carbon Assessment Methods	11
Assessing Plant Biomass	11
Above-ground Biomass	12
Biometrics and Sampling	12
Allometric Models of Above-ground Biomass	13
Model Robustness	16
Below-ground (Root) Biomass	18
4. Carbon Sequestration in Revegetation and Remnants	21
Surveys of Above-ground Biomass	21
Survey Methods	21
Spatial Information	24
Survey Estimates of Carbon Sequestration Rates	25
5. Carbon Sequestration Models	27
Previous Studies	27
Revegetation Types	27
Plant Density	27
Above-ground Biomass Production and Carbon Sequestration Rates	28
Preliminary Models of Carbon Stocks in Remnant Vegetation	29
DEWNR Carbon Sequestration from Revegetation Estimator Tool	32
Climate Change and Carbon Sequestration Rates	34
Improving National Carbon Accounting Models	35
6. Regional Estimates of Carbon Sequestration	37
Carbon Sequestration from Revegetation	37
Regional Estimates	39
Natural Resource Management Regions	39
Cropping Districts	57
Local Government Regions	58
Interim Biogeographic Regions	59
Trees For Life Zones	60
Preliminary Estimates of Carbon Stocks in Remnant Vegetation	61
7. Discussion	63
Carbon Markets, Drivers and Policies	63
Carbon Accounting, Models and Assessments	65
Conclusions and Recommendations	67

References	69
Glossary	73
Appendices	75
Appendix A - Regional Species Lists	76
Appendix B - Revegetation Species	82
Appendix C - Destructive Sampling and Biometric Studies	89
Appendix D - Productivity and Carbon Sequestration Studies	92
Appendix E - SA Soil Mapping Classes used in Spatial Modelling	107
Appendix F - Improving National Carbon Accounting Models: Moorlands Case Study	108
Introduction	108
Location	108
Assessments of Carbon in Plants	110
Comparisons of Carbon Assessment Methods	114
Assessments of Soil Carbon	115
Discussion	117
Conclusions	120
Supplementary Data – Soil Reports	121

LIST OF FIGURES

Figure 1.	Some of the oldest revegetation in the state can be found in the Mid-North region of South Australia (120 year old Riv Box <i>Eucalyptus largiflorens</i> woodlot plantation at Bundaleer Forest).	ver 3
Figure 2.	Carbon Sequestration from Revegetation project study area, including Natural Resource Management (NRM) Regions boundaries.	4
Figure 3.	Trees For Life zones and NRM boundaries in the agricultural regions of South Australia.	8
Figure 4.	Trees For Life Tree Scheme Plant distributions and average rainfall for South Australia (1997-2011).	10
Figure 5.	Basic allometric relationships between some simple plant measurements and individual plant dry biomass.	14
Figure 6.	Independently observed (DOTE/CSIRO data) versus predicted (DEWNR Stemwood Volume model) of above-ground d plant biomass for southern Australian plant species.	ry 17
Figure 7.	Simple allometric relationships between individual plant measurements, above-ground plant dry biomass and root dry biomass.	/ 18
Figure 8.	Carbon Sequestration from Revegetation: SA Agricultural Regions project survey sites.	23
Figure 9.	Relationships between carbon sequestration rates of revegetation (woodlots & environmental plantings) and planting design, age or height in agricultural regions of South Australia.	29
Figure 10.	Relationships between carbon sequestration rates of revegetation (woodlots & environmental plantings) and environmental conditions or current national carbon models in agricultural regions of South Australia.	30
Figure 11.	Main screen of the "DEWNR Carbon Sequestration from Revegetation Estimator" tool.	33
Figure 12.	Changes in revegetation carbon sequestration rates over time and under different climate scenarios using the "DEWN Carbon Sequestration from Revegetation Estimator" tool.	R 33
Figure 13.	Changes in revegetation carbon asset values over time and under different climate scenarios using the "DEWNR Carbo Sequestration from Revegetation Estimator" tool.	on 34
Figure 14.	Estimated climate change influences on cumulative average carbon sequestration rates in environmental plantings (88 trees) by NRM Regions.	;% 36
Figure 15.	Predicted average annual carbon sequestration rates from Tree Dominated Environmental Plantings in South Australia	ı. 38
Figure 16.	Variations in local plant density (at 25 years of age) for a) Woodlots (100% trees) and b) Environmental Plantings (88% trees) resulting from differences in climate, soil and revegetation types in the agricultural region of South Australia.	, 42
Figure 17.	Estimated average carbon sequestration rates (first 25 years) from a) Woodlots (100% trees) and b) Environmental Plantings (88% trees) using local plant density in the agricultural region of South Australia.	43
Figure 18.	Agricultural land by NRM Regions and rainfall zones of South Australia.	45
Figure 19.	Potential annual carbon crop and annual value (at \$23/t CO ₂ -e) based on 10% target utilisation of Woodlots (100%tree revegetation on agricultural land by NRM Regions and rainfall zones.	es) 45
Figure 20.	Potential annual carbon crop and annual value (at \$23/t CO ₂ -e) based on 10% target utilisation of Environmental Plantings (88%trees) on agricultural land by NRM Regions and rainfall zones.	45
Figure 21.	Estimated average carbon sequestration rates (first 25 years) from Woodlots in the Adelaide and Mt Lofty Ranges NRM Region.	Л 46
Figure 22.	Estimated average carbon sequestration rates (first 25 years) from typical Environmental Plantings (88% trees) in the Adelaide and Mt Lofty Ranges NRM Region.	47
Figure 23.	Estimated average carbon sequestration rates (first 25 years) from Woodlots in the Eyre Peninsula NRM Region.	48
Figure 24.	Estimated average carbon sequestration rates (first 25 years) from typical Environmental Plantings (88% trees) in the E Peninsula NRM Region.	yre 49
Figure 25.	Estimated average carbon sequestration rates (first 25 years) from Woodlots in the Northern and Yorke NRM Region.	50
Figure 26.	Estimated average carbon sequestration rates (first 25 years) from typical Environmental Plantings (88% trees) in the Northern and Yorke NRM Region.	51
Figure 27.	Estimated average carbon sequestration rates (first 25 years) from Woodlots in the SA Murray-Darling Basin NRM Region.	52
Figure 28.	Estimated average carbon sequestration rates (first 25 years) from typical Environmental Plantings (88% trees) in the S Murray-Darling Basin NRM Region.	A 53
Figure 29.	Estimated average carbon sequestration rates (first 25 years) from Woodlots in the South East NRM Region.	54
Figure 30.	Estimated average carbon sequestration rates (first 25 years) from typical Environmental Plantings (88% trees) in the South East NRM Region.	55
Figure 31.	Estimated average carbon sequestration rates (first 25 years) from Woodlots in the Kangaroo Island NRM Region.	56
Figure 32.	Estimated average carbon sequestration rates (first 25 years) from typical Environmental Plantings (88% trees) in the Kangaroo Island NRM Region.	56

Figure 33.	. Productive and well managed woodlots can sequester significant amounts of carbon in lower to medium rainfall regions of the state (30 year old coppice regrowth from Sugar Gums <i>Eucalyptus cladocalyx</i> planted in 1900, near Hamley Bridge,					
	SA).	64				
Figure 34.	Block1991: Multi-species Eucalypt Mallee plantings.	109				
Figure 35.	Block1996: Multi-species Environmental plantings.	109				
Figure 36.	Windbreak 1996: Multi-species Environmental plantings.	109				
Figure 37.	Remnant vegetation at Moorlands.	109				
Figure 38.	DEWNR and CSIRO staff undertaking measurements to determine allometric relationships between stem diameter as carbon content at Moorlands.	nd 111				
Figure 39.	CSIRO weighing equipment used at the Moorlands revegetation sites to measure the green biomass of destructively sampled eucalypt mallees, trees and shrubs.	111				
Figure 40.	DEWNR and CSIRO researchers excavating the root zones of plants at Moorlands to develop a better understanding the carbon stored in below-ground structures.	of 112				
Figure 41.	Excavated and sorted roots from a destructive sampling plot at Moorlands ready for weighing and subsampling. Subsamples were oven dried and reweighed to determine moisture content.	112				
Figure 42.	Comparisons between soil organic carbon stock in cropland and revegetation (mid-row, under tree) at Moorlands.	116				
Figure 43.	An example of a large mallee root (lignotuber) of a 21 year old eucalypt mallee at a revegetation site at Moorlands.	118				

LIST OF TABLES

Table 1.	Top 50 most commonly planted species and proportion for each South Australian NRM Region, based on 10 years of Trees For Life plant seedling (Tree Scheme) distribution data (1999 - 2008).	9
Table 2.	Estimated area of revegetation and commercial forestry types established in South Australia (1999-2006).	10
Table 3.	Estimated area of revegetation and commercial forestry by agricultural region established in South Australia (1999- 2006).	10
Table 4.	Improvements in allometric model fit from baseline Stemwood Volume and Basal Area models by the stepwise additi of significant variables.	on 15
Table 5.	The best single variable and multivariate allometric models for predicting above-ground plant biomass from simple plant measurements.	15
Table 6.	An evaluation of the robustness of DEWNR Stemwood Volume model by lifeform and species groupings using DEWN and independently collected DOTE/CSIRO destructive data.	IR 17
Table 7.	The best single variable and recommended multivariate allometric models for predicting below-ground (root) biomas from simple plant measurements and above-ground biomass.	s 19
Table 8.	Total number of revegetation and remnant vegetation sites surveyed for this study, stratified by NRM Region and rain zone.	ıfall 22
Table 9.	Generalised summary of measurement protocols used in 301 surveys of carbon sequestration in the agricultural regic of South Australia.	ns 23
Table 10.	Summary of average annual rainfall and spatial growth model indices, and observed plant attributes, biomass and carbon sequestration estimates from woodlots, environmental plantings and remnant vegetation in the agricultural regions of SA.	25
Table 11.	Improvements in local plant density model fit by the stepwise addition of significant variables and the inclusion of a s interaction.	oil 28
Table 12.	Models for predicting average local plant stocking rate using planting design, age, climate and soil parameters.	28
Table 13.	Comparisons of relationships between above-ground biomass production in revegetation sites and DOTE FPI, BiosEq and DEWNR Climate plus Soil models (rainfall primary predictor), including the influence of additional predictor varia on primary predictors.	uil bles 30
Table 14.	Improvements in carbon sequestration model fit from baseline Climate and Climate plus Soils models by the stepwise addition of significant variables.	; 31
Table 15.	Models for predicting above-ground biomass productivity and carbon sequestration rates using planting design, age climate and soil parameters.	31
Table 16.	Preliminary models for predicting above-ground biomass and carbon stocks in remnant vegetation.	32
Table 17.	Climate change scenarios used to explore the influence of increases in temperature and potential evaporation, and decreases in annual rainfall, on carbon sequestration rates from revegetation.	35
Table 18.	Area of agricultural land by NRM Region and rainfall zone in South Australia.	40
Table 19.	Potential evaporation rates of agricultural land by NRM Region and rainfall zone in South Australia.	40
Table 20.	Index of soil profile clay content of agricultural land by NRM Region and rainfall zone in South Australia.	40

Table 21.	Average plant density of revegetation (at 25 years of age) in agricultural land by NRM Region and rainfall zone in Soc Australia (DEWNR model).	uth 41
Table 22.	Carbon sequestration rates from revegetation (first 25 years) in agricultural land by NRM Region and rainfall zone in South Australia (DEWNR model).	41
Table 23.	Annual carbon sequestration potential crop and value from a 10% target Woodlot (100% trees) revegetation in agricultural land by NRM Region and rainfall zone in South Australia	44
Table 24.	Annual carbon sequestration potential crop and value from a 10% target Environmental Plantings (88% trees) revegetation in agricultural land by NRM Region and rainfall zone in South Australia.	44
Table 25.	Summary of average annual rainfall, and estimated planting density and carbon sequestration rates for revegetation (Woodlots - 100% trees; Environmental Plantings - 88% trees) in agricultural lands by Cropping Districts of South Australia.	57
Table 26.	Summary of average annual rainfall, and estimated planting density and carbon sequestration rates for revegetation (Woodlots - 100% trees; Environmental Plantings - 88% trees) in agricultural lands by government Planning Divisions South Australia.	of 57
Table 27.	Summary of average annual rainfall, and estimated planting density and carbon sequestration rates for revegetation (Woodlots - 100% trees; Environmental Plantings - 88% trees) in agricultural lands by Local Government regions of South Australia.	58
Table 28.	Summary of average annual rainfall, and estimated planting density and carbon sequestration rates for revegetation (Woodlots - 100% trees; Environmental Plantings - 88% trees) in agricultural lands by IBRA subregions of South Australia.	59
Table 29.	Summary of average annual rainfall, and estimated planting density and carbon sequestration rates for revegetation (Woodlots - 100% trees; Environmental Plantings - 88% trees) in agricultural lands by Trees For Life zones of South Australia.	60
Table 30.	Area of woody remnant vegetation in government Parks and reserves or Privately managed lands, and pre-1750 woo vegetation extent, by NRM Region and rainfall zone in South Australia.	dy 61
Table 31.	Average above-ground standing carbon of woody remnant vegetation in government Parks and reserves or Privately managed lands by NRM Region and rainfall zone in South Australia.	62
Table 32.	Estimated above-ground standing carbon held by woody remnant vegetation in government Parks and reserves or Privately managed lands, and pre-1750 extent, by NRM Region and rainfall zone.	62
Table 33.	Frequency of dominant plant species in the Adelaide & Mt Lofty Ranges NRM Region.	76
Table 34.	Frequency of dominant plant species in the Eyre Peninsula NRM Region.	77
Table 35.	Frequency of dominant plant species in the Kangaroo Island NRM Region.	78
Table 36.	Frequency of dominant plant species in the Northern & Yorke NRM Region.	79
Table 37.	Frequency of dominant plant species of South Australian Murray-Darling Basin NRM Region.	80
Table 38.	Frequency of dominant plant species of South East NRM Region.	81
Table 39.	Dominant revegetation species of the Adelaide & Mt Lofty Ranges NRM Region.	82
Table 40.	Dominant revegetation species of the Eyre Peninsula NRM Region.	83
Table 41.	Dominant revegetation species of the Kangaroo Island NRM Region.	84
Table 42.	Dominant revegetation species of the Northern & Yorke NRM Region.	85
Table 43.	Dominant revegetation species of the SA Murray-Darling Basin NRM Region.	86
Table 44.	Dominant revegetation species of the South East NRM Region.	87
Table 45.	Dominant revegetation species of the Arid Zone region.	88
Table 46.	Summary of average biophysical attributes of plant species measured and destructively sampled for biometric studies	s.89
Table 47.	Observed above-ground biomass and carbon sequestration from revegetation sites in agricultural regions of South Australia.	92
Table 48.	Observed above-ground biomass and carbon sequestration from remnant vegetation sites in agricultural regions of South Australia.	104
Table 49.	Summary of soil classes and nominal assigned values used in developing models of carbon sequestration.	107
Table 50.	Summary of species recorded in Block plantings within the Moorlands Case Study.	111
Table 51.	Destructively sampled plants from the Moorlands Case Study.	112
Table 52.	Comparisons of plot and site carbon estimates using different assessment techniques in the Moorlands Case Study.	115
Table 53.	Observed and predicted soil organic carbon stocks in the 0-30cm soil profile at cropland, revegetation and remnant vegetation sites at Moorlands.	116
Table 54.	Comparison of observed carbon stock and predicted carbon stock using DOTE NCAT and CFI RMT models and revegetation options at the Moorlands Block 1991 site.	119

1. INTRODUCTION

NATURAL RESOURCE MANAGEMENT AND SEQUESTERING CARBON IN VEGETATION

The integrated management of our natural resources continues to be a high priority for South Australia, as reflected in state policy and legislation. The South Australian Strategic Plan reflects a desire to manage natural resources in an integrated way that will benefit all South Australians. Our state Plan's vision "creates a future shaped by choice, not chance. Keeping our communities strong and vibrant, protecting our rich environment and pursuing shared economic prosperity will provide a better future for South Australians" (Government of South Australia 2011). Being able to fulfil this vision is strongly connected to our ability to manage our natural resources and adapt to the changing climate in our agricultural regions.

The Carbon Farming Initiative (CFI) is an Australian Government program that prescribes the rules and permitted methodologies under which carbon accounting and trading is to be conducted in Australia. Participation in these formal carbon markets requires that revegetation activities conform to Domestic Offsets Integrity Committee (DOIC) approved methodologies and that they pass their "additionally test" (i.e. the carbon sequestered is in addition to what would occur in the absence of the project). For revegetation to gain accreditation and generate Australian Carbon Credit Units (ACCUs) within most existing and proposed Australian carbon trading schemes in Australia, the revegetation must meet the "forest" criteria identified by the Kyoto protocol (Department of Climate Change 2008). A Kyotocompliant forest is defined as being planted after 1990 with minimum area of 0.2 hectares, tree crown cover of 20 per cent and a mature tree height of 2 metres or more. Carbon stored by smaller plants (<2 metres high) within these forests are included in the total carbon pool for accounting purposes but are typically a small proportion of the total carbon on site.

The increased policy focus on the development of carbon markets provides an economic driver for a range of revegetation activities. The Carbon Farming Initiative in particular provides economic mechanisms to encourage environmental revegetation and the adoption of other woody crops. Such activities can contribute to diverse multipurpose agricultural systems that are productive, sustainable, resilient and adaptable to climate change. Strategically placed revegetation can provide a wide range of economic benefits to land holders and facilitate ecosystem services that benefit local areas and the broader community. Prior research conducted by Department of Environment, Water and Natural Resources (DEWNR) FloraSearch, Future Farm Industries Cooperative Research Centre, Rural Industries Research and Development Corporation and CSIRO has identified the low to medium rainfall agricultural zones (250 - 650mm/year) as having the greatest feasibility for developing carbon markets in Australia (Hobbs et al. 2009c).

The SA Natural Resources Management Act (Government of South Australia 2004) provides the underlying structure for government activities to better manage our natural resources. Overall state goals for NRM are detailed in the State Natural Resources Management Plan (Government of South Australia 2012) that identifies the organisational structure for NRM groups, and sets out guiding targets, indicators and measures to achieve those goals.

State NRM Plan Vision: We care for the land, water, air and sea that sustain us.

- Goal 1: People taking responsibility for natural resources and making informed decisions
- Goal 2: Sustainable management and productive use of land, water, air and sea.
- Goal 3: Improved condition and resilience of natural systems.

The integration of sustainable reforestation (e.g. habitat restoration, carbon markets & extractive use) with other agricultural production (e.g. grazing and cropping) has the potential to provide more stable landholder returns, contribute to the productive capacity of the land and assist in the sustainable management of our natural resources. Such an approach is likely to improve the prosperity of local rural communities and industries while potentially increasing the extent and condition of native vegetation in these regions. The use of indigenous native species in revegetation activities (commercial or environmental) can minimise the risks associated with the introduction of woody crop plant species from other regions of the world. Local biodiversity can typically be enhanced with revegetation through the provision of plant species and structural diversity not found in cleared agricultural lands.

This current research project addresses South Australia's 2012 NRM Plan through 'Goal 2: Guiding Target 6: Monitoring and evaluating the condition of our natural resources' by ensuring current and future assessments of carbon stocks in native vegetation (revegetation and remnant) are accurate and reliable on which to base future NRM planning and investment decisions.

This research also contributes to meeting a number of the Guiding Targets of Goal 1 and 3:

- Better informing people about carbon sequestration rates across the state that improves their capacity to make informed NRM decisions (Goal 1, Guiding Target 1).
- Improve the accuracy of carbon sequestration models to facilitate improved capacity for organisations and institutions to better manage natural resources (Goal 1, Guiding Target 3).
- Increase the level of confidence in carbon sequestration predictions to encourage commercial investment in new native plantings (Goal 3, Guiding Target 8).
- Increase the level of understanding about carbon sequestration potentials presented by above-ground vegetation in different sections of the landscape (Goal 3, Guiding Target 11).

This work is also consistent with South Australia's Greenhouse Strategy, "Tackling Climate Change: South Australia's Greenhouse Strategy 2007-2020" (Government of South Australia 2007). Most notably Section 8 - Natural resources:

- Objective 8.1 To strengthen the resilience of industries reliant on natural resources in the face of potential impacts of climate change.
- Objective 8.4 To reduce greenhouse gas emissions from the natural resources sector and increase carbon sinks.

and Section 4 - Industry objectives:

• Objective 4.3 - To target commercial opportunities and develop products and services of the future.

FILLING THE KNOWLEDGE GAP

There is a growing need to efficiently evaluate and predict carbon sequestration rates from environmental plantings and sustainable woody crops in the low to medium rainfall (250 - 650mm/year) dryland agriculture zones of South Australia. A key objective of this project is to reduce the knowledge gap by increasing the representation, accuracy and reliability of biomass productivity data for revegetation activities in SA and to calibrate carbon accounting models used for carbon accounting and trading schemes (e.g. Carbon Farming Initiative, CFI; DCCEE 2011). Without this crucial information the state government is at risk of being unable to accurately determine or monitor carbon sequestration rates from revegetation, provide accurate carbon accounting evaluations for carbon trading schemes, or credibly support investments in the development of carbon markets in South Australia.

The sequestration rates of revegetation using native species woodlots and environmental plantings are poorly known in many parts of Australia (Stucley et al. 2004, Waterworth et al. 2007, Polglase et al. 2008, Paul et al. 2012). This knowledge gap is particularly acute in the case of environmental plantings and plantings in low to medium rainfall areas where there has been little economic impetus toward acquiring such information in the past. While there has been progress toward closing this gap in recent years the lack of accurate data remains an impediment to adoption. This project aims to deliver critical information and develop methodologies for evaluating and predicting carbon sequestration rates in sustainable woody crops and environmental revegetation plantings in agricultural regions of South Australia (Figure 2).

Photo: C.R. Neumann

Figure 1. Some of the oldest revegetation in the state can be found in the Mid-North region of South Australia (120 year old River Box *Eucalyptus largiflorens* woodlot plantation at Bundaleer Forest).

This project builds on the knowledge and understanding developed by DEWNR from prior research in the Murray-Darling Basin, the Mid-North and Upper South East regions of South Australia (Hobbs *et al.* 2010, Neumann *et al.* 2010, and Hobbs *et al.* 2009b). Recent surveys of additional NRM regions and new analyses have allowed the development of more reliable and representative carbon sequestration estimates for the agricultural regions of the State.

Older age plantations were a deliberate focus of this project as they better represent peak standing biomass associated with mature sites (Figure 1). Carbon sequestration rates in younger age reforestation may be accelerated due to soil water and nutrient stores resulting from previous land use for crops and pastures. Thus data gathered from younger age sites may misrepresent the long-term carbon sequestration rate because extrapolation of young age growth rates to represent older plantations can significantly inflate and misrepresent estimates of peak standing biomass. Comparisons between older age revegetation and naturally occurring remnant vegetation communities may provide some estimates of differences in their long-term carbon stocks. The peak standing biomass of natural systems may be correlated to peak standing biomass expected from mature revegetation but insufficient data is available to reliably test this hypothesis. It is likely that this premise is flawed at some locations and that revegetation of agricultural lands, with added nutrient status from past cropping/grazing history, has significantly increased the site's potential for carbon sequestration.

DEWNR's Science Monitoring and Knowledge (SMK) Ecology team have undertaken complex research into plant and landscape ecology to develop robust carbon sequestration assessment methodologies, expand databases of species and revegetation community productivity, and create parameter sets for carbon modelling programs. The work contributes significantly to the feasibility assessment and development of effective carbon markets at both state and national levels. This report outlines current research, applied science and collaborations that have reduced important gaps in the State and Nation's knowledge base.

Figure 2. Carbon Sequestration from Revegetation project study area, including Natural Resource Management (NRM) Regions boundaries.

PURPOSE OF REVEGETATION

Large parts of South Australia's landscapes have been cleared of native vegetation for agricultural use. The growing of crops and grazing of livestock in these regions provides essential food and fibre commodities and industries and contributes to the wealth and prosperity of the state. However, in some landscapes agricultural uses have led to detrimental natural resource management issues (e.g. changes in biodiversity, water balances, soil health). In the future, under changing climates and commodity markets some current agricultural pursuits will become less viable and opportunities for reforestation, new agricultural industries, or blends of sustainable land uses will arise (Hobbs *et al.* 2009abc, Polglase *et al.* 2008, 2013, Paul *et al.* 2013a).

Many environmental and economic benefits can be achieved from increasing the use of perennial plant species in Australian landscapes (Australian Greenhouse Office & Murray Darling Basin Commission 2001). New plantations of woody perennial species can improve biodiversity outcomes; reduce groundwater recharge, dryland salinity, saline river discharges, wind erosion and drought risk; and increase landscape sustainability, livestock production, economic diversification and the stability of financial returns.

Environmental plantings for biodiversity purposes can provide multiple benefits to both endemic living organisms (e.g. provision of habitats) and landholders (e.g. sequestration of tradeable carbon stocks). This current study assists in the selection of revegetation species by identifying common local native species, and species typically used in revegetation activities in recent years. The location and prioritisation of new biodiverse revegetation projects, and species chosen, should be guided by a sound understanding of how well these new plant communities contribute to local and regional ecological processes and purposes.

South Australia has a long history of commercial softwood (pines) and hardwood (eucalypt) forestry containing some of the oldest forestry reserves in Australia (Figure 2, Figure 1). Blue Gum (Eucalyptus *globulus*) and Sugar Gum (*Eucalyptus cladocalyx*) are the main hardwood species used in these production forests. Both eucalypt species readily resprout (coppice) from stumps after harvest. The living roots and stumps are maintained and the regrowth is periodically harvested without the need to replant. This process is similar to that in commercial oil mallee plantations and other short rotation woody crops proposed as feed stocks for biofuel production. Within these production systems significant amounts of biomass (i.e. carbon) is maintained in the stump and roots of the parent trees. The recognition of the carbon sequestered in these systems and its inclusion in carbon trading schemes would add to the viability of many of these forestry enterprises.

The potential of revegetation to offset carbon emissions and produce tradeable commodities has emerged in recent years, especially with the introduction of the carbon pricing mechanism on July 1st 2012 under the Australian Government's Carbon Farming Initiative. Environmental and other perennial plantings are simple methods to offset carbon emissions. Some perennial plantings could even be used to reduce fossil fuel use by providing renewable fuel sources (Stucley *et al.* 2004, Zorzetto & Chudleigh 1999, Hague *et al.* 2002, Harper *et al.* 2007).

CARBON ASSESSMENTS

Unlike most biomass crops where yields of products are readily measured at harvest times, permanent carbon crops are more difficult to assess. Two main approaches may be used to determine the yields of these carbon crops: 1) physical measurements of plant material supported by destructive subsamples or reliable estimation techniques (i.e. allometrics); or 2) process or simulation models of predicted carbon yields.

For physical revegetation site assessment of carbon sequestration (i.e. inventory) the whole plant biomass is required rather than the simple estimates of stemwood volumes used in classical forestry. To estimate whole plant biomass, site productivity can be rapidly assessed using reliable relationships (allometrics) between plant measurements and biomass developed by measuring and destructively harvesting representative individual plants and species. By harvesting a small number of individuals of a species and exploring their morphological parameters, individual dry biomass and the dry biomass of component fractions (leaves, bark, branches and stemwood) it is possible to develop useful formulas that can be applied to similar individuals. Using this method a set of simple measurements can be identified and applied without the need for further destructive sampling.

Allometric relationships quantified in this study were developed by combining data from recent destructive surveys with similar information collected from previous South Australian studies (Hobbs et al. 2005, Hobbs et al. 2006, Hobbs et al. 2010, Neumann et al. 2010, Neumann et al. 2011). Stemwood volume calculations were chosen for allometric relationships as they are most comparable with the process-based stemwood models used in the National Carbon Accounting Toolbox (NCAT, DCCEE 2009), Full Carbon Accounting Model (FullCAM, Richards & Evans 2000, Richards et al. 2005, Waterworth et al. 2007) and the Reforestation Modelling Tool (RMT, DCCEE 2011). In most instances physical and time constraints limit assessments to the above-ground components of plant biomass, the exception being two sites at Moorlands (near Tailem Bend) where collaboration with CSIRO and the Australian Government Department of the Environment (DOTE) enabled root zone excavations and below-ground measurements to be obtained. Local level assessments of productivity can also be amalgamated to provide greater accuracy in regional productivity estimates and carbon sequestration potential.

CARBON ACCOUNTING

The Australian Government has invested strongly over the past decade in building Australia's National Carbon Accounting System (NCAS) with the aim of providing a standard method of accounting for greenhouse gas emissions and ensuring credibility under international agreements on greenhouse gas emissions. The National Carbon Accounting Toolbox (NCAT) is part of that system and enables land managers to track greenhouse gas emissions to and removals from the atmosphere. As part of that function the toolbox houses the FullCAM point-based model that allows land managers to estimate carbon sequestration in their reforestation projects. In 2011, the Carbon Farming Initiative (CFI) was created to further enhance a land manager's ability to participate in new carbon markets and included the release of the Reforestation Modelling Tool (RMT) which was based on the same point-based modelling approach as the NCAT (i.e. FullCAM) with a revised interface.

These predictive models aim to quantify Australia's greenhouse gas emissions and carbon sinks associated with Australian land systems for international obligations on carbon accounting. In June 2012, the DOIC instated DOTE's primary methodology (i.e. CFI Reforestation Modelling Tool, RMT) for carbon accounting in environmental plantings. It is currently the only available cost-effective and approved methodology for use in South Australia.

Carbon accounting methodologies and growth rates for commercial forestry species in higher rainfall regions (>650mm) are now well established within these national carbon accounting schemes and models (Waterworth et al. 2007). However, other native woody crop species and environmental plantings in medium to lower rainfall regions (<650mm) are less well represented in these systems. Consequently, a number of users of the system (DOTE, CSIRO, DEWNR, SA Water, Greening Australia and Canopy) have called for additional information collections and sampling to produce a more comprehensive dataset for use in carbon accounting models. Previous DEWNR studies have illustrated that currently available national models can severely under predict (i.e. on average only 27% of observed rates) carbon sequestration rates in low to medium rainfall regions (Hobbs et al. 2009a, Hobbs et al. 2010). The national models currently limit our ability to accurately quantify growth rates of revegetation in the agricultural regions of our State. The South Australian Government requires better evidence of the difference between local growth rates and current national models, and realises the benefit of contributing local calibration data to improve the quality and representativeness of future national carbon models for our State.

DEWNR has previously invested resources and developed collaborations with the Future Farm Industries (FFI) CRC and the Rural Industry Research and Development Corporation (RIRDC) to undertake studies on carbon sequestration rates and evaluation techniques from areas within SA (Mid-North -Neumann *et al.* 2011; Southern Murray-Darling Basin -Neumann *et al.* 2011; Hobbs *et al.* 2010; Upper South East - Hobbs *et al.* 2006, 2009a; River Murray Dryland Corridor - Hobbs & Bennell 2005). DEWNR's SMK Ecology team has collaborated extensively with CSIRO in recent years on other national studies of native plant growth rates and carbon sequestration modelling (Paul *et al.* 2012, 2013b, Polglase *et al.* 2008). From these investments and collaborations DEWNR has developed a strong capacity to undertake scientifically rigorous evaluations of carbon sequestration rates of native plant species in South Australia.

While the ultimate objective of this work is to develop a comprehensive understanding of carbon sequestration rates of all vegetation in South Australia, it will only progress by gathering the best available information from past surveys, develop cost-effective and sound methodologies for future surveys, and provide spatial estimates of anticipated sequestration from a variety of different forms of revegetation. Landscapes currently utilised for dryland agriculture in the low to medium rainfall regions (250-650mm/year) have strong potential for investments in revegetation for carbon sequestration, sustainable woody crop production and beneficial environmental outcomes (Hobbs *et al.* 2009abc, Polglase *et al.* 2008, 2013, Paul *et al.* 2013a).

AIMS AND OBJECTIVES

This report aims to provide reliable techniques and models to assess carbon stocks and sequestration rates from revegetation activities and native plant communities in the agricultural regions of South Australia. Key objectives of this study are:

- Provide regional species lists and identify those species currently used in revegetation activities across the State.
- Develop and refine methods to assess carbon sequestration from Australian native plant species.
- Develop carbon sequestration from revegetation models that are relevant for South Australian agricultural regions and are calibrated to local conditions.
- Report on the regional potential of carbon sequestration by summarising the results of model predictions on cleared agricultural landscapes across the State.
- Improve the reliability of Australian carbon accounting methodologies approved by the Domestic Offset Integrity Commission.

2. LOCAL REVEGETATION SPECIES AND ACTIVITIES

LOCAL NATIVE SPECIES

There are many biodiversity and practical sitesuitability benefits of utilising common local native species for revegetation and carbon sequestration activities. This of course is affected by ease of propagation, targeted diversity of plant species and complexity of plant strata being created. To determine the most common local native species suited for each Natural Resource Management (NRM) region an analysis of regional species frequency was conducted using plant records from the DEWNR State Herbarium and biological survey databases (DEWNR eFloraSA 2012).

To make the output from the database more meaningful species lists were divided into height strata classes based on literature searches of maximum recorded height by species. All plants with a maximum recorded height <2 metres were excluded as they do not meet the requirements of Kyoto forest species. Although the carbon stored by smaller plants (<2 metres) are recognised in carbon accounts within forests, they are typically only a minor contributor to the total carbon pool at sites within agricultural regions. These generalised height classes (e.g. Tall, Moderately Tall, Medium) are designed to be a guide for the selection of overstorey, midstorey and taller understorey plants for revegetation projects. Variations in plant height across their environmental range and location made it difficult to classify species into an exact stratum position (e.g. a midstorey tree at one site may become the main overstorey species at another depending on the species mix and environment).

The 60 most common trees and taller shrubs for each NRM Region are tabulated in Appendix A - Regional Species Lists (Table 33 to Table 38). These tables also provide information on the distribution of species by rainfall zones within each NRM Region. Frequency of occurrence data for each species in each zone should largely coincide with its importance as a species for environmental revegetation in that area.

SPECIES USED IN REVEGETATION

In reality what has been planted at any location for revegetation purposes may not reflect the most common native species in the surrounding area. Species selections may be restricted to available nursery stock in any given year. Species that are easy to propagate can dominate the selections available, while ones that are common but are difficult to propagate may be in short supply. Revegetation by direct seeding also favours species that respond well to that treatment, skewing species representation in some sites.

Emes *et al.* (2006) determined that Trees For Life (TFL) had provided a significant number of the plants that went into revegetation efforts around the state (28% of total). Fortunately, Trees For Life targets species production for well-defined zones in South Australia (Figure 3). A list of species for each of these zones is available each year and landholders are encouraged to place orders for seedlings based on those lists. Trees For Life kindly permitted access to their plant sales and distribution data for the ten-year period from 1999 to 2008 from the TFL zones within the study area (Bernie Odomei, pers. comm.).

Due to differences between NRM Region and TFL zone boundaries in some parts of the state (Figure 3), it is difficult to perfectly determine which species has been used and the total number of TFL plants used in all NRM Regions. To provide species lists and estimates of the number of plants used in revegetation for each NRM Region the data from each TFL zone was therefore assigned to the dominant NRM Region in which it is located (Table 1, Appendix B - Revegetation Species). Far North and North East Pastoral TFL zones partially overlap with southern NRM Regions but this data was excluded from southern NRM Regional tallies and nominally classified as "Arid Zone" for this report.

As anticipated, there is a high degree of concurrence between NRM regional species lists from DEWNR frequency data and TFL distribution data. The greatest differences tend to be for species that are easiest to propagate in nursery conditions and the dominance of upper storey tree species used in TFL revegetation.

Figure 3. Trees For Life zones and NRM boundaries in the agricultural regions of South Australia.

REVEGETATION ACTIVITIES

DEWNR has previously commissioned studies to estimate the number of hectares of commercial farm forestry and environmental revegetation planted across the state based on nursery surveys of plant sales and their distribution (Sheppard and Wilson 2007). Results of these surveys for the period between 1999 and 2006 are collated and presented in Table 1, Table 2 and Table 3. From this data, on average, approximately 6,038 ha of farm forestry and revegetation was planted annually, with indigenous environmental plantings (~4,185 ha/year) and saltbush (~851 ha/year) dominating revegetation activities in lower rainfall regions. No precise information exists on the area that has been revegetated in the agricultural lands of South Australia in recent years. Using the planting density estimates provided in Sheppard and Wilson (2007) of 1000 stems per hectare, and Trees For Life plant sales and distribution data (Figure 4), it is estimated that a minimum of ~15,600 hectares of environmental revegetation has been planted in the region over the last 15 years (~1,040 hectares per year) from Trees For Life Tree Scheme stocks.

Class Dominant Species (1999-2008) AMUL FP Ku NV SAMD SE AV/Z Total Tail Eucalyptus camaldulensis 36% 8% 2% 17% 25% 10% 2% 634.300 Allocasurina verticillata 27% 7% 4% 18% 23% 11% 2% 634.300 Eucalyptus fasciculosa 13% 5% 23% 13% 5% 23% 13% 5% 23% 13% 5% 25% 23% 13% 15% 25% 23% 13% 15% 25% 23% 13% 15% 23% 23% 120% 25% 23% 13% 15% 22% 23% 23% 120% 23% 23% 23% 24% 12% 23% 23% 23% 23% 24% 24% 24% 24% 24% 24% 24% 24% 24% 24% 24% 24% 24% 24% 24% 24% 24% <th>Height</th> <th>Trees For Life Revegetation</th> <th></th> <th></th> <th>NI</th> <th>RM Regio</th> <th>on*</th> <th></th> <th></th> <th>10 Year</th>	Height	Trees For Life Revegetation			NI	RM Regio	on*			10 Year
Tall Eucalyptus leucovylon 46% 9% 9% 17% 25% 17% 17% 17% 25% 15% <th16%< th=""> <th17%< th=""> 15%</th17%<></th16%<>	Class	Dominant Species (1999-2008)	AMLR	EP	кі	NY	SAMD	SE	Arid [#]	Total
Eucalyptus canalculensis 36% 9% 2% 17% 23% 10% 63/325 Allocasuaria verticiliata 37% 7% 4% 18% 23% 11% 63/325 Eucalyptus fasciculosa 19% 10% 2% 23% 13% 2% 442,575 Melaleuca lanceolata 19% 10% 2% 23% 13% 15% 255,25 Eucalyptus socialis 12% 5% 35% 39% 5% 23% 23% 12% 226,255 Eucalyptus socialis 12% 5% 9% 13% 12% 226,255 Eucalyptus socialis 12% 5% 9% 13% 13% 12% 226,255 Eucalyptus denosa 9% 16% 32% 33% 2% 13% 13% 14% 14% 14% 14% 14% 14% 14% 14% 14% 14% 14% 14% 14% 14% 14%	Tall	Eucalyptus leucoxylon	46%		4%	13%	15%	22%		677,825
Allocasignina verticillata 37% 7% 4% 18% 23% 11% < 24% 602,425 Eucalyptus fasciculosa 51% 5% 25% 13% 2% 442,575 Medaleuca lancolata 19% 10% 2% 23% 32% 13% 2% 441,375 Eucalyptus colorata 33% 5% 31% 1% 1% 218 223,625 Eucalyptus colorata 33% 5% 31% 1% 202,450 202,450 Eucalyptus olorata 73% 41% 11% 15% 202,450 202,450 Eucalyptus olorata 7% 23% 3% 7% 23% 13% 144,200 Malateuca hamutorurum 10% 22% 8% 7% 23% 13% 2% 14% 4% 112,55 Eucalyptus olerata 7% 3% 13% 2% 80,50 2% 80,50 2% 80,50 2% 80,50 2% 80,50 2%		Eucalyptus camaldulensis	36%	8%	2%	17%	25%	10%	2%	634,300
Eucalpytis fasciculosa 51% 25% 25% 19% 442,275 Melaleuca lanceolata 19% 10% 2% 23% 32% 11% 2% 441,375 Eucalpytis socialis 12% 5% 35% 32% 3% 2% 23% 22% 32% 32% 11% 1% 15% 223,625 Eucalpytis orionata 33% 5% 11% 15% 202,450 204,450 Eucalpytis orionata 73% 41% 11% 15% 274 144,5175 Callitris stracilitis 35% 6% 3% 20% 35% 2% 141,353 Eucalyptis olinoa 72% 3% 20% 13% 14% 112,252 Bursaria spinosa 59% 3% 2% 14% 14% 114,353 114,353 Eucalptis olinua 72% 3% 13% 13% 13% 13% 13% 13% 144,351 Eucalyptis olinua 72% 3% <td rowspan="7"></td> <td>Allocasuarina verticillata</td> <td>37%</td> <td>7%</td> <td>4%</td> <td>18%</td> <td>23%</td> <td>11%</td> <td><1%</td> <td>603,425</td>		Allocasuarina verticillata	37%	7%	4%	18%	23%	11%	<1%	603,425
Melaleuca lanceolata 19% 10% 2% 23% 32% 11% 2% 41.375 Eucalyptus porosa 22% 9% 36% 31% 1% 1% 259.525 Eucalyptus odorata 33% 5% 31% 1% 1% 220.455 Eucalyptus odorata 33% 5% 31% 1% 1% 202.450 Eucalyptus odorata 7% 23% 41% 11% 15% 202.450 Eucalyptus oleosa 9% 16% 32% 38% 2% 37% 14% 4% 114.350 Eucalyptus oleosa 9% 17% 13% 13% 12% 14% 12% 114.350 Eucalyptus oleosa 9% 3% 2% 13% 13% 12% 111.000 Eucalyptus oleosa 9% 3% 13% 12% 12% 111.000 12% 12% 12% 111.000 12% 12% 12% 12% 12% 12% <td< td=""><td>Eucalyptus fasciculosa</td><td>51%</td><td></td><td>5%</td><td></td><td>25%</td><td>19%</td><td></td><td>442,575</td></td<>		Eucalyptus fasciculosa	51%		5%		25%	19%		442,575
Eucalyptus porosa 22% 9% 36% 31% 1% 1% 25% 223.625 Eucalyptus socialis 12% 5% 35% 39% 3% 223.625 Eucalyptus socialis 12% 5% 9% 3% 12% 223.625 Acacia melanoxylon 73% -<1%		Melaleuca lanceolata	19%	10%	2%	23%	32%	11%	2%	441,375
Eucalyptus socialis 12% 5% 35% 39% 5% 3% 223,625 Eucalyptus odorata 33% 5% 1% 11% 15% 224,625 Acacia melanox/on 73% <1%		Eucalyptus porosa	22%	9%		36%	31%	1%	1%	259,525
Eucalyptus odorata 33% 5% 27% 31% 27% 3% 1% 215,075 Acacia melanoxylon 73% <1%		Eucalyptus socialis	12%	5%		35%	39%	5%	3%	223,625
Acacia melanoxylon 73% -13% 11% 15% 202.450 Eucalyptus viminalis 72% 5% 9% 13% 174.200 Melaleuca halmaturorum 10% 22% 8% 7% 23% 30% 164.975 Eucalyptus oleosa 9% 16% 32% 23% 3% 144.975 Eucalyptus oleosa 7% 18% 20% 35% 2% 144.350 Eucalyptus obliqua 77% 18% 9% 47% 14% 4% 111.000 Eucalyptus obliqua 72% 3% 13% 13% 13% 80.250 Pittosporum angustfolum 99% 17% 66% 3% 17% 66.100 Eucalyptus baxteri 62% 3% 9% 9% 17% 61.125 Eucalyptus baxteri 61% 3% 9% 14% 14% 60.075 Mod-Tall Acaia proxincialis 77% 4% 19% 14% 13% 14% <		Eucalyptus odorata	33%	5%		31%	27%	3%	1%	215,075
Eucalyptus viminalis 72% 5% 9% 13% 174/200 Melaleuca halmaturorum 10% 22% 8% 7% 23% 30% 164/975 Eucalyptus oleosa 9% 16% 32% 38% 2% 31% 45/175 Callitris graciiis 35% 6% 3% 20% 35% 2% 114/30 Eucalyptus dumosa 7% 18% 9% 47% 44% 4% 4125255 Bursaria spinosa 59% 3% 2% 14% 17% 5% 18 111.000 Eucalyptus obliqua 72% 3% 13% 13% 82,550 80,550 Eucalyptus ongustrifilteren 11% 17% 14% 71,125 80,550 80,50 86% 2% 41% 66,6100 Eucalyptus baxteri 62% 3% 19% 12% 66,6100 61,225 66,000 62,225 62,200 62,225 62,200 62,225 62,225 62,226		Acacia melanoxylon	73%		<1%		11%	15%		202,450
Melaleuca halmaturorum 10% 22% 8% 7% 23% 30% 164.975 Eucalyptus oleosa 9% 16% 32% 38% 20% 3% 145.175 Callitris gracilis 35% 6% 3% 20% 3% 14% 14% 4% 112.525 Bursaria spinosa 59% 3% 13% 13% 13% 13% 82.550 Pittosporum angustfolum 29% 7% 25% 35% 2% 80.250 Eucalyptus largiflorens 11% 6% 17% 14% 71.125 Eucalyptus baxteri 69% 17% 14% 71.25 66.100 Banksia marqinata 61% 3% 9% 9% 17% 66.100 Banksia marqinata 61% 3% 9% 9% 17% 66.100 Eucalyptus bateri 60% 14% 19% 12% 66% 10% 12% 66% 10% 12% 11% 10%		Eucalyptus viminalis	72%		5%		9%	13%		174,200
Eucalyptus oleosa 9% 16% 32% 38% 2% 3% 145,175 Callitris gracilis 35% 6% 3% 20% 35% 2% 114,350 Eucalyptus dumosa 7% 18% 9% 14% 17% 14% 4% 111,2525 Bursaria spinosa 59% 3% 2% 13% 13% 13% 8 8 0.5% 13% 111,000 Pittosporum angustifolium 29% 7% 25% 35% 2% 2% 80,250 Acacia retinodes 94% 6% 6% 7% 7.126 86% 2% <1%		Melaleuca halmaturorum	10%	22%	8%	7%	23%	30%		164,975
Callitris gracilis 35% 6% 3% 20% 35% 2% 114,350 Eucalyptus dumosa 7% 18% 9% 47% 14% 4% 112,525 Bursaria spinosa 59% 3% 2% 14% 17% 5% 1% 111,000 Eucalyptus colliqua 72% 3% 13% 13% 82,550 Pittosporum angustifolium 29% 7% 25% 2% 2% 80,250 Acacia retinodes 94% 6% 6% 71,125 80,150 80,150 Eucalyptus cosmophylla 61% 3% 10% 25% 68,700 83,700 Banksia marqinata 61% 3% 10% 14% 117 61,525 Eucalyptus batteri 62% 100% 14% 11% 60,075 64,700 Banksia marqinata 61% 10% 14% 11% 14% 11% 61,525 Eucalyptus diversifolia 77% 10% 14%		Eucalyptus oleosa	9%	16%		32%	38%	2%	3%	145,175
Eucalyptus dumosa 7% 18% 9% 47% 14% 9% 12% 111,000 Bursaria spinosa 59% 3% 2% 14% 17% 5% 13% 14% 13% 11% 13% 13% 14% 13% 14% 13% 13% 14% 13% 13% 13% 13% 13% 13% 13% 13% 13% 13% 13% 13% 13% 14% 13% 13% 13% 13% 13% 13% 13% 13% 13% 13% </td <td></td> <td>Callitris gracilis</td> <td>35%</td> <td>6%</td> <td>3%</td> <td>20%</td> <td>35%</td> <td>2%</td> <td></td> <td>114,350</td>		Callitris gracilis	35%	6%	3%	20%	35%	2%		114,350
Bursaria spinosa 59% 3% 2% 14% 17% 5% 1% 111,000 Eucalyptus obliqua 72% 3% 13% 13% 13% 13% 82,550 Pittosporum angustifolium 29% 7% 25% 35% 2% 2% 80,250 Eucalyptus largiflorens 11% 6% 6% 76,625 76,625 Eucalyptus cosmophylla 69% 17% 14% 76,625 66,100 Banksia marginata 61% 3% 9% 9% 17% 66,100 Eucalyptus batteri 62% 3% 9% 17% 66,100 61,525 Acacia provincialis 77% 4% 14% 11% 60,75 60,75 Mod-Tall Acacia provincialis 17% 14% 11% 61,525 Dodonaea viscosa 47% 5% 14% 11% 2% 11% 11% 12% 12% 13% 261,525 Dodonaeaviscosa 47%		Eucalyptus dumosa	7%	18%		9%	47%	14%	4%	112,525
Eucalyptus obliqua 72% 3% 13% 13% 2% 82,550 Pittosporum angustifolium 29% 7% 25% 35% 2% 2% 80,250 Acacia retinodes 94% 6% 80,150 80,150 80,150 Eucalyptus larqifforens 11% 17% 14% 77,625 80,700 Banksia marginata 61% 3% 9% 9% 17% 66,100 Localyptus baxteri 62% 3% 10% 25% 68,700 Banksia marginata 61% 3% 9% 9% 17% 61,175 Localyptus diversifolia 21% 15% 14% 19% 438,550 000 Dodonae viscosa 47% 5% 18 13% 26% 7% 18 261,225 Eucalyptus gracilis 14% 12% 26% 14% 4% 3% 189,000 Acacia pronatoxa 7% 1% 1% 26% 11% 105,005		Bursaria spinosa	59%	3%	2%	14%	17%	5%	1%	111,000
Pritosporum angustifolium 29% 7% 25% 35% 2% 2% 80,250 Acacia retinodes 94% 6% 6% 2% <1%		Eucalyptus obliqua	72%		3%		13%	13%		82,550
Acacia retinodes 94% 6% 7 80,150 Eucalyptus largiflorens 11% 7 86% 2% 7% 76,625 Eucalyptus cosmophyla 69% 17% 14% 71,125 66,700 Banksia marginata 61% 3% 9% 10% 25% 66,700 Eucalyptus baxteri 62% 10% 10% 25% 66,700 Eucalyptus petiolaris 100% 11% 19% 61,175 61,175 Mod-Tall Acacia provincialis 77% 4% 14% 19% 61,175 Mod-Tall Acacia protincialis 17% 1% 13% 26% 1% 3% 188,500 Dodonaea viscosa 47% 5% 13% 13% 26% 1% 13% 28% 183,000 Acacia jaradoxa 71% 12% 26% 41% 3% 189,000 Acacia igulata 16% 11% 12% 26% 13% 11% 12,225		Pittosporum angustifolium	29%	7%		25%	35%	2%	2%	80,250
Eucalyptus largiflorens 11% No 86% 2% <1% 76,625 Eucalyptus baxteri 62% 3% 10% 25% 68,700 Banksia marqinata 61% 3% 9% 9% 17% 66,100 Eucalyptus petiolaris 100% - 61,525 61,525 Acacia provincialis 77% 4% 19% 61,025 Dodonae viscosa 47% 5% 14% 19% 61,025 Dodonae viscosa 47% 5% 14% 21% 9% 438,550 Dodonae viscosa 47% 5% 13% 26% 7% 14% 21,225 Eucalyptus gracilis 14% 12% 26% 41% 4% 3% 189,000 Acacia pronucqulosus 6% 11% 9% 26% 41% 13% 189,000 Acacia proxinatia 11% 11% 12% 26% 41% 13% 181,000 Acacia proxinatia 16%		Acacia retinodes	94%			6%				80,150
Eucalyptus cosmophylla 69% 17% 14% 71,125 Eucalyptus baxteri 62% 3% 10% 25% 68,700 Banksia marinata 61% 3% 9% 9% 17% 66,100 Eucalyptus petiolaris 77% 4% 19% 17% 61,525 Acacia provincialis 77% 4% 19% 51% 60,705 Mod-Tall Acacia pycnantha 49% 4% 2% 14% 21% 9% 438,550 Dodonaea viscosa 47% 5% 1% 13% 26% 7% 1% 261,225 Eucalyptus gracilis 14% 12% 26% 41% 3% 189,000 Acacia iquotas 7% 1% 12% 26% 13% 129,225 Eucalyptus incrassata 11% 12% 26% 13% 12% 105,000 Acacia iquota 26% 13% 13% 13% 13% 102,000 Acacia iquota <		Eucalyptus largiflorens	11%				86%	2%	<1%	76,625
Eucalyptus basterii 62% 3% 10% 25% 66,700 Banksia marqinata 61% 3% 9% 9% 17% 66,100 Eucalyptus petiolaris 100% 19% 17% 66,100 Acacia provincialis 77% 4% 19% 17% 66,100 Mod-Tall Acacia provincialis 77% 4% 19% 19% 61,175 Eucalyptus diversifolia 21% 15% 14% 21% 9% 60,075 Mod-Tall Acacia provincialis 47% 5% 1% 13% 26% 7% 1% 261,225 Eucalyptus gracilis 14% 12% 26% 41% 4% 3% 189,000 Acacia paradoxa 71% 11% 2% 26% 41% 12% 129,225 Eucalyptus incrassata 11% 11% 19% 19% 105,000 105,275 Leptospermum continentale 76% 2% 30% 14% 6% <td< td=""><td></td><td>Eucalyptus cosmophylla</td><td>69%</td><td></td><td>17%</td><td></td><td>14%</td><td></td><td></td><td>71,125</td></td<>		Eucalyptus cosmophylla	69%		17%		14%			71,125
Banksia marqinata 61% 3% 9% 9% 17% 66,100 Eucalyptus petiolaris 100% - 61,525 61,525 Acacia provincialis 77% 4% 19% 51% 60,075 Mod-Tall Acacia provincialis 77% 4% 21% 14% 12% 60,075 Mod-Tall Acacia provincialis 47% 5% 14% 12% 9% 438,550 Dodonaea viscosa 47% 5% 1% 13% 26% 7% 18,1300 Acacia paradoxa 71% 1% 2% 9% 15% 2% 181,300 Callistemon ruqulosus 6% 11% 9% 2% 24% 30% 129,225 Eucalyptus incrassata 11% 1% 19% 41% 1% 105,000 Acacia oswaldii 17% 17% 2% 10% 13% 105,000 Allocasuarina muelleriana 64% 5% 3% 8% 14%		Eucalyptus baxteri	62%		3%		10%	25%		68,700
Eucalyptus petiolaris 100% Image: Constraint of the second secon		Banksia marginata	61%		3%	9%	9%	17%		66,100
Acacia provincialis 77% 4% 19% 61,175 Eucalyptus diversifolia 21% 15% 14% 51% 60,075 Mod-Tall Acacia pycnantha 49% 4% 2% 14% 21% 9% 438,550 Dodonaea viscosa 47% 5% 1% 13% 26% 7% 1% 261,225 Eucalyptus gracilis 14% 12% 26% 41% 4% 3% 188,000 Acacia paradoxa 71% 1% 2% 9% 15% 2% 181,300 Callistemon ruqulosus 6% 11% 1% 26% 36% 15% 1% 105,070 Acacia igulata 26% 11% 1% 19% 44% 9% 105,000 Allocasuarina muelleriana 64% 5% 3% 8% 14% 102,300 Acacia oswaldii 17% 17% 29% 32% 6% 97,175 Eucalyptus leptophylla 5% 13% </td <td></td> <td>Eucalyptus petiolaris</td> <td></td> <td>100%</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>61,525</td>		Eucalyptus petiolaris		100%						61,525
Eucalyptus diversifolia 21% 15% 14% 51% 60,075 Mod-Tall Acacia pycnantha 49% 4% 2% 14% 21% 9% 438,550 Dodonaea viscosa 47% 5% 1% 13% 26% 7% 1% 261,225 Eucalyptus gracilis 14% 12% 26% 41% 4% 3% 188,000 Acacia paradoxa 71% 1% 2% 9% 15% 2% 181,300 Callistemon rugulosus 6% 11% 9% 20% 24% 30% 129,225 Eucalyptus incrassata 11% 11% 1% 19% 41% 105,275 Leptospermum continentale 76% 2% 10% 13% 105,000 Alcacia oswaldii 17% 17% 29% 32% 6% 97,175 Eucalyptus brachycalyx 15% 13% 4% 18% 53% 7% 21% 88,700 Calistemon sieberi		Acacia provincialis	77%		4%		19%			61,175
Mod-Tall Acacia pycnantha 49% 4% 2% 14% 21% 9% 438,550 Dodonaea viscosa 47% 5% 1% 13% 26% 7% 1% 261,225 Eucalyptus gracilis 14% 12% 26% 41% 4% 3% 189,000 Acacia paradoxa 71% 1% 2% 9% 15% 2% 181,300 Callistemon rugulosus 6% 11% 9% 20% 24% 30% 129,225 Eucalyptus incrassata 11% 11% 19% 41% 1% 105,275 Leptospermum continentale 76% 2% 10% 13% 105,000 Allocasuarina muelleriana 64% 5% 3% 8% 14% 6% 102,300 Acacia oswaldii 17% 17% 29% 32% 6% 97,175 Eucalyptus brachycalyx 15% 13% 4% 18% 53% 7% 4% 87,475		Eucalyptus diversifolia		21%	15%	14%		51%		60,075
Dodonaea viscosa 47% 5% 1% 13% 26% 7% 1% 261,225 Eucalyptus gracilis 14% 12% 26% 41% 4% 3% 189,000 Acacia paradoxa 71% 1% 2% 9% 15% 2% 181,300 Callistemon ruqulosus 6% 11% 9% 20% 24% 30% 129,225 Eucalyptus incrassata 11% 11% 19% 41% 1% 105,275 Leptospermum continentale 76% 2% 10% 13% 105,000 Alcasuarina muelleriana 64% 5% 3% 8% 14% 6% 102,300 Acacia oswaldii 17% 17% 29% 32% 6% 97,175 Eucalyptus brachycalyx 15% 13% 4% 18% 53% 7% 41% 88,500 Callistemon sieberi 77% 23% 36% 32% 36% 37,475 Melaleuca acuminata 16%	Mod-Tall	Acacia pycnantha	49%	4%	2%	14%	21%	9%		438,550
Eucalyptus gracilis 14% 12% 26% 41% 4% 3% 189,000 Acacia paradoxa 71% 1% 2% 9% 15% 2% 181,300 Callistemon ruqulosus 6% 11% 9% 20% 24% 30% 129,225 Eucalyptus incrassata 11% 11% 19% 41% 1% 105,275 Leptospermum continentale 76% 2% 10% 13% 105,000 Allocasuarina muelleriana 64% 5% 3% 8% 14% 6% 102,300 Acacia oswaldii 17% 17% 29% 32% 6% 97,175 Eucalyptus leptophylla 5% 13% 4% 18% 53% 7%<		Dodonaea viscosa	47%	5%	1%	13%	26%	7%	1%	261,225
Acacia paradoxa 71% 1% 2% 9% 15% 2% 181,300 Callistemon rugulosus 6% 11% 9% 20% 24% 30% 129,225 Eucalyptus incrassata 11% 11% 1% 26% 36% 15% 1% 115,500 Acacia igulata 26% 11% 1% 19% 41% 1% 105,275 Leptospermum continentale 76% 2% 10% 13% 105,000 Allocasuarina muelleriana 64% 5% 3% 8% 14% 6% 97,175 Eucalyptus brachycalyx 15% 13% 4% 18% 53% 7% 41% 88,500 Callistemon sieberi 77% 23% 36% 87,475 87,475 Melaleuca acuminata 16% 13% 2% 32% 3% 3% 80,400 Leptospermum lanigerum 74% 3% 16% 7% 78,025 74,000 Acacia notabilis 37%		Eucalyptus gracilis	14%	12%		26%	41%	4%	3%	189,000
Callistemon ruqulosus 6% 11% 9% 20% 24% 30% 129,225 Eucalyptus incrassata 11% 11% 11% 26% 36% 15% 1% 115,500 Acacia ligulata 26% 11% 19% 41% 1% 105,275 Leptospermum continentale 76% 2% 10% 13% 105,275 Acacia igulata 64% 5% 3% 8% 14% 6% 102,300 Allocasuarina muelleriana 64% 5% 3% 8% 14% 6% 97,175 Eucalyptus brachycalyx 15% 13% 28% 43% 95,500 Eucalyptus leptophylla 5% 13% 4% 18% 53% 7% <1%		Acacia paradoxa	71%	1%	2%	9%	15%	2%		181,300
Eucalyptus incrassata 11% 11% 26% 36% 15% 1% 115,500 Acacia ligulata 26% 11% 1% 19% 41% 1% 105,275 Leptospermum continentale 76% 2% 10% 13% 105,000 Allocasuarina muelleriana 64% 5% 3% 8% 14% 6% 102,300 Acacia oswaldii 17% 17% 29% 32% 6% 97,175 Eucalyptus brachycalyx 15% 13% 28% 43% 95,500 Eucalyptus leptophylla 5% 13% 4% 18% 53% 7% <1%		Callistemon rugulosus	6%	11%	9%	20%	24%	30%		129,225
Acacia liqulata 26% 11% 1% 19% 41% 1% 1% 105,275 Leptospermum continentale 76% 2% 10% 13% 105,000 Allocasuarina muelleriana 64% 5% 3% 8% 14% 6% 102,300 Acacia oswaldii 17% 17% 29% 32% 6% 97,175 Eucalyptus brachycalyx 15% 13% 4% 18% 53% 7% <1%		Eucalyptus incrassata	11%	11%		26%	36%	15%	1%	115,500
Leptospermum continentale 76% 2% 10% 13% 105,000 Allocasuarina muelleriana 64% 5% 3% 8% 14% 6% 102,300 Acacia oswaldii 17% 17% 29% 32% 6% 97,175 Eucalyptus brachycalyx 15% 13% 28% 43% 95,500 Eucalyptus leptophylla 5% 13% 4% 18% 53% 7% <1%		Acacia ligulata	26%	11%	1%	19%	41%		1%	105,275
Allocasuarina muelleriana 64% 5% 3% 8% 14% 6% 102,300 Acacia oswaldii 17% 17% 29% 32% 6% 97,175 Eucalyptus brachycalyx 15% 13% 28% 43% 95,500 Eucalyptus leptophylla 5% 13% 4% 18% 53% 7% <1%		Leptospermum continentale	76%		2%		10%	13%		105,000
Acacia oswaldii 17% 17% 29% 32% 6% 97,175 Eucalyptus brachycalyx 15% 13% 28% 43% 95,500 Eucalyptus leptophylla 5% 13% 4% 18% 53% 7% <1%		Allocasuarina muelleriana	64%	5%	3%	8%	14%	6%		102,300
Eucalyptus brachycalyx 15% 13% 28% 43% 95,500 Eucalyptus leptophylla 5% 13% 4% 18% 53% 7% <1%		Acacia oswaldii	17%	17%		29%	32%		6%	97,175
Eucalyptus leptophylla 5% 13% 4% 18% 53% 7% <1% 89,700 Melaleuca decussata 79% 6% 1% 14% 14% 88,500 Callistemon sieberi 77% 23% 36% 87,475 Melaleuca acuminata 16% 13% 2% 32% 36% 87,175 Acacia hakeoides 18% 8% 36% 32% 3% 3% 80,400 Leptospermum lanigerum 74% 3% 16% 7% 78,025 Acacia notabilis 37% 12% 42% 7% 2% 75,950 Melaleuca uncinata 21% 9% 12% 43% 15% 74,000 Acacia calamifolia 14% 19% <1%		Eucalyptus brachycalyx	15%	13%		28%	43%			95,500
Melaleuca decussata 79% 6% 1% 14% 88,500 Callistemon sieberi 77% 23% 87,475 Melaleuca acuminata 16% 13% 2% 32% 36% 87,175 Acacia hakeoides 18% 8% 36% 32% 3% 3% 80,400 Leptospermum lanigerum 74% 3% 16% 7% 78,025 Acacia notabilis 37% 12% 42% 7% 2% 75,950 Melaleuca uncinata 21% 9% 12% 43% 15% 74,000 Acacia calamifolia 14% 19% <1%		Eucalyptus leptophylla	5%	13%	4%	18%	53%	7%	<1%	89,700
Callistemon sieberi 77% 23% 87,475 Melaleuca acuminata 16% 13% 2% 32% 36% 87,175 Acacia hakeoides 18% 8% 36% 32% 3% 3% 80,400 Leptospermum lanigerum 74% 3% 16% 7% 78,025 Acacia notabilis 37% 12% 42% 7% 2% 75,950 Melaleuca uncinata 21% 9% 12% 43% 15% 74,000 Acacia calamifolia 14% 19% <1%		Melaleuca decussata	79%	6%		1%	14%			88,500
Melaleuca acuminata 16% 13% 2% 32% 36% 87,175 Acacia hakeoides 18% 8% 36% 32% 3% 3% 80,400 Leptospermum lanigerum 74% 3% 16% 7% 78,025 Acacia notabilis 37% 12% 42% 7% 2% 75,950 Melaleuca uncinata 21% 9% 12% 43% 15% 74,000 Acacia calamifolia 14% 19% <1%		Callistemon sieberi	77%	4.204		2004	23%			87,475
Acacia hakeoides 18% 8% 36% 32% 3% 3% 80,400 Leptospermum lanigerum 74% 3% 16% 7% 78,025 Acacia notabilis 37% 12% 42% 7% 2% 75,950 Melaleuca uncinata 21% 9% 12% 43% 15% 74,000 Acacia calamifolia 14% 19% <1%		Melaleuca acuminata	16%	13%	2%	32%	36%	201	201	87,175
Leptospermum lanigerum 74% 3% 16% 7% 78,025 Acacia notabilis 37% 12% 42% 7% 2% 75,950 Melaleuca uncinata 21% 9% 12% 43% 15% 74,000 Acacia calamifolia 14% 19% <1%		Acacia hakeoides	18%	8%	2.07	36%	32%	3%	3%	80,400
Acacia notabilis 37% 12% 42% 7% 2% 75,950 Melaleuca uncinata 21% 9% 12% 43% 15% 74,000 Acacia calamifolia 14% 19% <1%		Leptospermum lanigerum	/4%	1.00/	3%	400/	16%	7%	20/	78,025
Melaleuca uncinata 21% 9% 12% 43% 15% 74,000 Acacia calamifolia 14% 19% <1%		Acacia notabilis	3/%	12%	00/	42%	/%	1 50/	2%	75,950
Acacia calamitolia 14% 19% <1% 18% 44% 1% 4% 64,900 Eucalyptus calycogona 14% 10% 19% 56% 62,275 Medium Acacia anyrtifolia 79% 2% 1% 2% 9% 7% 133,025 Acacia acinacea 62% 10% 26% 2% 114,100 Rhagodia parabolica 29% 6% 46% 17% 1% 102,900 Xanthorrhoea semiplana 83% 3% 4% 9% 1% 58,550 Tall Total Tall (n=53) 37% 7% 4% 15% 23% 13% 1% 5,620,975		Melaleuca uncinata	1 40/	21%	9%	12%	43%	15%	407	74,000
Eucalyptus calycogona 14% 10% 19% 56% 62,275 Medium Acacia myrtifolia 79% 2% 1% 2% 9% 7% 133,025 Acacia acinacea 62% 10% 26% 2% 114,100 Rhagodia parabolica 29% 6% 46% 17% 1% 102,900 Xanthorrhoea semiplana 83% 3% 4% 9% 1% 58,550 Tall Total Tall (n=53) 37% 7% 4% 15% 23% 13% 1% 5,620,975		Acacia calamitolia	14%	19%	<1%	18%	44%	1%	4%	64,900
Medium Acacia myrtifolia 79% 2% 1% 2% 9% 7% 133,025 Acacia acinacea 62% 10% 26% 2% 114,100 Rhagodia parabolica 29% 6% 46% 17% 1% 102,900 Xanthorrhoea semiplana 83% 3% 4% 9% 1% 58,550 Tall Total Tall (n=53) 37% 7% 4% 15% 23% 13% 1% 5,620,975 Mod-Tall Total Mod-Tall (n=66) 36% 8% 2% 16% 29% 7% 1% 2,05,525		Eucalyptus calycogona	14%	10%	10/	19%	56%	70/		62,275
Acacla acinacea 62% 10% 26% 2% 114,100 Rhaqodia parabolica 29% 6% 46% 17% 1% 102,900 Xanthorrhoea semiplana 83% 3% 4% 9% 1% 58,550 Tall Total Tall (n=53) 37% 7% 4% 15% 23% 13% 1% 5,620,975 Mod-Tall Total Mod-Tall (n=66) 36% 8% 2% 16% 29% 7% 1% 2,05,525	Mealum		79%	2%	1%	2%	9%	7%		133,025
Knagodia parabolica 29% 6% 46% 17% 1% 102,900 Xanthorrhoea semiplana 83% 3% 4% 9% 1% 58,550 Tall Total Tall (n=53) 37% 7% 4% 15% 23% 13% 1% 5,620,975 Mod-Tall Total Mod-Tall (n=66) 36% 8% 2% 16% 29% 7% 1% 2,055,525		Acacia acinacea	62%	<u> </u>		10%	26%	2%	10/	114,100
Tall Total Tall (n=53) 37% 7% 4% 9% 1% 58,550 Mod-Tall Total Add Tall (n=66) 36% 8% 2% 16% 29% 1% 58,550		Rhagodia parabolica	29%	6%	40/	46%	1/%	10/	1%	102,900
I all I Oldi I all (II=35) 37% 7% 4% 15% 23% 13% 1% 5,620,975 Mod-Tall Total Mod-Tall (n=66) 36% 8% 2% 16% 20% 7% 1% 2,055	ТаШ	Total Tall (n = 52)	03%	3%	4%	1 - 0/	9%	1.20/	10/	58,55U
		Total Iall (n=53)	3/%	/%	4%	15%	23%	13%	1%	3,620,975
Madium Tatal Madium (n=C) E19/ E9/ 20/ 170/ 180/ 60/ 10/ 25/0 7/0 1/2 3/203,323	Nodium	Total Modium (n=66)	30% E10/	8%	2%	170/	29%	1%	1%	3,205,525
Ivieululii For the form (n=52) 51% 5% 2% 1/% 18% 6% 1% 859,400 Mod Low Total Mod Low (n=22) 5% 10% 11% 24% 20% 121.650	Modelaw		51%	ک″ ۸۵/	2% 10/	110/	10%	0%	1%	121 650
Inter-Low I total low (n=14) 50% 4% $<1\%$ 11% 24% 3% 2% $131,650$ Low Total Low (n=14) $610'$ $90'$ $c10'$ $20'$ $10'$	Ivied-LOW	Total Low $(n=23)$	50%	4%	<1%	11%	24%	3% 10/	2%	106.050
LOW I Old I LOW (N=14) 61% 8% <1% 1% <1% 106,950 Cround Tetal Cround (n=21) E70/ 40/ 140/ 250/ 10/ 10/ 122,250	Crowned	Total Low (n=14)	61%	8%	<1%	8%	21%	1%	<1%	122.250
Ground Total Undefined native species 46% E% 4% 10% 25% 1% 1% 020.050	Ground	Total Undefined pative species	5/%	4%	<1%	10%	25%	<1%	<1%	133,350
Orderine Total of define unative species 40% 5% 4% 10% 25% 8% 1% 920,850 All Grand Total (n=220) 20% 7% 2% 16%<		Grand Total (n=220)	40%	۲۵/	4%	10%	25%	0% 109/	1%	920,850

Table 1.Top 50 most commonly planted species and proportion for each South Australian NRM Region,
based on 10 years of Trees For Life plant seedling (Tree Scheme) distribution data (1999 - 2008).

Source: Trees For Life (2009). * NRM Regions: Adelaide & Mt Lofty Ranges (AMLR); Eyre Peninsula (EP); Kangaroo Island (KI); Northern & Yorke (NY); SA Murray-Darling Basin (SAMDB); South East (SE). *includes SA Arid Lands & Alinytjara Wilurara NRM Regions, and arid parts of other NRM Regions.

Table 2. Estimated area of revegetation and commercial forestry types established in South Australia (1999-2006).

		Revegetation and Commercial Forestry (ha/year)								
Type of revegetation	1999	2000	2001	2002	2003	2004	2005	2006		
Indigenous	3,770	4,050	3,910	4,060	4,540	5,130	4,630	3,390		
Native (non indigenous)	1,050	380	790	330	100	190	920	230		
Native Grasses	10	20	40	60	20	30	30	50		
Farm Forestry	0	630	250	450	440	510	60	170		
Saltbush	1,490	1,210	1,300	320	1,090	580	640	180		
Tagasaste	570	210	70	10	50	10	10	0		
Product Species (e.g. broombush)	20	50	10	100	30	70	30	10		
Industrial Forestry – Hardwood	2,940	21,130	6,730	6,010	590	6,640	1,120	1,300		
Industrial Forestry – Softwood	3,050	2,940	90	890	560	590	4,430	3,800		
Total	12,900	30,620	13,190	12,230	7,420	13,750	11,870	9,130		

Source: Sheppard and Wilson (2007).

Table 3.Estimated area of revegetation and commercial forestry by agricultural region established in South
Australia (1999-2006).

	Revegetation and Commercial Forestry (ha/year)								
Region	1999	2000	2001	2002	2003	2004	2005	2006	
Eyre Peninsula	1,240	1,010	530	460	1,170	660	1,020	430	
Northern Agricultural Districts	460	650	490	490	510	350	640	320	
Adelaide Plains	100	270	230	70	110	90	730	50	
Metropolitan Area	510	70	220	300	70	420	410	460	
Murray Mallee	400	960	840	630	800	1,260	770	420	
Mount Lofty Ranges/Kangaroo Is.	2,340	6,500	2,290	3,180	2,010	8,740	4,080	2,420	
South East	6,660	20,930	7,330	6,640	1,740	1,370	2,950	3,890	
Unspecified region	1,190	230	1,260	460	1,010	860	1,270	1,140	
Total	12,900	30,620	13,190	12,230	7,420	13,750	11,870	9,130	

Source: Sheppard and Wilson (2007).

Source: TFL Tree Scheme Data 1997-2008, TFL (2012), BOM (2012).

Figure 4. Trees For Life Tree Scheme Plant distributions and average rainfall for South Australia (1997-2011).

3. CARBON ASSESSMENT METHODS

ASSESSING PLANT BIOMASS

The potential of revegetation to sequester carbon in medium to lower rainfall regions (i.e. < 650mm/year) has been difficult to evaluate due to a lack of productivity data for many native species and mixed environmental plantings. To significantly bolster the currently limited datasets this study has undertaken productivity surveys and destructive sampling from a range of revegetation sites and species within South Australia. Additionally, in recent years DEWNR have also undertaken limited surveys of the carbon sequestered in remnant vegetation for comparison with results attained from revegetation sites.

This study also focussed on delivering more reliable allometric models used to convert non-destructive measurements of plantation growth to more accurate estimates of carbon sequestration. Allometric studies have included measuring and destructive sampling many plants so that relationships (allometric models) between simple plant measurements (e.g. height, crown area, stem basal area, stemwood volume, plant volume, foliage density) and above-ground plant biomass (and carbon content) could be determined. Additional information was collected from these destructive samples to determine biomass ratios (or fractions) between Stemwood : Bark : Branches : Leaves for a wide range of species common to revegetation sites in the region to match requirements of several carbon accounting models.

At present the dominant Carbon Farming Initiative (CFI) Domestic Offset Integrity Committee (DOIC) approved methodology for carbon accounting in "Environmental Plantings" is the CFI Reforestation Modelling Tool (RMT) (DOTE 2013). This tool is based on models developed within the National Carbon Accounting Toolbox (NCAT) and FullCAM. The accuracy of the carbon accounting models within NCAT FullCAM rely heavily on the quality of species/site parameters that drive model calculations. In the current version of NCAT FullCAM, species information and model parameters for lower rainfall species and environmental plantings are typically scant, derived from non-applicable situations or are non-existent within the package. Default NCAT FullCAM Environmental Plantings models are typically poor predictors of growth and carbon sequestration in medium to lower rainfall regions of SA (Hobbs *et al.* 2010). For most medium to lower rainfall revegetation options, new species and environmental plantings parameter values for FullCAM models must be manually inserted by the user before the model can function with a greater degree of accuracy than that obtained from the default settings.

To improve the predictions of the NCAT FullCAM model in South Australia DEWNR collaborated with CSIRO under a project funded by the Australian Government Department of the Environment (DOTE) to calibrate NCAT models for Environmental Planting and Mallee systems. Soon to be released updates to NCAT and RMT now include data from South Australian surveys of carbon sequestration in revegetation (Paul *et al.* 2012). The Moorlands Case Study (located near Tailem Bend and detailed in Appendix F) was a key part of this collaboration and provided an opportunity to attain more detailed survey data (including root biomass data) to test methodologies currently used in South Australia.

Current DOIC approved or submitted CFI methods to assess carbon sequestration from revegetation (DOTE 2013) that are based on ground survey and sampling include: 1) extensive and costly surveys with detailed sampling surveys, permanent plots and localised destructive sampling for large scale revegetation projects (e.g. CO₂ Australia); 2) a more cost effective reduced sampling approach and reliance on robust allometric models to assess carbon sequestration in environmental plantings (e.g. Carbon Conscious Limited).

Many of the revegetation efforts by landholders fall into the small to medium scale. Revegetation efforts of this size are largely financially unviable if burdened by an extensive on-ground monitoring program that would most likely to cost more to assess than the economic value of the carbon crop growing at a site. Given these facts the intent of the cost effective approach (i.e. rapid sampling and robust allometrics) is currently viewed as the most applicable.

Most existing assessments of revegetation (plantation forestry or environmental plantings) productivity are focussed on assessing stem basal area and often height. These measures are suitable for estimating stemwood volumes for classical forestry where the focus is on recoverable solid timber. For carbon sequestration assessments and many other biomass industries the focus is on the whole plant biomass including stem, branches, bark, twigs, leaves and sometimes roots. New or revised methods to rapidly and reliably assess both total dry biomass and carbon content of whole plants are now required.

ABOVE-GROUND BIOMASS

Allometrics is a commonly used technique to nondestructively assess plantation biomass from a limited number of measurements (biometrics). In classical forestry industries, these allometric models are often based on measurements of tree diameter at breast height (1.3m) or basal area calculations (and sometimes including tree height) to estimate stemwood volumes or biomass, with models often being species specific (Snowdon et al. 2000, 2002, Grierson 2000, Kiddle et al. 1987, Paul et al. 2013b). However, allometric models based on high rainfall forestry trees are unlikely to be reliable predictors of productivity for the mallee and shrub lifeforms more suited to lower rainfall regions. To maintain consistency with NCAT FullCAM modelling parameters and RMT the current analyses have mainly focussed on relationships between stemwood volume (or stem mass) and above-ground plant dry biomass.

Biometrics and Sampling

In recent years DEWNR staff have destructively sampled a wide range of known age agroforestry and local native species in dryland agricultural regions of South Australia to evaluate relationships between simple plant measurements and above-ground biomass in plants (Neumann *et al.* 2010, Hobbs *et al.* 2010, Hobbs *et al.* 2006, Hobbs & Bennell 2005). Plant species were chosen to represent those species most highly ranked for agroforestry development (Hobbs *et al.* 2009a) and environmental plantings for the region (Hobbs *et al.* 2010). The species selected included forestry tree species, small trees, mallees and shrubs. A minimum of 3 individuals of each species and location were chosen for detailed biometric measurements of plant morphology and biomass sampling (total 407 individuals). In a collaborative project for DOTE, DEWNR and CSIRO staff have also gathered destructive data on a further 128 individual plants as part of the Moorlands case study (see later sections of this report), including below-ground biomass for 41 individual plants. A total of 535 individual plants have been measured, sampled and weighed from these studies.

Individual plant measurements included maximum height, crown width (typically across & along row), distance to neighbouring plants (typically $\geq 2m$ high, 4 directions), stem count and circumference at two lower section heights (basal and intermediate: 0.5m and 1.3m for trees and mallees; and 0.2m and 0.8m for shrubs), and visual ranking of leaf density using reference photographs (8 classes). Foliage density classes were expressed as a percentage of maximum density (i.e. very dense 100%, dense 86%, moderately dense 71%, moderate 57%, moderately sparse 43%, sparse 29%, very sparse 14%, no leaves 0%). The stemwood volume (outer bark) of each plant was calculated from stem height and circumferences (i.e. stem area) using standard forestry formulas for tree volumes of each stemwood section (1. lower section - cylinder volume; 2. mid-section - Smalian's frustrum of a paraboloid volume, and 3. upper section - conical volume).

Samples of wood and bark were taken from each basal and intermediate height for each plant with an additional sample taken half way between the intermediate height and the top of the plant. The diameter of the wood (minus bark) and bark thicknesses were measured across the north-south axis of the sample, and used to determine the bark proportion of the outer bark stemwood volume. The green weight of the wood only and bark only samples were measured immediately. The green volume of the wood only samples was determined by displacement in water, and the separate wood and bark samples were oven dried at 70°C to a steady dry-weight to determine wood basic density and the moisture content of each sample component.

The whole of each plant was destructively sampled and sorted into three biomass fractions: 1. stemwood and bark (>20mm diameter); 2. twig and bark (2-20mm diameter); and 3. leaf, fine twig and bark (<2mm diameter) and each fraction weighed immediately. Samples (>200g) from each green biomass fraction was weighed immediately, oven dried to a steady dryweight and reweighed to determine moisture content. The total dry biomass of each plant was determined from the green weight of each biomass fraction and the observed moisture content of oven-dried subsamples. Whole plant elemental carbon content was calculated from the sum of dry biomass fractions and a generic conversion factor of 0.496 (Stein & Tobiasen 2007). Carbon dioxide equivalent was calculated from the elemental carbon and conversion factor of 3.67 (based on the atomic weights of C and O).

A total of 535 individual plants (190 trees, 267 mallees, 78 shrubs) from 68 sites were measured and destructively sampled for the combined biometric studies (Table 46). These represent 44 species and include 2 generic species groupings (24 Eucalypts, 20 non-Eucalypts) and 3 lifeform types (16 tree, 14 mallee, 14 shrub forms). Commonly used revegetation and agroforestry species were sampled more than once (e.g. SA mallees - Eucalyptus incrassata, E. leptophylla, E. porosa, E. socialis; Sugar Gum - E. cladocalyx; Swamp Yate - E. occidentalis; Old Man Saltbush - Atriplex nummularia) from different ages and plantations designs (e.g. blocks and windbreaks). The age of plantations sampled for this study ranged from 4.8 years on an agroforestry trial at Murray Bridge to a maximum of 42 years for some trees and mallees at Monarto (average site age 16.2 years).

Table 46 provides a summary of a number of key plant characteristics for species destructively sampled in the biometric studies. Individual plant morphological measurements were converted into a range of biometric parameters commonly used to predict above-ground plant biomass. These include plant height, basal stem area (outer bark), crown area (from crown widths), stemwood volume (outer bark; from plant height and stemwood area observations), wood density and foliage density.

Allometric Models of Above-ground Biomass

Allometric relationships between simple measurements of height, crown area, stem basal area, leaf density, stemwood volume, plant volume and observations of total dry biomass were plotted, explored visually and tested using linear and non-linear regressions (see Figure 5 for some examples of this analysis). Interactions between these simple measurements and lifeform or plant genera groupings were also evaluated. Stepwise multivariate regression modelling methods were used to identify clusters of biometric parameters that significantly improved the fit of models over any single variable model.

Simple regression analysis identifies Stemwood Volume ($r^2=0.92$) and Basal Area ($r^2=0.91$) are the most significantly correlated single variables to aboveground plant biomass (Figure 5). As single variable predictors they fit the dry biomass data equally well. A review of regression residuals shows that Stemwood Volume is a more reliable predictor of plant biomass for medium to larger plants and Basal Area appears more reliable for smaller plants. Height ($r^2=0.59$), Crown Area ($r^2=0.83$), Plant Volume ($r^2=0.85$) and Plant Volume x Foliage Density ($r^2=0.89$) are all significantly related to plant biomass but are less robust than Stemwood Volume or Basal Area as predictors.

For more detailed linear regression and multivariate stepwise modelling analyses any variables that were not normally distributed were transformed using natural logarithms prior to analysis. Care was also taken to minimise the inclusion of variables that are auto-correlated. Two distinct pathways emerged: 1) using Stemwood Volume as the leading variable; and 2) using Basal Area as the leading variable. Table 4 shows improvement in Stemwood Volume and Basal Area models from the addition of significant explanatory variable. Note that additions of statistically significant third and fourth variables in these models do improve model fit, but principles of parsimony recommend that only the first two variables be used in each model. The interaction of height and crown area in the Basal Area model provides a more significant predictor than crown area alone. The best single variable and recommended multivariate allometric models of above-ground plant biomass are presented in Table 5.

Figure 5. Basic allometric relationships between some simple plant measurements and individual plant dry biomass.

 Table 4.
 Improvements in allometric model fit from baseline Stemwood Volume and Basal Area models by the stepwise addition of significant variables.

Predictors of Ln(Plant Biomass) Stepwise Models (n=508)	Model Fit (r ²)	Improve- ment	AICc	
Stemwood Volume				
Ln(Stemwood Volume)	0.9460	+94.6%	419.2	
+Ln(Crown Area)	0.9650	+1.9%	189.0	
+Ln(Height)	0.9682	+0.3%	140.6	
Basal Area				
Ln(Basal Area)	0.9136	+91.4%	668.6	
+Ln(Crown Area x Height)	0.9580	+4.4%	286.1	
+Ln(Height)	0.9593	+0.1%	270.6	
+Ln(Crown Area)	0.9596	+0.03%	268.7	

Table 5.The best single variable and multivariate allometric models for predicting above-ground plant
biomass from simple plant measurements.

Single and Multivariate Models of Above-ground Plant Biomass	Model Fit		
Plant Dry Biomass, B _{ag} (kg/plant)	r ²	AICc	
Single Parameter Models (n=535)			
Stemwood Volume, SV (m ³ x1000)	0.9460	419.2	
$Ln(B_{ag}+1) = 0.9161xLn(SV+1) + 0.5444$			
Basal Area, BA (cm ²)	0.9136	668.6	
$Ln(B_{ag}+1) = 1.0259xLn(BA+1) - 1.4418$			
Plant Volume, PV (m^3) = Height (m) x Crown Area (m^2)	0.8814	840.1	
$Ln(B_{ag}+1) = 0.9714xLn(PV+1)$			
Crown Area, CA (m ²)	0.8513	959.2	
$Ln(B_{ag}+1) = 1.5050xLn(CA+1)$			
Foliage Volume, FV (m ³) = Plant Volume (m ³) x Foliage Density (%)	0.8749	838.0	
$Ln(B_{ag}+1) = 0.8068xLn(FV+1) - 2.6622$			
Height, H (m)	0.5829	1512.9	
$Ln(B_{ag}+1) = 2.5543xLn(H+1) - 0.9193$			
Recommended Multivariate Models (n=535)			
Stemwood Volume, SV + Crown Area, CA	0.9650	189.0	
$Ln(B_{ag}+1) = 0.6626xLn(SV+1) + 0.4757xLn(CA+1) + 0.2566$			
Where, SV = Stemwood Volume ($m^3 \times 1000$), CA = Crown Area (m^2).			
Basal Area, BA + Plant Volume, PV	0.9580	286.1	
$Ln(B_{ag}+1) = 0.6151xLn(BA+1) + 0.4605xLn(PV+1) - 1.0790$			
Where, BA = Basal Area (cm^2), PV = Plant Volume (m^3) = Height (m) x Crown Area			
Old Man Saltbush Model (Hobbs et al. 2010, n=125)			
Plant Volume, $PV = Height (m) \times Elliptical Crown Area (m2)$	0.8203	643.3	
$B_{ag} = 2.6531 \text{xPV}$			

Model Robustness

Many allometric models are developed for species or site specific use and have limited value at new locations or species. This project's intent was always to develop a generic model with wide applicability to new sites and species in the agricultural regions of southern Australia. The only way to ensure that any model developed can be used in other situations is to validate the model using independently collected data.

The Stemwood Volume model is the leading single variable model approach and independent data was sought to evaluate the robustness of this approach. Access was provided to a destructive sampling database compiled for DOTE by CSIRO and partners (Paul et al. 2012, 2013b) for a wide range plant species across Australia. The dataset contains measurements of key physical plant attributes and destructive sampling (e.g. plant height, stem diameters, dry biomass) for 121 tree and shrub species. The database also includes a nominal lifeform by species group classification (by CSIRO) for clusters of allied data (e.g. Tree or Shrub by Eucalypts, Acacias, Melaleucas, Casuarinas, Other Species). Plant records were divided into Tropical and Temperate Species groups, and eucalypt species classified into Tree, Mallee and Mallet lifeform types (DEWNR). The Tropical Species group has been omitted from this comparison as they are unrepresentative species for southern Australia.

For 2,382 trees and shrubs (≥1m tall; 99 species) with both height and stem diameter measurements stemwood volume of each plant was calculated using the same methodology described earlier in this report. The single parameter "Stemwood Volume" model was then used to predict the dry biomass of each plant. Due to non-normal distributions of data it was transformed using natural logarithms for this analysis.

The modelled versus observed data has been plotted for each lifeform by species groups and linear regression analysis used to evaluate the reliability (variance explained, goodness of fit) of the Stemwood Volume model and to identify any plant group differences (regression slope) from the generic DEWNR model (Figure 6). Results of this analysis shows that Stemwood Volume approach provides a reliable predictor (i.e. model fit) of plant dry biomass but it also identifies that that's some lifeform by species groups diverge (i.e. linear adjustment factor) from the generic approach (see Table 6). This table also includes a summary of differences observed for each Lifeform groupings within the DEWNR destructive dataset.

Generally, the DEWNR stemwood volume model:

- over-predicts for faster growing tree species with lower wood density values and few side branches
- under-predicts for some smaller shrubby species and mallees and with many side branches that adds to the plants weight beyond its central stem
- matches strongly for mallee and tree species commonly used in medium to lower rain regions of southern Australia.

Note that DEWNR data has a large proportion of eucalypt mallee-form records and the DOTE/CSIRO data is dominated by eucalypt tree-form records. The combined dataset is also dominated by tree records (81%) and, notably, eucalypt tree-form records (42%) are the largest component of this dataset. Differences between some lifeform and species groups are apparent from this analysis and the indicative adjustment factors from linear regressions listed in Table 6 may allow users to improve the accuracy of prediction from the DEWNR Stemwood Volume model for some groups of plants.

In practical situations (and even among professional scientists and technicians) observers can be very inconsistent in their classification of lifeforms and these subjective evaluations can sometimes lead to significant differences in predicted values. Confusion can result from interpretations of current form versus mature form, fuzzy boundaries along a physical continuum or often from taxonomic generalisations used for classification. To avoid subjective classifications the DEWNR modelling approach focuses on physical measurements to distinguish between architectural differences that influence plant biomass. Therefore it is recommend the use of the Stemwood Volume + Crown Area model (Table 5) for the most reliable results across different observers.

Figure 6. Independently observed (DOTE/CSIRO data) versus predicted (DEWNR Stemwood Volume model) of above-ground dry plant biomass for southern Australian plant species.

	DEWNR			DOTE/CSIRO			Combined		
Lifeform /Species Group	Obs. (n)	Model Fit	Adj.* Factor	Obs. (n)	Model Fit	Adj.* Factor	Obs. (n)	Model Fit	Adj.* Factor
All plants	535	95%	1.00	2382	88%	0.91	2917	89%	0.92
Tree Form	478	95%	0.98	1882	90%	0.90	2360	91%	0.92
Eucalypt Tree	116	96%	0.91	1108	92%	0.86	1224	93%	0.86
Eucalypt Mallee	270	97%	1.03	130	88%	0.98	400	95%	1.01
Eucalypt Mallet	0	-	-	251	95%	1.02	251	95%	1.02
Acacia	54	91%	0.87	284	93%	0.94	338	94%	0.94
Casuarina	13	93%	0.96	38	97%	0.96	51	97%	0.96
Melaleuca	22	79%	0.96	71	83%	0.91	93	88%	0.90
Shrub Form	57	89%	1.06	499	77%	0.93	556	78%	0.95
Acacia	26	83%	1.12	387	77%	0.97	413	78%	0.98
Other	31	93%	0.99	112	90%	0.78	143	87%	0.83

 Table 6.
 An evaluation of the robustness of DEWNR Stemwood Volume model by lifeform and species groupings using DEWNR and independently collected DOTE/CSIRO destructive data.

* Adjustment factor is the multiplier (regression slope) to be applied to the generic Stemwood Volume model for each lifeform or species group.

BELOW-GROUND (ROOT) BIOMASS

The Moorlands Case Study, in partnership with CSIRO researchers, provided a rare opportunity to investigate relationships between above-ground biometrics/biomass and below-ground (root) biomass. The methodology and design of destructive sampling and resulting data is outlined in Appendix F - Improving National Carbon Accounting Models:

Moorlands Case Study and in more detail by Paul *et al.* (2012).

Allometric relationships between simple measurements of height, crown area, stem basal area, stemwood volumes, plant volume, above-ground biomass and observations of root dry biomass were plotted, explored visually and tested using linear and non-linear regressions (see Figure 7). Stepwise multivariate regression modelling methods were used to identify clusters of biometric parameters that significantly improved the fit of models over any single variable model.

Figure 7. Simple allometric relationships between individual plant measurements, above-ground plant dry biomass and root dry biomass.

For linear regressions and multivariate stepwise modelling approach, any variables that were not normally distributed were transformed using natural logarithms prior to analysis. From simple regression analysis Plant Volume (i.e. Height x Crown Area) was the strongest single predictor of root biomass (see Figure 7 & Table 7, r^2 =0.86). Height, Basal Area, Crown Area and Stemwood Volume are also strong predictors of root biomass (r^2 =0.57 - 0.77). Results show that root biomass is also strongly correlated to above-ground biomass (r^2 =0.82). Constant Root to Shoot Ratios of biomass is often used to estimate below-ground biomass from aboveground surveys (Paul *et al.* 2012), however, DEWNR data indicates that Root to Shoot Ratios typically decrease with increasing plant size (i.e. non-linear response curve, Figure 7). These ratios can change across species and plants as they mature. Multivariate stepwise models were also explored and best model (i.e. Plant Volume + Basal Area, Table 7) provides around +2% improvement in predictions above any single variable model (e.g. Plant Volume).

Table 7.The best single variable and recommended multivariate allometric models for predicting below-
ground (root) biomass from simple plant measurements and above-ground biomass.

Single and Multivariate Models of Below-ground (Root) Biomass	Model Fit	
Root Dry Biomass, B _{root} (kg/plant)	r²	AICc
Single Parameter Models (n=41)		
Plant Volume, PV (m^3) = Height (m) x Crown Area (m^2)	0.8555	32.41
$Ln(B_{root}+1) = 0.6724xLn(PV+1) + 1.0722$		
Above-ground Dry Biomass, B _{ag} (kg/plant)		41.57
$Ln(B_{root}+1) = 0.7426xLn(B+1) + 0.6073$		
Height, H (m)		41.64
$Ln(B_{root}+1) = 2.2488xLn(H+1)$		
Stemwood Volume, SV (m ³ x1000)		53.51
$Ln(B_{root}+1) = 0.6272xLn(SV+1) + 1.2177$		
Crown Area, CA (m ²)		54.73
$Ln(B_{root}+1) = 1.0177xLn(CA+1) + 1.0605$		
Basal Area, BA (cm ²)		68.64
$Ln(B_{root}+1) = 0.6697xLn(BA+1)$		
Recommended Multivariate Model (n=41)		
Height, H (m) + Crown Area, CA (m ²)	0.8847	25.62
$Ln(B_{root}+1) = 1.4783xLn(H+1) + 0.4985xLn(CA+1)$		

4. CARBON SEQUESTRATION IN REVEGETATION AND REMNANTS

SURVEYS OF ABOVE-GROUND BIOMASS

Over the last 10 years DEWNR SMK staff have been involved in several projects to evaluate the productivity of plantations of agroforestry and revegetation (e.g. Hobbs & Bennell 2005; Hobbs et al. 2006, 2009a, 2010; Neumann et al. 2011). These projects had previously focussed on the Upper South East and Murray-Darling Basin regions due to their greatest potential for woody crop development (Hobbs et al. 2009a). In the past 4 years this work has expanded to include a greater representation of mixed species environmental plantings and other agricultural NRM Regions of the state, as interest in carbon sequestration from agroforestry and reforestation has increased. New surveys have been strategically conducted in the Northern & Yorke, Eyre Peninsula, Mount Lofty Ranges and Kangaroo Island NRM Regions, and additional "gap-filling" surveys conducted in the SA Murray-Darling Basin and South East NRM Regions (supported by the State NRM Program and Future Farm Industries CRC activities). Additionally, limited surveys of carbon sequestration in remnant vegetation have also been conducted to allow some comparisons of sequestration between native species revegetation and extant native vegetation.

Revegetation sites of known age were chosen to represent 2 main planting designs: 1) Woodlots (mainly monocultures); or 2) Environmental Plantings (mainly mixed species) to match with classifications used in DOTE's NCAT/RMT models. A few sites surveyed overlap in this classification system. For example, some sites may have been intended by the landholder as woodlot of local native species for firewood harvest but effectively represent and an environmental planting, or when monocultures of species that are not classically used agroforestry were planted to provide an environmental benefit. Each site was nominated to these 2 classes but where sites met the criteria of both systems they were noted and their dominant purpose used in the classification. Surveys focussed on block planting designs (i.e. >4 row plantations) with only a few windbreak sites included in DEWNR datasets.

Two hundred and sixty-four revegetation sites of known age were surveyed to assess plant growth and carbon sequestration of Kyoto-complaint species (i.e. >2m height at maturity) over a wide range of environmental conditions in the agricultural zone of South Australia (Table 8, Figure 8). A further 37 remnant sites were also surveyed, predominantly from the Adelaide & Mt Lofty Ranges (18) and Northern & Yorke (14) NRM Regions, with some additional surveys in the SA Murray-Darling Basin (4) and South East (1) NRM Regions. The approximate age of dominant plants (time since catastrophic disturbance, e.g. fire) of remnant vegetation sites was estimated using average age of largest cohort (largest 17% of individuals) at each site, and a relationship between basal area/rain and age determined from known age plants (e.g. Age[yrs]=11.776xBasalArea[cm²]/Rainfall[mm/yr] + 12.254; r²=0.24).

The average age of all revegetation sites was 22 years (n=264; range 3 to 131 years) with average of woodlots being 26 years (n=132; range 5 to 131 years) and environmental plantings averaging 17 years (n=132, range 3 to 36 years). Estimated average age of remnant sites was 82 years (n=37; range 13 to 225 years). Monoculture plantations represent 58% of surveyed revegetation sites.

SURVEY METHODS

Productivity assessment protocols for the DEWNR Rapid Survey method varied according to species mixes (see Table 9). These were based on 2 species group types (monocultures and mixed species). Sites were sub-sampled using 6 randomly placed segments of continuous plants along rows (and avoiding ends of rows). Segments typically comprised of 10 individuals in mixed species plantings and 6 individuals in monocultures. The larger number of observations in mixed species planting was utilised to determine proportion of biomass contribution by each species within the plantation. At each segment, individual species (>2m high) were recorded and plant measurements included height, crown width, form (tree/mallee/shrub), distance to neighbouring plants, stem count and circumference at two lower section heights (basal and intermediate: 0.5m and 1.3m; for trees and mallees; and at 0.2m for shrubs), and visual ranking of foliage density using reference photographs (8 classes). Foliage density classes were expressed as a percentage of maximum density (i.e. very dense 100%, dense 86%, moderately dense 71%, moderate 57%, moderately sparse 43%, sparse 29%, very sparse 14%, no leaves 0%).

Exceptions to this protocol applied to DEWNR field trials (8 species blocks; average 249 individuals per block) and detailed surveys located at Moorlands (e.g. Block 1991, Block 1996, Windbreak 1996) where all individual at each site were measured (see Appendix F - Improving National Carbon Accounting Models: Moorlands Case Study). At 18 of the mixed species remnant sites, on some Northern Mount Lofty to Yorke Peninsula sites, only 36 individuals were measured. On remnant sites (i.e. without rows) 6 transects replaced row segments and 6 or 10 individuals were measured along 5m wide swath following a compass bearing at each transect. A total of 15,045 individual plants have been measured from revegetation sites representing 143 species with 1,633 individual remnant plants measured representing 49 species. Distance to neighbouring plants (>2m high) for each individual permitted calculation of the area occupied for each plant. Where individuals were located on the edge of stand of vegetation the effective buffer edge of the stand was consistently nominated as 5 metres. The plant density (plants/ha) was determined from the number of individuals divided by sum of areas occupied by individual plants. The average observed plant density of revegetation sites in this study was 894 plants/ha of Kyotocompliant species (i.e. >2m tall at maturity). Woodlots had an average 714 plants/ha (range 95 to 2205), Environmental Plantings averaged 1074 plants/ha (range 159 to 8575) and Remnants averaged of 669 plants/ha (range 35 to 1991). The proportion of trees versus shrubs (i.e. "Proportion Trees", Paul et al. 2012) was also calculated for each survey site based on counts of individuals in each lifeform class. The observed average proportion of trees was 89% for all revegetation, 83% in mixed species environmental plantings and 89% for remnant vegetation.

	Surveys of Revegetation Sites								
	Rainfall Zone (mm/yr)								
NRM Region	250-350	351-450	451-550	551-650	>650	Total			
Adelaide & Mt Lofty Ranges (AMLR)	-	1	6	5	3	15			
Eyre Peninsula (EP)	6	5	1	-	-	12			
Kangaroo Island (KI)	-	-	3	2	2	7			
Northern & Yorke (NY)	6	33	15	3	-	57			
SA Murray Darling Basin (SAMDB)	36	65	17	9	-	127			
South East (SE)	-	4	37	5	-	46			
Total	48	108	79	24	5	264			
	Surveys of Remnant Vegetation Sites								
	Rainfall Zone (mm/yr)								
NRM Region	250-350	351-450	451-550	551-650	>650	Total			
Adelaide & Mt Lofty Ranges (AMLR)	-	2	4	8	4	18			
Northern & Yorke (NY)	4	4	5	1	-	14			
SA Murray Darling Basin (SAMDB)	1	1	2	-	-	4			
South East (SE)	-	-	-	1	-	1			
Total	5	7	11	10	4	37			

 Table 8.
 Total number of revegetation and remnant vegetation sites surveyed for this study, stratified by

 NRM Region and rainfall zone.

Figure 8. Carbon Sequestration from Revegetation: SA Agricultural Regions project survey sites.

Table 9.	Generalised summary of measurement protocols used in 301 surveys of carbon sequestration in the
	agricultural regions of South Australia.

Site Type	Block Size	Total Observations	Design
Single species block	>4 rows; >110m long	36 (6x6 plant segments)	6 segments randomly located within inside rows
Mixed species block	>4 rows; >110m long	60 (6x10 plant segments)	6 segments randomly located within inside rows

Individual plant measurements were converted to a consistent set of biometrics to allow prediction of biomass and carbon content of individual plants (see section 3. Carbon Assessment Methods). Basal and intermediate stem area (outer bark) at each measurement height was calculated using circumference measurements of each stem, and the sum of individual stem areas calculated for multistemmed species (i.e. identical results to quadratic mean of diameter method). The stemwood volume (outer bark) of each plant was calculated from stem height and circumferences using standard forestry formulas for tree volumes of each stemwood section (1. lower section - cylindrical volume; 2. mid-section -Smalian's frustrum of a paraboloid volume, and 3. upper section - paraboloid volume).

The above-ground dry biomass of each measured individual was then estimated using the generic DEWNR Stemwood Volume model (see Table 5) and the standing above-ground biomass per hectare determined from sum of estimated dry biomass of all individuals trees and tall shrubs divided by the sum of physical space occupied by all individuals. The estimated total standing biomass (dry matter t/ha) at each site was then converted to an average annual accumulation rate (dry matter t/ha/year) using the known age of the each revegetation site (or estimated age of dominant plants in remnant vegetation). To convert dry biomass to tonnes of elemental carbon (C t/ha) a generic conversion factor of 0.496 was applied (Stein & Tobiasen 2007). Elemental carbon was converted to carbon dioxide equivalents (CO₂-e t/ha) using a conversion factor of 3.67 (based on the atomic weights of C and O). Table 10 provides summary data for DEWNR sequestration surveys in woodlots, environmental plantings and remnant vegetation in South Australia. More detailed site survey data (e.g. species information, sequestration rates and environmental data) can be found in Appendix D -Productivity and Carbon Sequestration Studies.

SPATIAL INFORMATION

Each survey site was accurately located using a Global Positioning System (GPS) to allow spatial data from other sources to be combined with survey data to evaluate the influence of environmental conditions on planting designs and sequestration rates. Core drivers to revegetation design and productivity (water availability, climate and soil properties) underpin the choice of spatial data used in this study. Expert soil scientist opinion and recommendations (James Hall, pers. comm.) were used to identify a subset of soil factors most likely to influence plant growth for this study (see below).

The DOTE's National Carbon Accounting Toolbox (NCAT) and Reforestation Modelling Tool (RMT) is underpinned by a spatial climate and soil model (Forest Productivity Index, DCCEE 2009) to predict carbon sequestration rates and Maximum Aboveground Biomass across Australia. Previous research in South Australia (Hobbs *et al.* 2006, Hobbs *et al.* 2010) has identified that the BiosEquil model (Raupach *et al.* 2001) can also provide a useful indicator of revegetation growth in South Australian landscapes. Spatial data from these externally-sourced climate and soil models (FPI, BiosEquil) has been included in this study.

Spatial environmental data used in this study included:

 DEWNR surveys of above-ground plant dry biomass (GPS located)

- Average annual rainfall (CSIRO Land & Water 2001)
- Average annual potential evaporation (CSIRO Land & Water 2001)
- Soil data (Hall et al. 2009) including:
 - Soil classification groups and sub-groups
 - Surface soil texture (surface clay content)
 - Subsurface soil texture (subsurface clay content)
 - Inherent fertility (clay index of soil profile)
 - Water-holding capacity
 - Depth to rock
 - Depth to hardpan
 - Dryland agriculture potential (root zone depth, Class C - hardy perennials crops, e.g. vines, olives)
- NCAT Maximum Above-ground Biomass (DCCEE 2009)
- Forest Productivity Index (FPI, DCCEE 2009)
- BiosEquil (BE) model values (Raupach *et al.* 2001, Hobbs *et al.* 2006)

Soil mapping in South Australia is currently represented by polygons of soil-landscape map units. Each polygon can contain multiple landscape elements and soil types when the size of each component is lower than the spatial scale of original mapping. The estimated areal proportion of each component within the polygon is also documented. Soil attributes (e.g. depth, clay content) within components are described using semi-quantitative classes (Hall *et al.* 2009).

To increase analytical power the class data for each attribute has been converted into a continuous variable using the nominal mid-point values of each attribute within a class or an assigned nominal peak value (James Hall, pers. comm.). A summary of these soil classes and nominal values can be found in Appendix E (Table 49).

For each polygon the area-weighted average attribute value was calculated from the proportion of each component and its nominal attribute value within each polygon. Soil-landscape polygons were then converted to 1 hectare resolution raster coverages for each soil attribute for spatial data consistency with raster coverages representing climate and growth models. The resulting soil spatial data contains some local inaccuracies in attributes due to rescaling, but is on average, consistent with the original mapping.

For each DEWNR survey location the corresponding climate, soil attribute and externally-sourced productivity model data were extracted and assimilated with productivity survey data.

SURVEY ESTIMATES OF CARBON SEQUESTRATION RATES

Total above-ground plant biomass and carbon content of 264 revegetation sites (132 woodlots, 132 mixed species) of known age and 37 remnant vegetation sites in the agricultural regions of South Australia were surveyed (Figure 8). Summaries of site data and observed productivity rates for woodlots, environmental plantings and remnants are presented in Table 10. The average carbon sequestration rate of all revegetation sites was 9.5 tonnes of carbon dioxide equivalents per hectare per year (CO₂-e t/ha/yr; mean annual rainfall 429mm/yr), 11.4 CO₂-e t/ha/yr in woodlots (441mm/yr) and 7.6 CO₂-e t/ha/yr in environmental plantings (418mm/yr). However, mean annual rainfall and plant density (plants/ha) have a significant influence on growth rates (Figure 10).

Carbon stock from remnant vegetation survey sites was observed to be around 428 CO₂-e t/ha (515mm/yr). The average plant density within all surveyed revegetation sites was 894 plants/ha (at 22 years), 714 plants/ha for woodlot plantings (at 26 years), 1074 plants/ha for environmental plantings (at 17 years) and 669 plants/ha in remnant vegetation. The average observed carbon sequestration rates of woodlots measured in this study exceeded both environmental plantings and remnant vegetation (approx. +50 to +100%) despite woodlots having a lower (-34%) plant density than environmental plantings and similar density (+7%) to remnant vegetation (Table 10). The youngest woodlot plantings produced outstanding carbon sequestration rates, around twice as much biomass of environmental plantings of similar age, soil and rainfall conditions. Carbon sequestration rates of environmental plantings are higher than estimates from remnant vegetation. This suggests that water and nutrient stores resulting from prior agricultural land uses has created better growing condition for revegetation at these sites, especially during the early years of growth. The presence of additional nutrients at revegetation sites make it highly likely that revegetation sites will ultimately store greater plant biomass and carbon stock than remnant vegetation under the same climatic conditions.

More detailed data from these survey sites, including key environmental characteristics, species composition, biomass production, carbon stock and sequestration rates can be found in Appendix D - Productivity and Carbon Sequestration Studies (Table 47, Table 48).

Table 10. Summary of average annual rainfall and spatial growth model indices, and observed plant attributes, biomass and carbon sequestration estimates from woodlots, environmental plantings and remnant vegetation in the agricultural regions of SA.

	Rain (mm/yr)	NCAT – Max. Dry Matter (t/ha)	NCAT Forest Productivity Index	Bios Equil (t C/ha/yr)	Age (years)	Plant Density (plants/ha)	Height (m)	Stem Volume MAI (m ³ /ha/yr)	Dry Biomass (t/ha/yr)	Carbon (t/ha/yr)	CO ₂ e (t/ha/yr)	Dry Biomass (t/ha)	Carbon (t/ha)	CO ₂ e (t/ha)
Revegetation (n=264)	429	74	5.2	1.9	22	894	7.9	4.6	5.2	2.6	9.5	89	25	91
Env. plantings (n=132)	418	70	5.0	1.9	17	1074	5.6	3.6	4.1	2.1	7.6	65	128	471
Woodlots (n=132)	441	77	5.4	1.9	26	714	10.1	5.6	6.3	3.1	11.4	112	25	91
Remnant veg. (n=37)	515	89	5.9	2.3	82 [*]	669	8.7	3.1	3.2	1.6	5.8	179	117	428

* Age estimated using basal diameters of ten largest trees in sample

5. CARBON SEQUESTRATION MODELS

PREVIOUS STUDIES

Prior research undertaken by DEWNR SMK staff resulted in the construction of preliminary models of carbon sequestration rates from revegetation in the low to medium rainfall regions (250-650mm/yr) of South Australia (Hobbs et al. 2006, Hobbs et al. 2009b, Hobbs et al. 2010). These models have been primarily based on data and analyses from the Upper South East and Murray-Darling Basin regions, and correlations with indices of growth derived from climate and soil factors (i.e. BiosEquil model, Raupach et al. 2001). In recent years, new surveys in the Northern & Yorke, Eyre Peninsula, Adelaide & Mount Lofty Ranges and Kangaroo Island NRM Regions, and additional "gapfilling" surveys in the SA Murray-Darling Basin and South East NRM Regions has greatly increased the representativeness of revegetation survey data for the dryland agricultural regions of the state.

The increased quality and spatial extent of revegetation survey data, and greatly expanded range of spatial environmental data (e.g. additional climate and soils), has also permitted more detailed analyses to be undertaken to determine drivers and interactions that influence carbon sequestration rates in revegetation.

REVEGETATION TYPES

In the past, DEWNR carbon sequestration models have been represented by 2 broad revegetation classes (based on species selections and designs):

- Woodlots Blocks containing monocultures of typical woodlot species, including Sugar Gum (*Eucalyptus cladocalyx*), River Red Gum (*E. camaldulensis*), and SA Blue Gum (*E. leucoxylon*).
- 2. Environmental Plantings Blocks containing predominately mixtures of native species for biodiverse/habitat plantings intended for environmental services.

These classes persist as an appropriate rudimentary grouping for revegetation types. However, the proportion of individual trees to shrubs (i.e. "proportion trees") within a revegetation plant community does influence plant competition and site productivity. Future versions of the DOTE Reforestation Modelling Tool (RMT) will include "Proportion Trees" classes (i.e. "Tree dominated >= 75% trees", "Mixed Strata < 75% trees") within Mixed Species Environmental Planting models (Paul *et al.* 2012). SA survey data also utilised the lifeform classification of tree or shrub for each individual plant surveyed, but also included a finer classification of the tree group into eucalypt trees, non-eucalypt trees and eucalypt mallees.

PLANT DENSITY

The RMT (DCCEE 2011) currently utilises 3 plant density classes (i.e. "High" >= 1,200 stems/ha, "Medium" ~ 1,000 stems/ha and "Low" <= 800 stems/ha) to estimate carbon sequestration from Mixed Species Environmental Plantings. Generally, these classes represent different plant densities in response to decreasing rainfall and increasing drought stress. This trend of decreasing plant density as growing conditions are harsher is also reflected in observations made from SA revegetation surveys. Due to natural attrition within revegetation sites (e.g. competition, senescence, droughts, limited recruitment) the number of plants per hectare also decreases over time. Preliminary DEWNR models of carbon sequestration (Hobbs et al. 2010) used fixed plant density of 800 plants/ha for woodlots and 1400 plants/ha for environmental plantings based on average observed plant densities from revegetation surveys. However, observed plant densities are typically variable depending on the purpose of the revegetation, establishment method, mix of species or lifeforms, climate, landscapes and soils.

The interactions between plant density, proportion of trees, age, climate and soil variables were explored using survey data from 264 revegetation sites. Forward-stepwise multiple linear regression modelling was used to identify the best predictors of local plant density (Table 11). Further exploration of the model revealed a further interaction between soil classifications (based on clay content of the soil profile) and plant density. The best local plant density models are presented in Table 12.

Table 11. Improvements in local plant density model fit by the stepwise addition of significant variables and the inclusion of a soil interaction.

Predictors of Ln(Plant Density) Stepwise Models	Model Fit (r ²)	Improve- ment	AICc
Climate plus Soils			
Ln(Annual Pot. Evaporation)	0.1330	+13.3%	574.4
+Proportion Tree	0.1802	+4.7%	561.7
+Ln(Age)	0.2107	+3.1%	553.7
+Ln(Annual Rainfall)	0.2322	+2.2%	548.5
x Clay Index of Soil Profile	0.2463	+1.4%	544.8

Table 12. Models for predicting average local plant stocking rate using planting design, age, climate and soil parameters.

Models of Local Plant Density	Model Fit		
Plant Density, pd (plants/ha)	r²	AICc	
Climate Model (n=264)	0.2322	548.5	
Ln(pd+1) = -1.9914xLn(Evap+1) - 0.7235xPropTree - 0.27013xLn(Age+1) + 0.6448xLn(Rain+1)) + 18.2928			
Climate plus Soil Model (n=264)	0.2463	544.8	
Ln(pd+1) = (-1.9914xLn(Evap+1) - 0.7235xPropTree - 0.2701xLn(Age+1) + 0.6448xLn(Rain+1)) + 18.2928) x (0.0007457xClayIndex) + 0.9535)			
<pre>where, kain = average annual rainfall (mm/yr) kap = average annual potential evaporation (mm/yr) kap = age of revegetation site (years) PropTree = proportion of trees (number of tree lifeforms/number of all plants at a site) ClayIndex = clay index of soil profile (~inherent fertility, Hall <i>et al.</i> 2009)</pre>			

ABOVE-GROUND BIOMASS PRODUCTION AND CARBON SEQUESTRATION RATES

National carbon accounting systems, models and tools currently used by the DOTE are based on a primary spatial climate/soil model (Forest Productivity Index, FPI) to evaluate the productive potential of all lands across Australia. This FPI model underpins the FullCAM model implemented through the National Carbon Accounting Toolbox and the CFI Reforestation Modelling Tool. Previous DEWNR research has indicated that other growth models (e.g. BiosEquil or empirical climate-growth relationships) can better represent carbon sequestration rates in South Australia (Hobbs *et al.* 2010).

Since 2010 the number of revegetation sites measured and assessed by DEWNR staff for carbon sequestration studies has greatly increased from 94 to 264 sites, and now covers a much wider range of environmental conditions and planting designs. With this new information the relationships between observed South Australian growth rates and the DOTE Forest Productivity Index (FPI), BiosEquil model and empirical climate/soil data have been reanalysed. Table 13 provides a summary of that renewed analysis. It shows that the FPI used by DOTE modelling approaches (including FullCAM, NCAT, RMT) is the poorest predictor of carbon sequestration rates from revegetation in South Australia. As a primary predictor of revegetation growth the FPI is 3.5 times less reliable than rainfall only data, and 3 times less reliable than the BiosEquil model. Even when growth rate influencing variables (i.e. age, plant density, proportion of trees) are included in the analysis, the BiosEquil and FPI models are 13 to 22% less reliable than models based on rainfall, potential evaporation and soils.

Due to the unreliability of the DOTE FPI to predict growth and carbon sequestration rates in South Australia revegetation, and the decreased efficiency of the BiosEquil model, both the FPI and BiosEquil based models have been abandoned as a methodology to represent growth rates in the agricultural regions of South Australia. New DEWNR productivity models, based on climate/soil relationships have been adopted and developed further to represent plant growth and carbon sequestration rates from revegetation in the state.

The DEWNR growth rate models have been constructed in 2 forms using: 1) "Climate" data, where reliable soil data is not available; and 2) "Climate plus Soil" data, where reliable soil data is present. All plant growth and spatial climate/soil variables were inspected and non-normally distributed variables were transformed using natural-logarithms. Multiple linear regression and forward-stepwise regression techniques were used to identify the best predictors of productivity rates (Table 14). Several iterations of the multiple linear regression modelling process were explored to identify any potential issues that would influence the robustness of resulting models. The resulting "Climate" and "Climate plus Soils" aboveground biomass productivity models and carbon conversion factors are presented in Table 15.

PRELIMINARY MODELS OF CARBON STOCKS IN REMNANT VEGETATION

Following a similar methodology used to develop DEWNR models of carbon sequestration from revegetation, preliminary models of above-ground biomass and carbon stock held in remnant vegetation have been developed (Table 1). A strong relationship exists between remnant above-ground biomass and rainfall (r^2 =0.54), with significant improvements if height and plant density data is available ($r^2=0.75$). However, when on-site plant data is absent, soil profile texture data can be used to marginally improve model fit (r^2 =0.59). Due to the limited number of surveys conducted in remnant sites for this study (n=37) caution should be exercised in the use of these preliminary models for state-wide estimates. Additional remnant vegetation data should be sourced to further test and validate these models.

Figure 9. Relationships between carbon sequestration rates of revegetation (woodlots & environmental plantings) and planting design, age or height in agricultural regions of South Australia.

Figure 10. Relationships between carbon sequestration rates of revegetation (woodlots & environmental plantings) and environmental conditions or current national carbon models in agricultural regions of South Australia.

 Table 13. Comparisons of relationships between above-ground biomass production in revegetation sites and DOTE FPI, BiosEquil and DEWNR Climate plus Soil models (rainfall primary predictor), including the influence of additional predictor variables on primary predictors.

Models of Above-ground Biomass Productivity Rate	Primary Predictor by Model Fit (r ² ; n=264)					
Predictors	FPI	BiosEquil	Rainfall			
Baseline	0.1120	0.3315	0.3914			
+ Age	0.2245	0.3971	0.4621			
+ Plant Density	0.2950	0.4256	0.4919			
+ Proportion Trees	0.3767	0.4698	0.5321			
+ Pot. Evaporation	-	-	0.5442			
+ Soils	-	-	0.5967			

 Table 14. Improvements in carbon sequestration model fit from baseline Climate and Climate plus Soils models by the stepwise addition of significant variables.

Predictors of Ln(Carbon Sequestration Rate) Stepwise Models	Model Fit (r ²)	Improve- ment	AICc
Climate			
Ln(Annual Rainfall)	0.3914	+39.1%	467.0
+Ln(Age)	0.4621	+7.1%	436.5
+Ln(Plant Density)	0.4919	+3.0%	423.5
+Ln(Shrub Density)	0.5260	+3.4%	407.3
+Ln(Annual Pot. Evaporation)	0.5424	+1.6%	400.1
Climate plus Soils			
Ln(Annual Rainfall)	0.3914	+39.1%	467.0
+Ln(Age)	0.4621	+7.1%	436.5
+Depth to Rock	0.5060	+4.4%	416.1
+Ln(Plant Density)	0.5291	+2.3%	405.6
+Ln(Shrub Density)	0.5649	+3.6%	386.8
+Clay Index of Soil Profile	0.5825	+1.8%	378.0
+Ln(Surface Clay Content)	0.5916	+0.9%	374.4
+Ln(Annual Pot. Evaporation)	0.5967	+0.5%	373.2

Table 15. Models for predicting above-ground biomass productivity and carbon sequestration rates using planting design, age, climate and soil parameters.

Models of Above-ground Biomass Productivity	Model Fit		
Above-ground Biomass Production Rate, P _{ag} (t/ha/yr)	r ²	AICc	
Climate Model (n=264)	0.5424	400.1	
$eq:Ln(P_ag+1) = 1.7401*Ln(Rain+1) - 0.1601*Ln(Age+1) + 0.2555*Ln(Plants+1) \\ - 0.06051*Ln(Shrubs+1) - 1.4020*Ln(Evap+1) \\$			
Climate plus Soil Model (n=264)	0.5967	373.2	
Ln(P _{ag} +1) = 1.8371*Ln(Rain+1) - 0.09543*Ln(Age+1) + 0.003784*SoilDepth + 0.2772*Ln(Plants+1) - 0.06623*Ln(Shrubs+1) - 0.009872*ClayIndex + 0.2237*Ln(SurfClay+1) - 1.6105*Ln(Evap+1)			
 where, Rain = average annual rainfall (mm/yr) Evap = average annual potential evaporation (mm/yr) Age = age of revegetation site (years) Plants = plant density (plants/ha) Shrubs = shrub density (shrubs/ha) SoilDepth = average depth of soil (cm), if depth greater than 200cm then depth=200cm SurfClay = soil surface clay content (%), if content >45% then content=45% ClayIndex = clay index of soil profile (~inherent fertility, Hall <i>et al.</i> 2009) 			
Biomass to Carbon Conversion Factors			
Elemental Carbon (C) = Plant Biomass * 0.496 Carbon Dioxide equivalent (CO ₂ -e) = Elemental Carbon * 3.67 Carbon Dioxide equivalent (CO ₂ -e) = Plant Biomass * 0.496 * 3.67			

Table 16. Preliminary models for predicting above-ground biomass and carbon stocks in remnant vegetation.

Preliminary Models of Above-ground Biomass in Remnant Vegetation	Model Fit		
Remnant Above-ground Biomass, B _{rem ag} (t/ha)	r ²	AICc	
Climate Model (n=37)	0.5433	78.9	
$Ln(B_{rem ag}+1) = 2.7217xLn(Rain+1) - 12.1433$			
Climate, Height plus Plant Density Model (n=37)	0.7451	62.6	
$Ln(B_{rem ag}+1) = 1.0328 x Ln(Rain+1) + 0.4817 x Ln(Plants+1) + 0.1545 * Ln(Height+1) - 5.8425$			
Climate plus Soil Model (n=37)	0.5906	77.4	
$Ln(B_{rem ag}+1) = 2.8169xLn(Rain+1) - 0.01287xClayIndex - 11.9387$			
where, Rain = average annual rainfall (mm/yr) Plants = plant density (plants/ha) Height = average height of plants (m) ClayIndex = clay index of soil profile (~inherent fertility, Hall <i>et al.</i> 2009)			
Biomass to Carbon Conversion Factors			
Elemental Carbon (C) = Plant Biomass * 0.496 Carbon Dioxide equivalent (CO ₂ -e) = Elemental Carbon * 3.67 Carbon Dioxide equivalent (CO ₂ -e) = Plant Biomass * 0.496 * 3.67			

DEWNR CARBON SEQUESTRATION FROM REVEGETATION ESTIMATOR TOOL

To enable greater access to the predictive models developed by DEWNR research to landholders, natural resource managers, regional planners, scientists and policy staff a Microsoft Excel tool, embedded with the same models used to estimate regional carbon sequestration rates from revegetation, has been created (Table 15). The user interface and dynamic outputs allow individuals to explore the impact of choices using different locations, planting designs, climatic zones, soil types and ages on carbon sequestration rates (Figure 11). Regional and local environmental parameters that drive carbon sequestration rates have been preloaded into this tool for most environmental or administrative regions of South Australia (e.g. NRM Regions, rainfall zones, local government areas, cropping districts, administrative Hundreds, IBRA subregions & Trees For Life zones) and are available via simple drop-down choices. Average regional conditions can be further modified by the user to evaluate local site conditions. While this tool has been designed and calibrated for local South Australian conditions, and produces a reliable guide to carbon sequestration rates in the State, is not an official CFI methodology.

Outputs of the tool include (see Figure 11):

- average expected local plant density based on regional or site-specific conditions
- estimated average sequestration rate of above-ground biomass, elemental carbon and CO₂-e (t/ha/year)
- estimated carbon stock at a user defined-age (CO₂-e t/ha)
- estimated carbon stock value at a user defined-age and price (\$/ha)

Additional outputs and plots show changes in average local plant density, carbon sequestration rates, carbon stock and asset values over time (Figure 12, Figure 13). The expected impact of 4 climate change scenarios (i.e. S0 Baseline – current conditions, S1 Mild warming and drying, S2 Moderate warming and drying, S3 Severe warming and drying) are also calculated and plotted.

Carbon Sequestration from Revegetation : SA Agricultural Lands

A tool to estimate average above-ground carbon sequestration rates and plant stocking rates for a variety of revegetation types in the agricultural regions of South Australia. It is based on DEWNR surveys of environmental plantings and woodlots in SA, and relationships between stocking rates and growth with rainfall, potential evaporation, age and soil type (Hobbs et al. 2013). Users can select regions of interest and evaluate likely sequestration rates under average conditions. It also allows user to enter more site-specific data and different planting designs to compare likely outcomes from a range of different scenarios. Start by selecting Regional Group and associated Region from the picklists provided (Required Info) and you may then explore further using your own data (Optional).

Enter a location or select a region			n Regional Information					
	SA Range	Lookup Data	Enter Your	Cleared Agric	Cleared Agricultural Lands			
Locality or			🗸 Data Here 🧸	SA			10201618 ha	10201618 ha
Regional Group (e.g. NRM, LGA, Hundred)		Required Info >>		·				100.0%
Region (name)		Required Info >>		Your Result	Region Avg	Region Low	Region High	SA Average
Rainfall (mm/yr)	200-1050	Optional >>		414	414	219	1029	414
Potential Evaporation (mm/yr)	1000-1600	Optional >>		1347	1347	1586	1024	1347
Soil Depth (cm)	5 to >200	Optional >>		189	189	5	200	189
Surface Soil Texture	Sand->Clay		<< Select Class	Sandy loam	Sandy loam	Sand	Clay	Sandy loam
Surface Clay Content (%)	0 to >45	Optional >>		15	15	3	45	15
SubSurface Soil Texture	Sand->Clay		<< Select Class	Clay	Clay	Sand	Clay	Clay
Subsurface Clay Content (%)	0 to >45	Optional >>		43	43	3	45	43
Clay Index of Soil Profile	0-100	Optional >>		65	65	13	100	65
Plantation Type (% trees planted)	0-100	Optional >>		88	88	50	100	88
Target Age (years; default 25)	5-100	Optional >>		25	25	25	25	25
Plant Density (plants/ha) at Target Age	200-3000	Optional >>		555	555	279	1925	555
Trees				488	488	140	1925	488
Tall Shrubs		Tree-dominated	Environmental Planting	67	67	140	0	67
Estimated Sequestration Rate				Avg. 25 years		Average over	r first 25 years	
Above Ground Biomass (DM t/ha/yr)				2.77	2.77	0.03	53.10	2.77
Above Ground Biomass (C t/ha/yr)				1.38	1.38	0.01	26.34	1.38
Above Ground Sequestration (CO ₂ -e t/ha/yr)				5.05	5.05	0.05	96.66	5.05
Project Sequestration and Value		Your Project Name:		At 25 years		At 25	years	
Total Above Ground Sequestration (CO2-6	e tonnes)	Planted Hectares:	1	126	126	1	2,417	126
Carbon Asset Value (\$)		Price (\$/t CO ₂ -e):	\$23.00	\$2,904	\$2,904	\$30	\$55,580	\$2,904

Figure 11. Main screen of the "DEWNR Carbon Sequestration from Revegetation Estimator" tool.

Figure 12. Changes in revegetation carbon sequestration rates over time and under different climate scenarios using the "DEWNR Carbon Sequestration from Revegetation Estimator" tool.

Reference

Figure 13. Changes in revegetation carbon asset values over time and under different climate scenarios using the "DEWNR Carbon Sequestration from Revegetation Estimator" tool.

CLIMATE CHANGE AND CARBON SEQUESTRATION RATES

Several relationships between climate variables and carbon sequestration rates (and average plant density) were identified during the development of DEWNR carbon sequestration models. The quantification of these relationships now allows the exploration of the average potential impact of changes in climate on future carbon sequestration rates from revegetation.

There are many potential climate change scenarios that could be explored here. To maintain consistency with other climate change research conducted in South Australia by CSIRO and the University of Adelaide (Crossman *et al.* 2010) this study has explored the same 4 representative climate scenarios used within their "*Landscape Futures Analysis*" research (Table 17). Representative estimates of potential evaporation rates for the 4 climate scenarios have been included for consistency with the DEWNR modelling approach. These estimates are based on previous studies of the likely impact of climate change on crop productivity (Hayman *et al.* 2011) and water resources (Gibbs *et al.* 2011) in South Australia. Potential atmospheric carbon dioxide fertilization effects have not been included in these analyses or models.

These 4 climate change scenarios, regional average environmental conditions (i.e. climates, soils) and calculation/plotting functions within the DEWNR Carbon Sequestration from Revegetation Estimator Tool (i.e. MS Excel Spreadsheet model) were used to provide representative outputs for each non-arid Natural Resource Management region of South Australia (Figure 14).

Relative to the 100 year estimate of carbon sequestration under current climatic conditions (i.e. "Baseline") the "Mild warming and drying" scenario has the greatest impact in the SA Murray-Darling Basin (-19%) NRM Region. Other NRM Regions are less affected but also reduced by around -13%. As climatic conditions further degrade (i.e "Moderate warming and drying") carbon sequestration is reduced by between -47% to -27% (average -35%). Under the most extreme

Table 17. Climate change scenarios used to explore the influence of increases in temperature and potential evaporation, and decreases in annual rainfall, on carbon sequestration rates from revegetation.

	Rate of Change 1990 - 2070					
Climate Change Scenario	Temp.	Potential Evap.	Rainfall			
S0 Baseline	Historic	Historic	Historic			
S1 Mild warming & drying	+1 °C	+3%	-5%			
S2 Moderate warming &	+2 °C	+6%	-15%			
S3 Severe warming & drying	+4 °C	+8%	-25%			

scenario (i.e. "Severe warming and drying") carbon sequestration can be reduced by around -52% with the strongest influences in the SA Murray-Darling Basin, Eyre Peninsula and Northern & Yorke NRM Regions. As anticipated, the effect of increasing severity of climate change is relatively greatest in the lower rainfall regions, but the scale of change (absolute tonnes of CO₂-e) is highest in higher rainfall regions.

There is no doubt increasing warming and drying of our climate will reduce the average gross primary productivity of both revegetation and agricultural crops in the future. The high likelihood of change will influence farming and revegetation practices into the future (Booth & Williams 2012). Due to the long-term intent and nature of revegetation activities, plans for targeted revegetation should include considerations of planting design and species choices that match future climatic conditions and future needs of biodiversity, environmental services, economics and resilience for sustainability outcomes across South Australia.

IMPROVING NATIONAL CARBON ACCOUNTING MODELS

In 2011, DOTE recognised that FullCAM and RMT model estimates of carbon stocks in environmental plantings and mallee plantings were generally biased towards underestimating carbon stocks, and that new research was required to address this issue. DOTE engaged CSIRO, DEWNR and others (Paul *et al.* 2012) to undertake surveys and research to improve carbon assessment methods in revegetation and recalibrate FullCAM biomass accumulation models for environmental plantings and mallee plantings across Australia. This work involved collating existing biometric and productivity data from prior studies in Australia, undertaking detailed measurements and destructive sampling from several new sites, and recalibrating FullCAM models from these combined datasets.

In South Australia, 2 sites (1 mallee, 1 environmental planting) were chosen at Moorlands (near Tailem Bend, SA) for detailed studies of spatial variation plant productivity, development of allometric models for above ground biomass, guantifying root to shoot biomass ratios, and assessing site productivity. Details of these studies can be found in Appendix F -Improving National Carbon Accounting Models: Moorlands Case Study and in Paul et al. (2012). Plant biometric and revegetation productivity data gathered from South Australian sites by DEWNR over the past decade, and information gathered from recent DEWNR/CSIRO studies at Moorlands, have been assimilated into national DOTE databases. This data has been used by CSIRO and DEWNR to improve biomass assessment methods and to recalibrate FullCAM models for environmental plantings and mallee plantings (Paul et al. 2012).

In February 2013, DOTE approved these new FullCAM calibrations for environmental plantings and mallee plantings (Paul *et al.* 2012), and their implementation in the next release of the RMT for carbon accounting in 2013/2014. This update will significantly improve DOTE's primary methodology (CFI RMT) for carbon accounting in Australia.

Figure 14. Estimated climate change influences on cumulative average carbon sequestration rates in environmental plantings (88% trees) by NRM Regions.

6. REGIONAL ESTIMATES OF CARBON SEQUESTRATION

CARBON SEQUESTRATION FROM REVEGETATION

The purpose, planting design, species selections, age and location of revegetation activities can be incredibly variable. The DEWNR carbon sequestration from revegetation models are adaptable to most of these choices and represent the typical local growth rates expected under current climatic conditions. While the survey data behind the models captured a wide range of planting designs, species blends, ages, climatic zones and soil types, these models should be considered most reliable for sites in the 250 to 650mm/year rainfall zone, between 10 to 40 years of age, with plant density values of 200 to 2000 plants per hectare, proportion of trees >65%, and on sandy to moderately clayey soils >60cm in depth.

Due to the large number of potential outputs, 3 representative revegetation scenarios (at 25 years) based on different proportions of trees have been generated:

- 1. Woodlots (100% trees)
- 2. Tree Dominated Environmental Plantings (88% trees, 12% medium to tall shrubs typical SA)
- **3.** Mixed Strata Environmental Plantings (50% trees, 50% medium to tall shrubs)

These groupings are consistent with current and proposed DOTE NCAT and RMT classifications. Past DEWNR surveys of revegetation sites across South Australian agricultural regions determined the average proportion of trees was between 83% (mixed species only) and 89% (all revegetation types). The "Tree Dominated Environmental Plantings" classification (88% trees) well represents the normal range of typical revegetation in South Australia. The baseline predictions of average cumulative carbon sequestration rates for the 3 revegetation types have been generated for the interval 0 to 25 years of age. This convenient reporting interval (first 25 years) is close to the average age (22 years) of DEWNR surveyed revegetation sites. DEWNR survey data and models suggest that the average cumulative sequestration rate for the 0 to 100 years interval is approximately 75% of the 0 to 25 year interval rate.

Predictions of average carbon sequestration rates (i.e. first 25 years) for the 3 revegetation types were generated using Climate-only and Climate plus Soils models and data for every hectare of land within South Australia. Predictions of average local plant density preceded, and contributed later models of average biomass and carbon sequestration rates. In drier to more arid regions (i.e. annual rainfall <300mm/year, potential evaporation >1450mm/year) it was necessary to linearly rescale unreasonably low and negative predictions (due to unavailable model calibration data) from the most arid parts of the state (e.g. annual rainfall 106mm/year, potential evaporation 2106mm/year). In areas where reliable soil data is absent in the state, the predictions from the Climateonly model were merged with Climate plus Soils model to create a state-wide coverage of local plant density, and carbon sequestration rates (Figure 15). In areas where soil mapping data is unavailable (e.g. far-north & north-eastern regions) the model reliability is reduced by approximately 7%.

Summaries and maps presented in this report predominantly represent average sequestration rates for the first 25 years of typical South Australian "Tree Dominated Environmental Plantings" (i.e. 88% trees) under current climatic conditions (unless otherwise stated).

Figure 15. Predicted average annual carbon sequestration rates from Tree Dominated Environmental Plantings in South Australia.

REGIONAL ESTIMATES

Spatial predictions of carbon sequestration rates from revegetation (e.g. Woodlots, Tree Dominated Environmental Plantings, Mixed Strata Environmental Plantings) using DEWNR models have been restricted to cleared agricultural areas (see Figure 2) by masking out locations mapped by DEWNR as containing native vegetation, national parks and other conservation reserves, lakes and rivers, and built-up areas of town and cities. The nominated available land is typically dominated by cereal cropping and livestock grazing on cleared landscapes, but also includes other agricultural crops.

The following sections report regional summaries of DEWNR carbon sequestration model predictions across the cleared agricultural lands of South Australia under current climatic conditions. DEWNR models are based on extensive surveys of mixed environmental plantings and woodlots within South Australia's agricultural districts. Most of the data presented here represents the average above-ground carbon sequestration rate (CO_2 -e t/ha/year) using localised plant density (plants/ha; based on climate and soils) for 25 year old revegetation sites containing Kyoto-compliant species (i.e. >2m height trees, mallees & shrubs) and mapped at a 1 hectare scale.

Regional maps and tabulations of typical carbon sequestration rates by a series of different regional groupings are intended to provide natural resource managers, landholders, policy makers, scientists and carbon markets with a quick-look guide to anticipated sequestration rates from revegetation in regions of interest to each stakeholder.

Natural Resource Management Regions

There are over 10 million hectares of cleared agricultural lands in South Australia that are predominantly used for annual cropping and grazing (Table 18). These lands are predominantly found within the 250-650mm/year mean annual rainfall zone (9.4million ha, 92% of cleared lands). Due to significant differences in environmental conditions (Table 19, Table 20), plant density (Table 21, Figure 16) and planting designs (e.g. woodlots and environmental plantings), carbon sequestration rates from revegetation are highly variable across Natural Resource Management (NRM) regions (Table 22, Figure 17).

The carbon potential of each NRM Region is reliant on both the number of hectares of potential land and

average productivity of that land. From cursory observations of available hectares (Table 18), the Eyre Peninsula and SA Murray-Darling Basin NRM Regions dominate (51% of cleared lands), but it should be noted that average rainfall is lower and average evaporation is higher in these NRM Regions than most other regions (Table 19).

To more reliably compare the carbon potential of each NRM Region an assimilation of data representing a target of 10% revegetation of available cleared agricultural (i.e. 10% utilisation) using woodlots and typical environmental plantings (i.e. 88%trees) was produced. These comparisons are based on a random allocation of 10% land available within a NRM Region, average carbon sequestration rates for the first 25 years, and an economic asset valuation based on a current CO₂-e price of \$23/tonne (e.g. Woodlots -Table 23, Environmental Plantings - Table 24). Economic values presented in these tables only reflect the annual increment of carbon asset values based on current carbon market prices in Australia, and do not include any other investment considerations (e.g. no establishment, maintenance, investment, discount rates, compliance or opportunity costs).

Plots of carbon sequestration potential and annual incremental asset values at a target 10% revegetation by NRM Region and rainfall zones are presented in Figure 18, Figure 19 and Figure 20. Based on a uniform 10% adoption of revegetation by NRM Regions, considerable differences in carbon sequestration potential and values emerge. Key considerations from a review of this information includes:

- Adelaide & Mt Lofty Ranges, Eyre Peninsula, Northern & Yorke and SA Murray-Darling Basin NRM Regions have similar carbon potential with vastly different contributions from rainfall zones within regions
- Annual rainfall is a more limiting factor than available land in the Eyre Peninsula and SA Murray-Darling Basin NRM regions
- Adelaide & Mt Lofty Ranges, Kangaroo Island and South East NRM Regions have potential CFI restrictions due to higher proportion of lands in higher rainfall regions (e.g. >600mm/year restrictions in CFI program)
- South East NRM Region has 4 times more potential for carbon sequestration than any other NRM Region
- Typical Environmental Plantings sequester about 71% of the potential from Woodlots

Table 18. Area of agricultural land by NRM Region and rainfall zone in South Australia.

	Area of Agricultural Land (ha)										
]	Rainfall Zone (mm/yr)										
NRM Region*	<250	250-350	351-450	451-550	551-650	651-750	>750	Total			
AMLR		9,180	144,450	116,090	67,590	79,380	86,210	502,900			
EP	250	1,962,810	655,000	112,740	10,280			2,741,070			
KI			14,310	82,440	57,050	43,390	25,510	222,690			
NY		418,700	1,103,580	519,000	35,340			2,076,610			
SAMDB	100,650	1,476,190	711,120	118,840	31,130	24,510	30,720	2,493,150			
SE			384,040	853,450	491,420	365,910	62,920	2,157,730			
Total	100,900	3,866,870	3,012,500	1,802,560	692,800	513,180	205,350	10,194,160			

* NRM Regions: Adelaide & Mt Lofty Ranges (AMLR); Eyre Peninsula (EP); Kangaroo Island (KI); Northern & Yorke (NY); SA Murray-Darling Basin (SAMDB); South East (SE).

Table 19. Potential evaporation rates of agricultural land by NRM Region and rainfall zone in South Australia.

		Mean Annual Potential Evaporation (mm/yr)										
		Rainfall Zone (mm/yr)										
NRM Region	<250	<250 250-350 351-450 451-550 551-650 651-750 >750 A										
AMLR		1404	1398	1364	1258	1231	1195	1310				
EP	1566	1476	1370	1257	1228			1441				
KI			1131	1116	1107	1100	1090	1108				
NY		1465	1391	1412	1390			1411				
SAMDB	1464	1398	1312	1315	1248	1210	1192	1366				
SE			1279	1215	1131	1071	1057	1178				
Average	1464	1445	1353	1286	1161	1105	1139	1347				

 Table 20. Index of soil profile clay content of agricultural land by NRM Region and rainfall zone in South Australia.

		Clay Index of Soil Profile*										
		Rainfall Zone (mm/yr)										
NRM Region	<250	250-350	351-450	451-550	551-650	651-750	>750	Average				
AMLR		68	84	83	73	71	71	77				
EP	50	56	62	62	59			58				
KI			77	69	67	61	58	66				
NY		76	75	89	84			79				
SAMDB	59	59	61	69	64	66	63	60				
SE			46	57	74	75	67	62				
Average	54	65	67	72	70	68	65	67				

* Index of clay content or estimated inherent fertility of whole soil profile (0-50 Low, 50-70 Moderately Low, 70-90 Moderate, 90-100 High).

	Reveg*			Mean Pla	nt Density (plants/ha) a	t 25 years		
	Туре				Rainfall Zo	ne (mm/yr)			
NRM Region	% Trees	<250	250-350	351-450	451-550	551-650	651-750	>750	Average
AMLR	W 100 EP 88 EP 50		422 460 607	505 551 729	605 661 874	787 859 1135	896 978 1290	1046 1142 1507	719 785 1037
EP	W 100 EP 88 EP 50	255 278 365	339 370 487	470 513 676	643 702 924	723 789 1038			384 419 552
ΚI	W 100 EP 88 EP 50			806 880 1162	850 928 1224	968 1056 1393	1053 1148 1512	1147 1251 1647	951 1038 1368
NY	W 100 EP 88 EP 50		392 428 566	492 537 710	576 629 833	654 714 945			496 541 716
SAMDB	W 100 EP 88 EP 50	300 327 431	371 405 534	507 553 728	609 664 877	750 818 1078	897 979 1290	988 1078 1420	436 476 627
SE	W 100 EP 88 EP50			531 579 760	686 749 985	976 1065 1407	1205 1316 1739	1260 1375 1813	829 905 1193
Average	W 100 EP 88 EP 50	300 327 431	357 390 514	498 543 716	649 708 934	926 1011 1336	1130 1234 1629	1115 1217 1605	543 592 781

Table 21. Average plant density of revegetation (at 25 years of age) in agricultural land by NRM Region and rainfall zone in South Australia (DEWNR model).

* Woodlots (W 100), Tree Dominated Environmental Plantings (EP 88), Mixed Strata Environmental Plantings (EP 50).

Table 22. Carbon sequestration rates from revegetation (first 25 years) in agricultural land by NRM Region and rainfall zone in South Australia (DEWNR model).

	Reveg*		Mean Carbon Sequestration Rate (CO ₂ -e t/ha/yr) – first 25 years									
	Туре				Rainfall Zo	ne (mm/yr)						
NRM Region	% Trees	<250	250-350	351-450	451-550	551-650	651-750	>750	Average			
AMLR	W 100 EP 88 EP 50		4.09 2.81 2.65	5.20 3.64 3.45	8.44 6.05 5.78	16.85 12.24 11.75	24.33 17.70 17.02	36.59 26.55 25.55	15.89 11.48 11.01			
EP	W 100 EP 88 EP 50	1.83 1.14 1.03	2.75 1.82 1.69	5.75 4.08 3.87	12.95 9.45 9.05	19.97 14.69 14.10			3.95 2.72 2.56			
KI	W 100 EP 88 EP 50			12.18 8.71 8.35	14.94 10.74 10.30	23.32 16.87 16.21	35.53 25.80 24.81	49.23 35.71 34.37	24.85 17.98 17.28			
NY	W 100 EP 88 EP 50		2.93 1.94 1.82	5.84 4.13 3.92	7.33 5.21 4.97	11.15 8.08 7.73			5.72 4.02 3.82			
SAMDB	W 100 EP 88 EP 50	1.62 0.94 0.85	2.65 1.72 1.59	6.06 4.29 4.07	8.19 5.84 5.57	14.81 10.74 10.30	25.98 18.94 18.20	37.52 27.38 26.34	4.66 3.21 3.04			
SE	W 100 EP 88 EP 50			9.15 6.66 6.36	14.43 10.53 10.09	24.09 17.44 16.76	33.84 24.34 23.42	40.74 29.33 28.22	19.75 14.31 13.73			
Average	W 100 EP 88 EP 50	1.62 0.94 0.85	2.74 1.79 1.67	6.30 4.48 4.25	11.52 8.34 7.99	22.18 16.06 15.44	32.14 23.18 22.30	39.57 28.67 27.59	8.86 6.31 6.03			

* Woodlots (W 100), Tree Dominated Environmental Plantings (EP 88), Mixed Strata Environmental Plantings (EP 50).

Figure 16. Variations in local plant density (at 25 years of age) for a) Woodlots (100% trees) and b) Environmental Plantings (88% trees) resulting from differences in climate, soil and revegetation types in the agricultural region of South Australia.

Figure 17. Estimated average carbon sequestration rates (first 25 years) from a) Woodlots (100% trees) and b) Environmental Plantings (88% trees) using local plant density in the agricultural region of South Australia.

Table 23. Annual carbon sequestration potential crop and value from a 10% target Woodlot (100% trees)revegetation in agricultural land by NRM Region and rainfall zone in South Australia

	١	Woodlots - Potential Sequestration $^{\wedge}$ (CO $_2$ -e millions of t/yr) at 10% Utilisation											
		Rainfall Zone (mm/yr)											
NRM Region	<250	<250 250-350 351-450 451-550 551-650 651-750 >750 Total											
AMLR		0.004	0.076	0.088	0.098	0.166	0.291	0.724					
EP	0.0001	0.688	0.387	0.128	0.017			1.220					
KI			0.018	0.119	0.118	0.138	0.117	0.510					
NY		0.158	0.667	0.330	0.032			1.188					
SAMDB	0.026	0.562	0.467	0.089	0.039	0.055	0.104	1.341					
SE			0.358	1.159	1.126	1.191	0.250	4.083					
Total	0.026	1.414	1.974	1.912	1.431	1.551	0.761	9.065					

Woodlots - Potential Annual Value of Carbon[#] (millions \$/yr) at 10% Utilisation

		Rainfall Zone (mm/yr)										
NRM Region	<250	250-350	351-450	451-550	551-650	651-750	>750	Total				
AMLR		0.103	1.746	2.019	2.254	3.829	6.690	16.641				
EP	0.001	15.832	8.900	2.937	0.391			28.061				
KI			0.416	2.728	2.715	3.180	2.681	11.721				
NY		3.643	15.349	7.598	0.729			27.319				
SAMDB	0.589	12.917	10.749	2.036	0.903	1.266	2.381	30.842				
SE			8.241	26.646	25.902	27.383	5.742	93.914				
Total	0.590	32.512	45.405	43.980	32.906	35.682	17.507	208.497				

[^] Based on average of first 25 year sequestration rate. [#] Market CO₂-e price of \$23/tonne.

Table 24. Annual carbon sequestration potential crop and value from a 10% target Environmental Plantings (88% trees) revegetation in agricultural land by NRM Region and rainfall zone in South Australia.

	Environ	Environmental Plantings - Potential Sequestration $^{\circ}$ (CO $_2$ -e millions of t/yr) at 10% Utilisation											
		Rainfall Zone (mm/yr)											
NRM Region	<250	<250 250-350 351-450 451-550 551-650 651-750 >750 Tot											
AMLR		0.003	0.053	0.070	0.083	0.141	0.229	0.578					
EP	0.00003	0.357	0.267	0.107	0.015			0.746					
KI			0.012	0.089	0.096	0.112	0.091	0.401					
NY		0.081	0.456	0.271	0.029			0.836					
SAMDB	0.010	0.253	0.305	0.069	0.033	0.046	0.084	0.802					
SE			0.256	0.899	0.857	0.891	0.185	3.088					
Total	0.010	0.694	1.349	1.505	1.114	1.190	0.589	6.450					

Environmental Plantings - Potential Annual Value of Carbon[#] (millions \$/yr) at 10% Utilisation

		Rainfall Zone (mm/yr)										
NRM Region	<250	250-350	351-450	451-550	551-650	651-750	>750	Total				
AMLR		0.060	1.209	1.616	1.907	3.234	5.269	13.294				
EP	0.001	8.209	6.145	2.452	0.348			17.154				
KI			0.286	2.039	2.215	2.576	2.100	9.218				
NY		1.873	10.479	6.222	0.658			19.232				
SAMDB	0.219	5.827	7.019	1.598	0.770	1.067	1.936	18.436				
SE			5.880	20.681	19.722	20.498	4.245	71.025				
Total	0.219	15.969	31.019	34.608	25.619	27.374	13.551	148.359				

Based on average of first 25 year sequestration rate. [#]Market CO₂-e price of \$23/tonne.

Agricultural Land

Carbon Sequestration at 10% Woodlot Revegetation

Figure 19. Potential annual carbon crop and annual value (at \$23/t CO₂-e) based on 10% target utilisation of Woodlots (100%trees) revegetation on agricultural land by NRM Regions and rainfall zones.

Figure 20. Potential annual carbon crop and annual value (at \$23/t CO₂-e) based on 10% target utilisation of Environmental Plantings (88%trees) on agricultural land by NRM Regions and rainfall zones.

Adelaide and Mt Lofty Ranges NRM Region

Figure 21. Estimated average carbon sequestration rates (first 25 years) from Woodlots in the Adelaide and Mt Lofty Ranges NRM Region.

Figure 22. Estimated average carbon sequestration rates (first 25 years) from typical Environmental Plantings (88% trees) in the Adelaide and Mt Lofty Ranges NRM Region.

Eyre Peninsula NRM Region

Figure 23. Estimated average carbon sequestration rates (first 25 years) from Woodlots in the Eyre Peninsula NRM Region.

Figure 24. Estimated average carbon sequestration rates (first 25 years) from typical Environmental Plantings (88% trees) in the Eyre Peninsula NRM Region.

Northern and Yorke NRM Region

Figure 25. Estimated average carbon sequestration rates (first 25 years) from Woodlots in the Northern and Yorke NRM Region.

Figure 26. Estimated average carbon sequestration rates (first 25 years) from typical Environmental Plantings (88% trees) in the Northern and Yorke NRM Region.

SA Murray-Darling Basin NRM Region

Figure 27. Estimated average carbon sequestration rates (first 25 years) from Woodlots in the SA Murray-Darling Basin NRM Region.

Figure 28. Estimated average carbon sequestration rates (first 25 years) from typical Environmental Plantings (88% trees) in the SA Murray-Darling Basin NRM Region.

South East NRM Region

Figure 29. Estimated average carbon sequestration rates (first 25 years) from Woodlots in the South East NRM Region.

Figure 30. Estimated average carbon sequestration rates (first 25 years) from typical Environmental Plantings (88% trees) in the South East NRM Region.

Figure 31. Estimated average carbon sequestration rates (first 25 years) from Woodlots in the Kangaroo Island NRM Region.

Figure 32. Estimated average carbon sequestration rates (first 25 years) from typical Environmental Plantings (88% trees) in the Kangaroo Island NRM Region.

Cropping Districts

Table 25.Summary of average annual rainfall, and estimated planting density and carbon sequestration rates
for revegetation (Woodlots - 100% trees; Environmental Plantings - 88% trees) in agricultural lands
by Cropping Districts of South Australia.

				Woodlots		Environ	nmental Pla	antings		
	Agricul- tural Land	Annual Rainfall	Plant Density	Carbon Sequestration Rate (CO ₂ -e t/ha/yr)		Carbon Sequestration Rate (CO2-e t/ha/yr)		Plant Density	Carl Sequestra (CO ₂ -e t	bon ition Rate :/ha/yr)
Cropping District	(ha)	(mm/yr)	(plants/ha)	Mean	s.d.	(plants/ha)	Mean	s.d.		
Central Hills/Fleurieu Pen	374,810	643	854	22.81	13.02	932	16.54	9.53		
Lower Eyre Pen	465,470	410	554	8.09	4.17	604	5.80	3.14		
Eastern Eyre Pen	762,010	326	396	3.04	0.98	432	2.01	0.75		
Western Eyre Pen	1,513,830	311	327	3.14	1.25	356	2.13	0.96		
Kangaroo Island	222,800	590	951	24.86	13.42	1038	17.98	9.84		
Lower North	302,930	462	561	7.48	<i>3.92</i>	612	5.33	2.94		
Mid North	817,550	419	511	5.63	2.54	558	3.94	1.91		
Upper North	755,460	410	475	4.48	2.09	519	3.09	1.57		
Yorke Pen	711,980	385	493	6.63	2.63	537	4.74	1.99		
Northern Murray	643,410	266	321	1.91	0.33	350	1.16	0.25		
Southern Murray	715,350	333	420	3.87	1.32	458	2.64	1.01		
Lower Murray	476,140	333	439	3.82	2.09	479	2.59	1.57		
Upper South East	1,424,070	462	618	11.97	4.78	674	8.71	3.53		
Lower South East	994,410	638	1052	27.70	9.50	1148	19.99	6.90		

Planning Divisions

Table 26.Summary of average annual rainfall, and estimated planting density and carbon sequestration rates
for revegetation (Woodlots - 100% trees; Environmental Plantings - 88% trees) in agricultural lands
by government Planning Divisions of South Australia.

				Woodlots		Enviror	nmental Pla	ntings
	Agricul- tural Land	Annual Rainfall	Plant Density	Carbon Sequestration Rate (CO2-e t/ha/yr)		Plant Density	Carl Sequestra (CO ₂ -e 1	bon ntion Rate t/ha/yr)
Planning Divisions	(ha)	(mm/yr)	(plants/ha)	Mean	s.d.	(plants/ha)	Mean	s.d.
Adelaide Hills	107,750	718	859	24.09	10.39	938	17.53	7.64
Eastern Adelaide	750	719	835	19.30	4.66	911	14.11	3.28
Southern Adelaide	41,310	649	852	20.46	7.06	931	14.86	5.19
Western Adelaide	1,900	423	495	6.08	0.54	540	4.45	0.42
Northern Adelaide	35,430	480	571	7.73	3.25	623	5.56	2.45
Fleurieu & Kangaroo Island	452,590	599	900	23.69	14.14	982	17.14	10.34
Eyre & Western	2,742,870	332	384	3.95	<i>2</i> .75	419	2.72	2.07
Yorke & Mid North	2,258,480	406	494	5.61	2.56	540	3.94	1.93
Barossa, Light, Lower North	278,970	461	560	7.52	4.00	612	5.36	3.00
Far North	28,150	342	384	1.61	0.92	420	0.97	0.64
Murray & Mallee	2,477,130	339	430	4.80	3.45	469	3.34	2.62
Limestone Coast	1,776,290	575	888	21.68	10.37	969	15.69	7.49

Local Government Regions

Table 27.Summary of average annual rainfall, and estimated planting density and carbon sequestration rates
for revegetation (Woodlots - 100% trees; Environmental Plantings - 88% trees) in agricultural lands
by Local Government regions of South Australia.

				Woodlots		Enviror	Environmental Plantings			
	Agricul- tural Land	Annual Rainfall	Plant Density	Car Sequestra (CO ₂ -e	bon ation Rate t/ha/yr)	Plant Density	Carbon Sequestration Rate (CO ₂ -e t/ha/yr)			
Local Government	(ha)	(mm/yr)	(plants/ha)	Mean	s.d.	(plants/ha)	Mean	s.d.		
Adelaide Hills	55,780	773	883	25.91	8.37	963	18.89	6.11		
Alexandrina	137,800	522	716	15.17	11.94	781	10.96	8.80		
Barossa	76,880	560	644	11.63	5.13	703	8.43	3.85		
Barunga West	150,500	353	397	3.94	0.77	433	2.72	0.59		
Berri Barmera	16,180	238	295	1.66	0.27	322	0.97	0.22		
Burnside	510	775	918	21.64	3.32	1002	15.69	2.43		
Campbelltown	190	605	660	14.59	2.30	719	10.98	1.76		
Ceduna	378,570	276	283	2.23	0.29	308	1.44	0.23		
Clare And Gilbert Valleys	175,490	507	606	8.44	2.43	662	6.04	1.83		
Cleve	319,870	342	421	3.71	0.94	459	2.52	0.73		
Copper Coast	73,030	356	418	4.92	0.84	456	3.47	0.64		
Elliston	303,200	357	406	4.69	1.06	443	3.30	0.81		
Flinders Ranges	25,220	348	390	1.59	0.97	426	0.96	0.67		
Franklin Harbour	167,650	305	388	2.46	0.85	424	1.56	0.64		
Gawler	2,970	479	586	7.91	1.07	640	5.67	0.79		
Goyder	319,530	407	508	4.94	2.18	555	3.41	1.63		
Grant	175,350	726	1264	34.24	11.21	1380	24.57	8.33		
Kangaroo Island	222,920	590	951	24.85	13.42	1038	17.98	9.84		
Karoonda East Murray	359,360	315	406	3.45	0.97	442	2.33	0.74		
Kimba	274,460	318	372	2.62	0.52	406	1.70	0.40		
Kingston	259,800	543	799	19.11	4.85	872	13.93	3.56		
Light	120,750	455	558	6.80	1.71	610	4.82	1.29		
Lower Eyre Peninsula	246,040	440	577	9.77	4.28	630	7.07	3.21		
Loxton Waikerie	557,710	268	324	1.94	0.32	353	1.18	0.25		
Mallala	78,370	374	480	4.57	0.73	524	3.15	0.58		
Marion	1,880	563	734	13.56	3.70	802	9.84	2.81		
Mid Murray	338,040	324	418	3.38	2.24	456	2.25	1.68		
Mitcham	2,030	740	882	22.85	6.65	963	16.64	4.84		
Mount Barker	51,970	660	834	22.13	11.88	910	16.08	8.76		
Mount Gambier	1,000	729	1455	26.21	3.83	1590	18.46	2.77		
Mount Remarkable	172,720	396	456	3.94	2.39	499	2.68	1.79		
Murray Bridge	138,100	355	491	4.91	1.07	536	3.41	0.82		
Naracoorte Lucindale	399,880	566	882	20.56	4.53	963	14.92	3.38		
Northern Areas	277,420	461	531	6.00	1.42	581	4.22	1.08		
Onkaparinga	37,390	648	857	20.68	7.02	936	15.02	5.15		
Orroroo/Carrieton	88,920	365	441	2.88	1.57	482	1.88	1.15		
Peterborough	47,660	339	433	2.48	0.63	473	1.55	0.47		
Playford	23,960	468	567	7.10	2.83	620	5.05	2.12		
Port Augusta	1,500	302	342	1.84	0.31	374	1.09	0.26		
Port Lincoln	1,410	513	715	14.07	4.25	780	10.23	3.25		
Port Pirie	142,040	392	438	4.38	1.07	478	3.03	0.81		
Renmark Paringa	57,570	257	301	1.67	0.23	329	0.98	0.18		
			Woodlots			Environmental Plantings				
------------------	---------------------------	--------------------	------------------	--	-------	-------------------------	--	------	--	
	Agricul- tural Land	Annual Rainfall	Plant Density	Carbon Sequestration Rate (CO ₂ -e t/ha/yr)		Plant Density	Carbon Sequestration Rate (CO ₂ -e t/ha/yr)			
Local Government	(ha)	(mm/yr)	(plants/ha)	Mean	s.d.	(plants/ha)	Mean	s.d.		
Robe	81,660	640	1075	28.41	3.38	1174	20.50	2.51		
Salisbury	6,980	442	513	6.65	0.96	559	4.86	0.77		
Southern Mallee	355,990	351	434	4.28	1.48	473	2.96	1.14		
Streaky Bay	377,870	320	320	3.52	1.29	349	2.44	1.00		
Tatiara	522,030	470	619	11.51	2.53	676	8.38	1.90		
Tea Tree Gully	4,090	611	689	13.10	3.12	752	9.62	2.38		
The Coorong	642,220	423	543	9.46	2.98	592	6.88	2.25		
Tumby Bay	218,070	377	526	6.14	3.03	575	4.33	2.29		
Victor Harbor	30,760	746	1037	35.49	9.77	1132	25.76	7.12		
Wakefield	322,530	383	463	4.79	1.75	505	3.33	1.32		
Wattle Range	336,560	677	1136	32.61	8.18	1240	23.50	5.96		
Wudinna	322,580	302	323	2.54	0.48	352	1.66	0.38		
Yankalilla	61,120	727	1061	32.71	11.55	1158	23.65	8.42		
Yorke Peninsula	488,520	399	533	7.72	2.44	582	5.55	1.86		

Interim Biogeographic Regions

Table 28.Summary of average annual rainfall, and estimated planting density and carbon sequestration rates
for revegetation (Woodlots - 100% trees; Environmental Plantings - 88% trees) in agricultural lands
by IBRA subregions of South Australia.

			Woodlots			Environmental Plantings			
	Agricul- tural Land	Annual Rainfall	Plant Density	Carl Sequestra (CO ₂ -e t	bon ation Rate t/ha/yr)	Plant Density	Carl Sequestra (CO ₂ -e t	bon ition Rate :/ha/yr)	
IBRA Subregion	(ha)	(mm/yr)	(plants/ha)	Mean	s.d.	(plants/ha)	Mean	s.d.	
Bridgewater	343,220	650	1113	29.29	9.34	1215	21.08	6.73	
Broughton	920,610	454	543	6.14	2.29	594	4.32	1.73	
Eyre Hills	803,540	368	477	5.33	4.13	521	3.72	3.10	
Eyre Mallee	1,454,900	302	330	2.81	0.84	360	1.87	0.64	
Fleurieu	321,190	584	774	18.53	14.56	845	13.38	10.65	
Glenelg Plain	140,680	697	1082	35.06	8.90	1181	25.40	6.59	
Kangaroo Island	222,840	590	951	24.86	13.42	1038	17.98	9.84	
Lowan Mallee	511,790	403	501	7.69	4.41	546	5.53	3.32	
Lucindale	634,160	572	885	21.47	6.09	966	15.58	4.44	
Mount Gambier	79,130	746	1325	34.66	11.74	1447	24.81	8.73	
Mount Lofty Ranges	210,420	648	785	19.11	10.01	857	13.89	7.35	
Murray Lakes and Coorong	97,860	413	578	9.27	2.69	630	6.70	2.03	
Murray Mallee	1,655,890	310	397	3.39	1.64	433	2.27	1.24	
Murray Scroll Belt	58,120	247	303	1.64	0.30	330	0.95	0.24	
Southern Flinders	175,910	388	445	3.54	2.66	487	2.39	1.98	
Southern Yorke	346,880	398	544	8.32	2.44	593	6.00	1.86	
St Vincent	955,110	379	453	4.78	1.55	494	3.33	1.17	
Talia	454,790	367	402	5.29	1.95	439	3.77	1.47	
Tintinara	568,100	458	585	11.29	2.67	637	8.24	2.02	
Wimmera	127,490	512	807	15.25	4.28	882	11.01	3.14	

Trees For Life Zones

Table 29.Summary of average annual rainfall, and estimated planting density and carbon sequestration rates
for revegetation (Woodlots - 100% trees; Environmental Plantings - 88% trees) in agricultural lands
by Trees For Life zones of South Australia.

			Woodlots			Environmental Plantings			
	Agricul -tural Land	Annual Rainfall	Plant Density	Car Sequestra (CO ₂ -e t	bon ation Rate t/ha/yr)	Plant Density	Car Sequestra (CO ₂ -e t	bon ition Rate t/ha/yr)	
Trees For Life Zones	(ha)	(mm/yr)	(plants/ha)	Mean	s.d.	(plants/ha)	Mean	s.d.	
AH Adelaide Hills	122,550	690	839	22.20	11.14	915	16.13	8.18	
AP Adelaide Plains	137,990	396	498	5.24	1.25	544	3.67	0.97	
AS Adelaide South	4,130	621	769	16.50	5.64	839	12.04	4.19	
BV Barossa Region	125,700	482	584	7.67	<i>2</i> .69	638	5.46	2.02	
CH Central Hills	80,130	604	683	14.36	6.95	746	10.46	5.18	
NO Noarlunga	9,930	556	727	14.69	3.96	794	10.68	2.96	
VI Victor Harbor	30,850	746	1037	35.51	9.77	1132	25.78	7.13	
WN Willunga	15,790	639	904	21.04	5.14	988	15.24	3.74	
YA Yankalilla D.C.	60,990	727	1061	32.70	11.55	1158	23.65	8.41	
CD Ceduna D.C.	378,640	276	283	2.23	0.29	308	1.44	0.23	
CV Cleve D.C.	319,800	342	421	3.71	0.94	459	2.52	0.73	
EL Elliston D.C.	303,270	357	406	4.69	1.06	443	3.30	0.81	
FH Franklin Harbour D.C.	167,640	305	388	2.46	0.85	424	1.56	0.64	
KB Kimba D.C.	273,270	319	372	2.63	0.51	406	1.70	0.39	
LH Le Hunte D.C.	322,640	302	323	2.54	0.48	352	1.66	0.38	
LE Lower Eyre Peninsula D.C.	248,720	440	577	9.77	4.29	630	7.07	3.22	
SK Streaky Bay D.C.	377,760	320	320	3.52	1.29	349	2.44	1.00	
TU Tumby Bay D.C.	216,760	377	527	6.15	3.04	575	4.33	2.29	
KI Kangaroo Island	222,870	590	951	24.85	13.42	1038	17.98	9.84	
CY Central Yorke Peninsula	245,840	394	509	6.38	1.65	555	4.53	1.26	
CG Clare & Gilbert	175,420	507	606	8.44	2.43	662	6.04	1.83	
FN Far North	202,780	305	327	2.22	0.81	357	1.43	0.59	
FR Flinders Ranges	225,130	408	472	4.18	2.10	516	2.85	1.57	
ML Minlaton	88,510	391	538	7.20	1.20	587	5.15	0.92	
LN Northern Lofty Ranges	242,580	466	530	6.17	1.31	579	4.36	1.00	
YU Upper Yorke Peninsula	345,210	365	414	4.25	0.95	451	2.95	0.72	
WA Wakefield	322,600	383	463	4.79	1.75	505	3.33	1.32	
WR Warooka	84,840	426	565	11.67	1.43	616	8.56	1.09	
YO Yorketown	69,240	390	576	8.32	1.27	629	5.98	0.98	
PH Alexandrina Hills	60,660	667	868	24.87	12.04	947	18.11	8.88	
PP Alexandrina Plains	77,230	408	597	7.54	2.91	651	5.35	2.18	
GO Goyder	319,550	407	508	4.94	2.18	555	3.41	1.63	
NP North East Pastoral	138,910	333	415	2.84	1.64	453	1.84	1.23	
MN Northern Murray Mallee	792,790	271	332	2.06	0.44	362	1.27	0.34	
MS Southern Murray Mallee	886,220	344	449	4.50	1.46	490	3.12	1.11	
MW Western Murray Mallee	187,610	321	417	2.99	1.25	455	1.96	0.94	
BL Borderlands	135,500	500	761	13.72	3.26	831	9.90	2.39	
CO Coorong	148,640	477	669	13.80	3.76	730	10.06	2.76	
MX Lower Mallee	695,910	438	542	9.74	2.65	590	7.10	2.01	
SE Lower South East	586,500	658	1090	29.80	8.23	1190	21.50	6.02	
SC Lower South East Coastal	181,040	696	1214	32.53	10.49	1326	23.36	7.69	
SU Upper South East	560,310	528	759	17.19	4.81	828	12.53	3.57	

PRELIMINARY ESTIMATES OF CARBON STOCKS IN REMNANT VEGETATION

A regional analysis of the estimated above-ground standing carbon (CO₂-e) for current and historic native vegetation was conducted using the DEWNR "Climate" and "Climate plus Soil Model" (see Table 16) and national mapping of the spatial extent of remnant (i.e. extant) and pre-1750 vegetation (NVIS Version 4.1, DSEWPC 2012b). Woody plant communities (e.g. forests, woodlands, mallees & shrublands) were identified using major group classifications of the NVIS for current remnant vegetation and pre-1750 vegetation extent. Non-woody and very sparse tree/shrub plant communities (e.g. grasslands, herbfields, sedgelands, low shrublands, very sparse woodland/shrublands) were excluded from this analysis. Results are spatially constrained to non-arid NRM Regions and the limits of South Australian soil mapping (Hall et al. 2009).

The area and estimated carbon content (t CO₂-e) of above-ground biomass of Kyoto-compliant plants (\geq 2metres tall) found within woody native vegetation has been collated for the agricultural regions of state (Table 30, Table 31, Table 32). It does not include roots, plant litter, shrubs <2m tall, grasses or herbaceous plants. The reliability and accuracy of classification and spatial extent of remnant and pre-1750 native vegetation mapping, and DEWNR carbon models, generally decreases in northern parts of the state. These preliminary estimates of carbon stocks in woody native vegetation would be enhanced with more detailed vegetation mapping, additional onground surveys and reanalysis.

Results have also been summarised for 2 groups of tenure and management: **1) Parks** and reserves (publicly owned); and **2) Private** and leasehold lands. A clear result of this study is that woody native vegetation communities on privately managed lands significantly contribute (~66% by area; ~59% by stock) to the woody vegetation carbon accounts for the state. Land clearing in the agricultural regions of the state has also reduced carbon stocks in woody native vegetation to around 26% of previous levels. Additional woody remnant vegetation carbon stocks located outside of the soil mapping region, but within southern NRM Regions, is approximately 45 Mt CO₂-e (EP +10.0, NY +2.4, SAMDB +32.6).

			Area of	Woody Ve	getation ¹ (h	na '000s)			
			Remna	ant by Rain	fall Zone (n	nm/yr)			Pre-1750
NRM Region*	≤250	251-350	351-450	451-550	551-650	651-750	>750	Total	Cur.Extent
AMLR		0.8	4.0	7.7	12.6	15.4	31.8	72.3	615.2
Parks		0.0%	0.0%	5.1%	27.4%	13.6%	23.9%	18.7%	11 70/
Private		100.0%	100.0%	94.9%	72.6%	86.4%	76.1%	81.3%	11.7%
EP [#]	59.2	1,130.1	370.7	115.2	2.9			1,678.2	4,359.8
Parks	92.2%	34.6%	21.7%	34.6%	0.0%			33.8%	20 59/
Private	7.8%	65.4%	78.3%	65.4%	100.0%			66.2%	36.5%
КІ			1.6	61.4	40.5	66.9	38.8	209.2	426.4
Parks			0.0%	52.1%	38.4%	63.6%	74.7%	56.9%	40.10/
Private			100.0%	47.9%	61.6%	36.4%	25.3%	43.1%	49.1%
NY [#]	5.2	147.6	81.6	59.6	18.6			312.6	2,319.7
Parks	0.0%	0.3%	12.5%	26.8%	49.8%			11.5%	12 50/
Private	100.0%	99.7%	87.5%	73.2%	50.2%			88.5%	13.5%
SAMDB [#]	90.8	459.5	217.9	6.6	3.3	4.6	5.0	787.6	3,147.0
Parks	17.6%	18.8%	71.5%	0.0%	8.2%	12.4%	7.9%	33.0%	25.00/
Private	82.4%	81.2%	28.5%	100.0%	91.8%	87.6%	92.1%	67.0%	25.0%
SE			170.0	148.5	59.5	29.2	6.7	413.8	2,545.4
Parks			65.0%	28.5%	12.2%	22.2%	9.8%	40.4%	16 29/
Private			35.0%	71.5%	87.8%	77.8%	90.2%	59.6%	10.5%
Remnant	155.1	1,738.0	845.8	398.9	137.5	116.1	82.2	3,473.6	13,413.6
Parks	45.5%	27.5%	42.2%	32.7%	26.1%	44.5%	45.8%	33.5%	25.00/
Private	54.5%	72.5%	57.8%	67.3%	73.9%	55.5%	54.2%	66.5%	25.9%
Pre-1750	323.6	5,708.0	3,556.1	2,061.8	848.4	624.7	291.0	13,413.6	
Current Extent	47.9%	30.4%	23.8%	19.3%	16.2%	18.6%	28.2%	25.9%	

Table 30. Area of woody remnant vegetation in government Parks and reserves or Privately managed lands, and pre-1750 woody vegetation extent, by NRM Region and rainfall zone in South Australia.

¹ Excludes non-woody (e.g. grasslands, herbfields, sedgelands, low shrublands) and very sparse tree/shrub plant communities.

* NRM Regions: Adelaide & Mt Lofty Ranges (AMLR); Eyre Peninsula (EP); Kangaroo Island (KI); Northern & Yorke (NY); SA Murray-Darling Basin (SAMDB); South East (SE). [#]Excludes more arid portions of these NRM Regions and bounded by limits of SA soil mapping.

		Average A	bove-ground	d Carbon held	d by Woody \	Vegetation (t	CO ₂ -e/ha)	
			Rem	nant by Rain	fall Zone (mı	n/yr)		
NRM Region*	≤250	251-350	351-450	451-550	551-650	651-750	>750	Average
AMLR		112	106	217	398	581	891	615
Parks		0	0	265	431	563	866	691
Private		112	106	214	386	584	899	597
EP [#]	30	60	105	238	302			81
Parks	30	65	114	244	0			81
Private	33	57	103	234	302			81
кі			126	286	409	624	781	509
Parks			0	320	473	673	769	575
Private			126	250	369	539	817	421
NY [#]	16	38	153	210	324			118
Parks	0	45	192	244	319			246
Private	16	38	148	198	329			101
SAMDB [#]	27	52	157	211	385	554	796	88
Parks	26	69	169	0	447	669	854	129
Private	27	47	130	211	380	537	791	68
SE			207	263	421	635	767	297
Parks			215	255	444	851	771	262
Private			192	267	418	573	767	321
Average	28	56	144	250	399	618	823	149
Parks	29	66	171	266	423	691	789	181
Private	26	52	124	242	390	560	852	133

Table 31. Average above-ground standing carbon of woody remnant vegetation in government Parks and reserves or Privately managed lands by NRM Region and rainfall zone in South Australia.

Table 32. Estimated above-ground standing carbon held by woody remnant vegetation in government Parks and reserves or Privately managed lands, and pre-1750 extent, by NRM Region and rainfall zone.

	Estimated Above-ground Carbon held by Woody Vegetation ¹ (Mt CO ₂ -e)										
			Remna	ant by Rain	fall Zone (n	nm/yr)			Pre-1750		
NRM Region*	≤250	251-350	351-450	451-550	551-650	651-750	>750	Total	Cur.Extent		
AMLR		0.09	0.43	1.66	5.04	8.94	28.29	44.44	220.36		
Parks		0.0%	0.0%	6.3%	29.6%	13.2%	23.3%	21.1%	20.20/		
Private		100.0%	100.0%	93.7%	70.4%	86.8%	76.7%	78.9%	20.2%		
EP [#]	1.80	67.62	38.97	27.39	0.89			136.67	337.31		
Parks	91.6%	37.8%	23.5%	35.5%	0.0%			33.7%	40 50/		
Private	8.4%	62.2%	76.5%	64.5%	100.0%			66.3%	40.5%		
КІ			0.20	17.59	16.57	41.79	30.29	106.43	188.33		
Parks			0.0%	58.1%	44.5%	68.5%	73.5%	64.4%	56 504		
Private			100.0%	41.9%	55.5%	31.5%	26.5%	35.6%	56.5%		
NY [#]	0.08	5.64	12.51	12.51	6.02	0.00	0.00	36.75	228.50		
Parks	0.0%	0.4%	15.7%	31.2%	49.0%			24.1%	10.10/		
Private	100.0%	99.6%	84.3%	68.8%	51.0%			75.9%	16.1%		
SAMDB [#]	2.41	23.68	34.31	1.39	1.28	2.55	3.96	69.57	279.55		
Parks	17.4%	25.2%	76.6%	0.0%	9.5%	15.0%	8.5%	48.2%	24.00/		
Private	82.6%	74.8%	23.4%	100.0%	90.5%	85.0%	91.5%	51.8%	24.9%		
SE			35.17	39.11	25.02	18.51	5.11	122.93	770.52		
Parks			67.5%	27.6%	12.9%	29.8%	9.8%	35.6%	10.00/		
Private			32.5%	72.4%	87.1%	70.2%	90.2%	64.4%	16.0%		
Remnant	4.28	97.02	121.58	99.65	54.81	71.79	67.66	516.79	2,024.57		
Parks	48.2%	32.5%	50.3%	34.9%	27.7%	49.7%	43.9%	40.6%	25 50/		
Private	51.8%	67.5%	49.7%	65.1%	72.3%	50.3%	56.1%	59.4%	25.5%		
Pre-1750	8.47	307.73	425.76	437.47	286.43	328.47	230.25	2,024.57			
Current Extent	50.6%	31.5%	28.6%	22.8%	19.1%	21.9%	29.4%	25.5%			

¹ Excludes non-woody (e.g. grasslands, herbfields, sedgelands, low shrublands) and very sparse tree/shrub plant communities.

* NRM Regions: Adelaide & Mt Lofty Ranges (AMLR); Eyre Peninsula (EP); Kangaroo Island (KI); Northern & Yorke (NY); SA Murray-Darling Basin (SAMDB); South East (SE). [#]Excludes more arid portions of these NRM Regions and bounded by limits of SA soil mapping.

7. DISCUSSION

CARBON MARKETS, DRIVERS AND POLICIES

The emergence of the Carbon Farming Initiative (CFI), tradeable Australian Carbon Credit Units, carbon pricing and carbon markets reflects the Australian community and governments' concern over the potential impacts of climate change on the health and prosperity of rural landscapes and communities. Two broad approaches exist to assist in managing this issue:

- Mitigation reducing carbon dioxide in the atmosphere by sequestering carbon dioxide in long-term stores (e.g. woody plant biomass in forests and revegetation) or reducing atmospheric emissions from fossil fuels by encouraging the development of renewable energy sources; and
- Adaptation developing agricultural uses, land management practices and industries that can maintain rural prosperity by modifying current production systems to suit changed climatic conditions.

Increasing the proportion of perennial woody vegetation through revegetation and woody biomass industries in agricultural landscapes could significantly reduce atmospheric carbon dioxide through sequestration and abatement. The development of renewable woody bioenergy crops could further reduce reliance on non-renewable fossil fuels. Recognition of the potential of revegetation to help address some of the issues of climate change, natural resource management and rural prosperity has gained considerable support through policies and initiatives designed to encourage revegetation activities in South Australia and nationally.

The recent expansion of existing carbon offset/credit programs, informal "green-friendly" markets and the adoption of national Carbon farming Initiative has seen an increase of interest in, and momentum towards, dedicated carbon sequestration crops, using both monocultures and environmental plantings. Due to land prices and economic considerations it is expected that many of these new activities will focus on the low to medium rainfall zones (250-650mm/year) on dryland agricultural landscapes that are predominantly used for annual cropping and grazing.

The growth rate, lifespan and height of plants chosen for carbon sequestration crops influence their viability as compliant carbon crops for most carbon trading schemes. The Kyoto Protocol specifies a minimum area of only 0.2 hectares, tree crown cover of 20 per cent and a mature tree height of two metres to qualify for carbon accounting purposes (Department of Climate Change 2008). Many woodlots and environmental plantings in South Australia currently fit these criteria and most future plantings are expected to be designed as "Kyoto-compliant" to meet the needs of dominant carbon trading schemes.

The economic viability and success of any carbon sequestration plantings is highly dependent on the primary productivity of the species (or mix of species) chosen. Results from recent studies across the agricultural lands of South Australia (this study) and in the Mid-North (Neumann et al. 2010), Murray-Darling Basin (Hobbs et al. 2010) and Upper South East (Hobbs et al. 2006) regions suggest that monocultures of woodlot and other commercial species are often more productive than environmental plantings at the same plant density (plants/ha) particularly in higher rainfall areas. Other productivity studies within lower to medium rainfall environments have identified some highly productive species which are climatically suited many agricultural districts of the state, including Sugar Gum (Figure 33, Eucalyptus cladocalyx), WA Swamp Yate (E. occidentalis), WA York Gum (E. loxophleba), Blue Mallee (E. polybractea), WA Swamp Mallet (E. spathulata) and WA Blue Mallet (E. gardneri) (Bennell et al. 2008, Kiddle et al. 1987, Boardman 1992, Fairlamb & Bulman 1994). In lower rainfall areas local species woodlots and environmental plantings provide opportunities to sequester carbon where traditional forestry species are climatically unsuited.

The majority of existing permanent environmental plantings in South Australia were intended to address a range of natural resource management or other

Photo: C.R. Neumann

Figure 33. Productive and well managed woodlots can sequester significant amounts of carbon in lower to medium rainfall regions of the state (30 year old coppice regrowth from Sugar Gums *Eucalyptus cladocalyx* planted in 1900, near Hamley Bridge, SA).

environmental issues, including groundwater recharge, dryland salinity, saline river discharges, wind erosion, biodiversity loss, livestock protection and amenity. Mixed species environmental plantings are seldom exact re-creations of the natural vegetation communities that existed prior to land clearing for agriculture. While they often contain many of the larger tree and shrub species indigenous to the region, the smaller understorey species are generally not included in planted species mixes. Similarly, the number of local indigenous species planted by land managers can be significantly influenced by nursery stock availability, costs and the establishment success of each species. Species preferences and fashions are evident in many environmental plantings. Notably, many species native to Western Australian were "fashionable" in the 1970s and are commonly encountered in revegetation from that era.

In the past, many of these permanent environmental plantings of native trees and shrubs did not have a direct financial benefit to the landholder, but provided longer-term benefits to farming systems and the wider community. The establishment of these plantings were often supported by government/local region grants and incentive schemes. The potential of these revegetation types to attract tradeable carbon credits may help to reduce the level of public subsidisation for these environmental plantings. The carbon sequestration potential of revegetation may be increased through the use of a greater proportion of fast growing and productive species in the planting mix. This approach may increase the tradeable carbon value of these plantings but may also conflict with other intended values (e.g. biodiversity vs. extractable biomass) of the plantation.

If carbon prices are the primary driver for investment in carbon crops, and monocultures are more productive than mixed species environmental plantings, then government subsidies are likely to be required to encourage greater investment in environmental plantings for biodiversity or other environmental outcomes that benefit the broader community. Ultimately it is the decision of investors, environmental policies and planning authorities to determine the right balance of compromise between carbon price-driven investments and the value of increasing local biodiversity.

CARBON ACCOUNTING, MODELS AND ASSESSMENTS

There are two key approaches to carbon accounting from revegetation in Australia:

- 1. Models of plantation productivity and carbon balance; and
- 2. Assessments or inventory of carbon stores in plantations.

Models can provide the advantage of estimating carbon sequestration into the future under a range of scenarios. These models are highly dependent on the validity of the analytical approach taken and the quality of data used for calibrations. Models represent averaged responses under a set of predefined conditions, and rely on the user providing accurate inputs for the model to function correctly. Models generally provide rapid and low-cost estimates of carbon dynamics and stores, but their reliability for carbon accounting purposes are limited. On-ground assessments, or inventory, typically provide more accurate estimates of carbon stores in plantations but usually incur higher costs from sites inspections, measurements and sampling.

The Australian Government Department of the Environment (DOTE) has identified the Reforestation Modelling Tool (RMT) and National Carbon Accounting Toolbox (NCAT) as preferred model systems for carbon accounting within Australia. At present the FullCAM model (and sub-models) within the RMT/NCAT has been predominantly populated by parameters drawn from studies of higher rainfall commercial forestry plantations. Prior research on carbon sequestration rates from revegetation in dryland agricultural zones of South Australia (Hobbs et al. 2010) has demonstrated that currently the RMT/NCAT can severely underpredict carbon sequestration rates in woodlots and environmental planting (27% of observed aboveground carbon sequestration) in medium to lower rainfall regions.

Recent collaborations between CSIRO, DEWNR and other research partners has been undertaken to improve the reliably of FullCAM calibrations for environmental and mallee plantings (Paul *et al.* 2012). It is envisaged that these improvements will be implemented into FullCAM in the near future and will reduce the historic bias (i.e. under prediction) in FullCAM model in South Australian landscapes. Models are useful tools to estimate average carbon sequestration rate in regions, but cannot always account for local variations in productivity. Carbon assessments using models should be used in conjunction with on-site assessments (and recalibration) to ensure the reliability of results.

On-site assessments or inventories of carbon sequestration in revegetation provide more accurate assessments of carbon stocks than model predictions, but also increases the cost of assessment. These carbon assessments can be attained using sampling or allometric estimation techniques or a combination of both. Destructively sampling a number of representative plants within a larger population can provide an estimate of the carbon stored within a site. This approach requires a statistically valid number of samples (~30 or more) to provide accurate estimates, is labour intensive, typically high cost, and removes living plants (and carbon stores) from the plantation. Allometric estimation is a commonly used technique to non-destructively assess plantation productivity and carbon stores from a limited number of measurements at a site. It provides significant advantages in cost effectiveness over destructive sampling techniques and permits repeated measurement over time on the same site without loss of individual plants.

This current study has relied on the accuracy of DEWNR allometric models developed from destructive sampling and measurements in South Australia to provide reliable estimates of above-ground plant growth and carbon sequestration from non-destructive surveys across the agricultural regions of South Australia. Great care has been taken to evaluate the reliability and robustness of the DEWNR allometric models through tests of predictions beyond sampled size ranges and validation processes using independently collected destructive data from other part of Australia. Through collaborations with CSIRO and DOTE preliminary models to estimate belowground (root) biomass from above-ground measurements have also been developed.

Productivity and carbon sequestration in woodlots and environmental plantings in low to medium rainfall zones of South Australia is highly dependent on climate (e.g. rainfall, potential evaporation) and plant density (plants/ha). Plant density is also influenced by climate, revegetation type (e.g. woodlots, environmental plantings) and soil types (e.g. clay content). Blends of lifeform types (e.g. tree, mallee & shrub species), age of revegetation, soil depth and clay content also influence sequestration rates. Key influences on sequestration rates can be summarised as:

- increasing rainfall (and decreasing potential evaporation) increases sequestration rates and plant density
- sequestration rates and plant density decrease with age
- higher proportions of trees at a site increases sequestration rates
- deep sandy soils are more productive than shallow or clay-rich soils
- plant density is slightly higher on clay-rich soils
- increasing inherent soil fertility does not increase sequestration rates in lower to medium rainfall regions

In this study, the age, plant density, species mixes, lifeforms and carbon sequestration rates of 264 revegetation sites (i.e. 132 woodlots, 132 environmental plantings) have been assessed across the agricultural regions of South Australia (average age = 22 years; range 3 to 131). In the past, typical environmental planting were established using tube stock plants and contained a high proportion of trees species (average 83% to 89% trees). The results presented in this report are representative of that revegetation method under current climatic conditions. However, there is an increasing trend to use direct seeding as a cost effective method to establish revegetation, and to plant higher proportions of shrubs species in "biodiverse" plantings. Direct seedling often initially produces plant densities that are much higher than those typically observed from this current study. Although competition between plants and natural attrition in directly seeded revegetation may result in longer-term plant densities similar to those experienced in this study, some caution must be exercised by users of these models when estimating carbon sequestration rates within sites established by direct seeding. Equally, surveys included relatively few shrub-dominated revegetation sites so the reliability of these models is unquantified for shrubby revegetation.

Regional models of biomass production and carbon sequestration rates from revegetation are a core component of regional industry potential analyses that provide economic evaluations of the viability of carbon sequestration and other woody biomass industries across the dryland agricultural regions of South Australia (e.g. Hobbs 2009b, Hobbs *et al.* 2009c, Crossman *et al.* 2010). Additional surveys resulting from this current study and the availability of more comprehensive soils and climate datasets has created an opportunity to significantly improve the reliability and scope of spatial productivity and carbon sequestration models in South Australia. The quantification of relationships between revegetation types and designs, climate and soils, and carbon sequestration rates over time is a significant improvement over models previously developed by DEWNR and other current models (e.g. DOTE's Reforestation Modelling Tool) used by for national carbon accounting. New DEWNR biomass and carbon growth models can now provide strong guidance to those seeking to evaluate the potential of carbon sequestration from a variety of revegetation activities, and estimate biomass production rates for renewable energy industries in the South Australia.

The value of DEWNR's commitment to research on carbon sequestration from revegetation is strongly acknowledged by the DOTE. In recent years, strong partnerships have formed between DEWNR, DOTE CFI Methodologies, CSIRO and the Future Farm Industries Cooperative Research Centre (FFI CRC). During 2011-2013, the DOTE CFI Methodologies group commissioned a project to undertake additional surveys (including Moorlands sites) and research to redevelop environmental and mallee plantings FullCAM models used in DOTE National Carbon Accounting Toolbox (NCAT) and CFI Reforestation Modelling Tool (RMT). FullCAM models now incorporate extensive data from carbon sequestration surveys in agricultural landscapes across South Australia. The new models will be incorporated into the forthcoming revisions of NCAT and CFI RMT planned in 2013/2014.

High resolution spatial analyses of annual and woody crop yields and profitability can help to facilitate a better understanding of the optimal productive arrangements of annual and woody crops in a farming enterprise (e.g. Lyle *et al.* 2009). Through this understanding the issue of perceived competition between annual and woody crop options can largely be avoided. It has been crucial to improve estimates of carbon sequestration in the low to medium rainfall regions of South Australia so that more accurate comparisons between the economic returns (and risks) of potential carbon crops and existing annual crops/pastures can be made. With better information the most profitable and sustainable land use options within farming enterprises and regions can be more readily identified.

Current "Landscape Futures Analysis" research undertaken within a partnership between DEWNR NRM Boards, University of Adelaide and CSIRO is starting to reveal potential influences of climate change on landuse options and natural resource management issues in the Eyre Peninsula and SA Murray-Darling Basin NRM Regions. Carbon sequestration from revegetation is a significant landuse option being explored within this research and the outcomes of these types of analyses will help inform the development of future climate change adaption plans in South Australia.

CONCLUSIONS AND RECOMMENDATIONS

This study provides a significant advancement in the science of carbon assessment methodologies and an increased understanding of the potential for revegetation to sequester carbon in the agricultural regions of South Australia. Numerous measurements and targeted surveys conducted over recent years has greatly increased the diversity of species, revegetation types, ages and locations represented in DEWNR's research on carbon sequestration from revegetation. This has allowed more meaningful evaluations of regional carbon sequestration rates and the development of more flexible and reliable predictive models. Mixed species environmental plantings from South Australian conditions are now well represented within DEWNR models of carbon sequestration and this data has also been incorporated into models that underpin nationally approved carbon accounting tools and methodologies.

Much of the complexity of environmental conditions (e.g. climate and soils), revegetation design, lifeform types, variable planting densities, age and their interactions on above-ground carbon sequestration rates from revegetation have now been quantified for the agricultural regions of South Australia. Greater refinement of these resulting models is desirable especially in highly diverse environmental plantings and direct seeded revegetation sites. This current study provides some insight into relationships between above-ground plant measurements and biomass with below-ground (root) biomass. Ultimately assessments of total carbon sequestration of revegetation should include root zone sequestration. In the future, additional destructive surveys and analyses will be required to improve the reliability of current estimates of the contribution of plant roots to carbon stores in native revegetation sites.

From limited surveys in this study, evidence suggests that the standing carbon stores in mature revegetation are likely to be higher than those found in intact native vegetation. This may dispel the common belief that the peak biomass of remnant vegetation is an indicator of a site's potential for storing carbon - a potentially false assumption made by some carbon sequestration prediction models. DEWNR surveys of remnant vegetation communities provide preliminary estimates of above-ground carbon stocks and their relationships with rainfall and average plant height. To more reliably estimate carbon stocks of all remnant vegetation in South Australia, and its contribution to the State's carbon budget, there is a need to conduct many more surveys across a range of environmental and vegetation communities in the future.

Current policies, natural resource management drivers, emergent carbon markets and economic evaluations indicate there are substantial opportunities for carbon sequestration from a variety of different revegetation types in the dryland agricultural regions of South Australia. These opportunities will include a regionally targeted and often distinct mix of woody carbon crops, permanent environmental plantings and extractive agroforestry/biomass industries. The extent of government support for revegetation in the form of incentives, support mechanisms, regional planning and policy development will be influenced by complex interactions between economic feasibility of carbon markets, regional/state priorities and strategic targets for natural resource management.

Recent studies (e.g. Hobbs 2009b, Hobbs *et al.* 2009c, Polglase *et al.* 2008, Crossman *et al.* 2010, Lyle *et al.* 2009) show that the scale and profitability of carbon sequestration crops is highly dependent on primary productivity of both native plants and agricultural crops, market prices for carbon and agricultural commodities, operating and investment costs associated with these activities, and longer-term opportunity costs of existing land uses. Current Australian carbon prices have only been set for limited time (1st July 2012 - 30th June 2014; \$23.00 - \$24.15/t CO₂-e) and will migrate to international market prices from 1st July 2014 onwards. In recent years, international carbon prices have been very dynamic (~€3 – €17/t CO₂-e in the last 3 years; European Energy Exchange 2013) and are likely to continue to be dynamic in the future. This is equally true for wide range of agricultural commodities in the past and into the future. Policy makers and investors should be mindful of the potential instability of carbon and agricultural commodity prices and the potential investment risks associated with any markets. Significant pressure on the viability of existing annual crops and pastures could result from high carbon market prices in the future. If uncontrolled by policy and land use planning, carbon crop reforestation driven by market prices alone could significantly reduce agriculture production in food and fibre industries, provide only marginal biodiversity values, and reduce fresh water resources for consumptive uses in some regions.

Climate change and variability will undoubtedly affect both agricultural and carbon productivity and profitably into the future. It is unclear on what the balance between these industry types will be in South Australia given the overwhelming influence of agricultural and carbon commodity prices on the longterm economic feasibility of these sectors. Based on decreases in both agricultural and carbon productivity into the future and assumptions of stability in current prices and costs, it could be anticipated that carbon crops will emerge in drier parts of our agricultural landscapes. Especially in specific locations where the viability of current agricultural pursuits diminish (e.g. low fertility soils) and targeted locations where other natural resource management issues and policies drive change towards revegetation (e.g. biodiversity, soil protection, dryland salinity).

Adaption of current agricultural landscapes and communities through drivers of climate change, sustainability and new carbon markets is inevitable in South Australia. Targeted placement of new woody biomass and carbon crops to maximise benefits and profitability of whole farm enterprises and environmental health of regions should be the goal of any investment in carbon sequestration and woody crops. Broad-scale evaluations of natural resource management drivers, policies, annual and woody crop productivities and farm economics provide useful tools in determining regions with the greatest potential for investment in carbon crops. To promote and develop new carbon markets and carbon sequestration activities in South Australia it is recommended that potential investors, planners and government agencies:

- Clearly define the targeted purpose of revegetation activities (e.g. carbon vs. biodiversity) so the correct species (or species blends), scale of investment, planting designs and locations are adopted. Evaluate the influence on manipulations of plantation designs and spatial/regional priorities on financial and other intended benefits of the revegetation activities.
- Construct a business plan for any investment in revegetation, incorporating realistic information on expected capital, establishment and maintenance costs, carbon sequestration production rates, carbon markets, management/financial/environmental risks, property management plans and zoning/policy restrictions.
- Thoroughly evaluate local site conditions, seek expert advice and select most appropriate species for revegetation activities to maximise production rates, meet other targeted purposes and minimise risks.
- 4. Exercise caution in the use of forecasts of potential carbon sequestration, especially as our climate evolves. DEWNR sequestration models provide an estimate of average carbon sequestration rates under current climatic conditions. DEWNR research also demonstrates a moderate degree of unexplained variation in carbon sequestration rates resulting from undocumented influences of species blends, management and other environmental factors.
- Always utilise proven, reliable and repeatable site assessment techniques, and statistically sound survey methodologies, to accurately determine quantities of carbon sequestered from revegetation for carbon accounting purposes.
- 6. Support investments in further research to more accurately assess and predict carbon sequestration rates in mature revegetation plantations across the state, including a greater diversity of species, plantation types and locations. Support spatial/regional analyses of natural resource management and climate change adaption priorities, to guide future investments in revegetation and carbon sequestration within agricultural regions of the State.

REFERENCES

Australian Greenhouse Office & Murray Darling Basin Commission (2001) The contribution of mid to low rainfall forestry and agroforestry to greenhouse and natural resource management outcomes. Australian Greenhouse Office, Canberra.

Battaglia M, Sands PJ, White D, Mummery D (2004) CABALA: a linked carbon, water and nitrogen model of forest growth for silvicultural decision support. *Forest Ecology and Management* **193**, 251-282.

Bennell M, Hobbs TJ, Ellis M (2008) Evaluating agroforestry species and industries for lower rainfall regions of southeastern Australia. FloraSearch 1a. Report to the Joint Venture Agroforestry Program (JVAP) and Future Farm Industries CRC. Publication No. 07/079. Rural Industry Research and Development Corporation, Canberra.

Boardman R (1992) A study of the growth and yield of selected plantations of native trees growing in the semiarid zone of South Australia and their capacity to sequester atmospheric carbon dioxide. SA Woods and Forests, Department of Primary Industries, Adelaide.

Booth TH, Williams KJ (2012) Developing biodiverse plantings suitable for changing climatic conditions 1: Underpinning scientific methods. *Ecological Management & Restoration* **13:** 267–273. doi: 10.1111/emr.12003

Bureau of Meteorology (2012) Australian climate variability & change - Time series graphs. Accessed March 2012, Bureau of Meteorology: http://www.bom.gov.au/climate/change/about/rain_ti meseries.shtml.

Crossman ND, Summers DM, Bryan BA (2010) Opportunities and threats for South Australia's agricultural landscapes under a carbon market. CSIRO Client Report. CSIRO, Adelaide.

CSIRO Land & Water (2001) Mean annual and monthly rainfall (mm). Accessed May 2009, from ABARES: http://adl.brs.gov.au/ADLsearch/index.cfm?fuseaction= FULL_METADATA&inanzlic=ANZCW1202000117.

Department of Climate Change (2008) Carbon Pollution Reduction Scheme Green Paper. Commonwealth of Australia, Canberra. Accessed July 2008, from Department of Climate Change: http://www.climatechange.gov.au/~/media/publication s/green-paper/greenpaper.ashx Department of Climate Change and Energy Efficiency (2009) National Carbon Accounting Toolbox (NCAT). Accessed June 2009, from Department of Climate Change and Energy Efficiency:

http://www.climatechange.gov.au/en/government/initi atives/ncat.aspx.

Department of Climate Change and Energy Efficiency (2011) Carbon Farming Initiative. Methodology for Quantifying Carbon Sequestration by Permanent Environmental Plantings of Native Species using the CFI Reforestation Modelling Tool. Approved. Accessed March 2012, from Department of Climate Change and Energy Efficiency:

http://www.climatechange.gov.au/government/submis sions/closed-consultations/carbon-farminginitiative/~/media/government/initiatives/cfi/methodol ogy-development/methodologiesapproved/2011RF006Environmentalplantings-PDF.pdf

Department of the Environment (2012) *Carbon Farming Initiative - Methodologies*. Accessed March 2012, from Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education: http://www.climatechange.gov.au/reducingcarbon/carbon-farming-initiative/methodologies/

Department of Sustainability, Environment, Water, Population and Communities (2012a) Australia's bioregions (IBRA). Version 7.0. Accessed August 2012, from Department of Sustainability, Environment, Water, Population and Communities:

http://www.environment.gov.au/parks/nrs/science/bior egion-framework/ibra/index.html.

Department of Sustainability, Environment, Water, Population and Communities (2012b) National Vegetation Information System (NVIS). Version 4.1. Accessed August 2012, from Department of Sustainability, Environment, Water, Population and Communities:

http://www.environment.gov.au/erin/nvis/index.html.

Emes J, Holman E, Tiller J (2006) Re-establishment of vegetation in South Australia 2005. Report 2006/11. Government of South Australia, through Department of Water, Land and Biodiversity Conservation, Adelaide.

ESRI (2009) ArcGIS. 9.3 computer software. ESRI, Redlands, California, USA.

European Energy Exchange (2013) EU Emission Allowances. Accessed June 2013, from European Energy Exchange: http://www.eex.com/en/.

Fairlamb J, Bulman P (1994) Farm Tree Improvement Project. Government of South Australia, through Department of Primary Industries, Adelaide.

Gibbs M, Green G, Wood C (2011) Impacts of Climate Change on Water Resources. Phase 2: Selection of Future Climate Projections and Downscaling Methodology, DFW Technical Report 2011/02. Government of South Australia, through Department for Water, Adelaide.

Government of South Australia (2004) South Australian Natural Resources Management Act, Adelaide. Accessed June 2009, from, Department of Water, Land and Biodiversity Conservation: http://www.dwlbc.sa.gov.au/nrm/legislation.html.

Government of South Australia (2007) Tackling Climate Change: South Australia's Greenhouse Strategy 2007-2020. Adelaide. Accessed December 2008, from Department of the Premier and Cabinet: http://www.climatechange.sa.gov.au/index.php?page= greenhouse-strategy.

Government of South Australia (2008) South Australian Land Use 2008, The Australian Collaborative Land Use and Management Program (ACLUMP). Accessed March 2012, from Department of Environment, Water and Natural Resources:

http://www.naturemaps.sa.gov.au/sim/dataSetdisplay.do?cmd=DataSetDto&dsNumber=1136

Government of South Australia (2011) In A Great State: South Australia's Strategic Plan. Accessed June 2009, from Department of the Premier and Cabinet: http://saplan.org.au/pages/download-the-plan/.

Government of South Australia (2012a) Our Place. Our Future. State Natural Resources Management Plan 2012 - 2017. Adelaide.

Government of South Australia (2012b) eFlora SA: Electronic Flora of South Australia. Accessed December 2012, from Department of the Environment, Water and Natural Resources: http://www.flora.sa.gov.au/

Grierson P, Williams K, Adams M (2000) Review of Unpublished Biomass-Related Information: Western Australia, South Australia, New South Wales and Queensland. National Carbon Accounting System, Technical Report No. 25. Australian Greenhouse Office, Canberra. Hague J, Freischmidt G, Pongracic S, Fung P (2002) Six best bet products from agroforestry biomass grown in low rainfall areas. Publication No. 09/055. Rural Industries Research and Development Corporation, Canberra.

Hall JAS, Maschmedt DJ, Billing NB (2009) The Soils of Southern South Australia. The South Australian Land and Soil Book Series, Volume 1; Geological Survey of South Australia, Bulletin 56, Volume 1. SA Water, Land and Biodiversity Conservation, Adelaide.

Harper RJ, Beck AC, Ritson P, Hill MJ, Mitchell CD, Barrett DJ, Smettem KRJ, Mann SS (2007) The potential of greenhouse sinks to underwrite improved land management. *Ecological Engineering* **29**, 329-341.

Hayman P, Thomas D, Alexander B, Nidumolu U (2011) Climate Change Scenarios Information. Milestone 2 Report. The Environment Institute, The University of Adelaide.

Hobbs TJ, Bennell M (2005) Plant biometrics and biomass productivity in the River Murray Dryland Corridor. A report for the SA Centre for Natural Resource Management. FloraSearch Series. SA Water, Land and Biodiversity Conservation, Adelaide.

Hobbs TJ, Georgaras PA, Tucker M, Neumann C, Bennell M (2006) Woody biomass productivity and potential biomass industries in the Upper South East. A report for the SA Centre for Natural Resource Management. FloraSearch Series. SA Water, Land and Biodiversity Conservation, Adelaide.

Hobbs TJ, Bennell M, Bartle J [eds] (2009a) Developing species for woody biomass crops in lower rainfall southern Australia. FloraSearch 3a. Report to the Joint Venture Agroforestry Program (JVAP) and Future Farm Industries CRC. Publication No. 09/043. Rural Industry Research and Development Corporation, Canberra.

Hobbs TJ [ed] (2009b) Regional industry potential for woody biomass crops in lower rainfall southern Australia. FloraSearch 3c. Report to the Joint Venture Agroforestry Program (JVAP) and Future Farm Industries CRC. Publication No. 09/045. Rural Industry Research and Development Corporation, Canberra.

Hobbs TJ, Crossman N, Ostendorf B, Bryan B, Lyle G, Neumann C (2009c) Opportunities for carbon sequestration from revegetation in South Australia. Conference Paper. Surveying & Spatial Sciences Institute Biennial International Conference, 28 September – 2 October 2009, Adelaide Convention Centre, Adelaide, Australia

Hobbs TJ, Neumann CR, Tucker M, (2010) Carbon Sequestration from Revegetation: Southern Murray-Darling Basin Region, DWLBC Report 2010/02, Government of South Australia, through Department of Water, Land and Biodiversity Conservation, Adelaide & Future Farm Industries Cooperative Research Centre.

Kiddle G, Boardman R, van der Sommen F (1987) A study of growth and characteristics of woodlot and amenity tree plantings in semi-arid rural South Australia. Forestry SA, Adelaide.

Landsberg J, Kesteven J (2001) Spatial estimation of plant productivity. Chapter 2. In 'Biomass Estimation Approaches for Assessment of Stocks and Stock Change'. (Richards G ed). National Carbon Accounting System Technical Report No. 27. Australian Greenhouse Office, Canberra.

Low A, Lamont B (1990) Aerial and below-ground phytomass of Banksia scrub-heath at Eneabba, southwestern Australia. *Australian Journal of Botany* **38**, 351-359.

Lyle G, Clarke K, Hobbs T, Kilpatrick A, Summers D, Ostendorf B (2009) Land use planning for sustainable production systems. SA Department of Water, Land and Biodiversity Conservation, Adelaide.

Macinnis-Ng CMO, Fuentes S, O'Grady APO, Palmer AR, Taylor D, Whitley RJ, Yunusa I, Zeppel MJB, Eamus D (2010) Root biomass distribution and soil properties of an open woodland on a duplex soil. *Plant and Soil* **327**, 377-388.

Mokany K, Raison J, Prokushkin AS (2006) Critical analysis of root : shoot ratios in terrestrial biomes. *Global Change Biology* **12**, 84-96.

Neumann C, Hobbs T, Tucker M (2010) Carbon sequestration from revegetation: Mid-North region, Draft Report, Government of South Australia, through Department of Environment and Natural Resources, Adelaide & Future Farm Industries Cooperative Research Centre.

Neumann C, Hobbs T, Tucker M (2011) Carbon sequestration and biomass production rates from agroforestry in lower rainfall zones (300-650) of South Australia: Southern Murray-Darling Basin region, Government of South Australia, through Department of Environment and Natural Resources, Adelaide & Future Farm Industries Cooperative Research Centre. Paul K, Roxburgh S, Raison J, Larmour J, England J, Murphy S, Norris J, Ritson P, Brooksbank K, Hobbs T, Neumann C, Lewis T, Read Z, Clifford D, Kmoch L, Rooney M, Freudenberger D, Jonson J, Peck A, Giles R, Bartle J, McAurthur G, Wildy D, Lindsay A, Preece N, Cunningham S, Powe T, Carter J, Bennett R, Mendham D, Sudmeyer R, Rose B, Butler D, Cohen L, Fairman T, Law R, Finn B, Brammar M, Minchin G, van Oosterzee P, Lothian A (2012) Improved estimation of biomass accumulation by environmental plantings and mallee plantings using FullCAM. CSIRO Flagships Report for the Department of Climate Change and Energy Efficiency. CSIRO, Canberra.

Paul K, Roxburgh S, Raison J, Larmour J, Ritson P, Brooksbank K, Carter J, England J (2011) Final Report: Research on growth of environmental plantings. CSIRO Flagships Report for the Department of Climate Change and Energy Efficiency. CSIRO, Canberra.

Paul KI, Reeson A, Polglase P, Crossman N, Freudenberger D, Hawkins C (2013a). Economic and employment implications of a carbon market for integrated farm forestry and biodiverse environmental plantings. *Land Use Policy* **30**, 496-506.

Paul KI, Roxburgh SH, England JR, Ritson P, Hobbs T, Brooksbank K, Raison RJ, Larmour JS, Murphy S, Norris J, Neumann C, Lewis T, Jonson J, Carter JL, McArthur G, Barton C, Rose B (2013b) Development and testing of allometric equations for estimating above-ground biomass of mixed-species environmental plantings. *Forest Ecology and Management* **310**, 483-494.

Polglase P, Paul K, Hawkins C, Siggins A, Turner J, Booth T, Crawford D, Jovanovic T, Hobbs T, Opie K, Almeida A, Carter J (2008) Regional opportunities for agroforestry. A report for the Rural Industry Research and Development Corporation /Land and Water Australia / Forest and Wood Products Australia / Murray-Darling Basin Commission, Joint Venture Agroforestry Program. Publication No 08/176 .Rural Industry Research and Development Corporation, Canberra.

Polglase PJ, Reeson A, Hawkins CS, Paul KI, Siggins AW, Turner J, Crawford DF, Jovanovic T, Hobbs TJ, Opie K, Carwardine J, Almeida A (2013) Potential for forest carbon plantings to offset greenhouse emissions in Australia: economics and constraints to implementation. *Climatic Change* **2013(Sept)**, 1-15

Raupach MR, Kirby JM, Barrett DJ, Briggs PR (2001) Balances of Water, Carbon, Nitrogen and Phosphorus in Australian Landscapes: (1) Project Description and Results. Technical Report 40/01. CSIRO Land and Water, Canberra.

Richards GP, Evans DMW (2000) Full Carbon Accounting Model (FullCAM), National Carbon Accounting System, Australian Greenhouse Office, Canberra.

Richards G, Evans D, Reddin A, Leitch J (2005) The FullCAM Carbon Accounting Model (Version 3.0) User Manual, Australian Greenhouse Office, Canberra. Accessed April 2009, from Department of Climate Change and Energy Efficiency: http://www.climatechange.gov.au/ncas/reports/fullcam -usermanual.html.

Sanderman J, Baldock J, Hawke B, MacDonald L, Massis-Puccini A and Szarvas S (2011) National Soil Carbon Research Programme: Field and laboratory methodologies. CSIRO Flagships Report for the Department of Agriculture. Fisheries and Forestry and the Grains Research and Development Corporation. CSIRO, Adelaide.

Schapel A (2012) Opportunities to increase soil carbon under perennial vegetation; results of field work. Internal report. SA Department of Environment, Water and Natural Resources, Adelaide.

Sheppard D, Wilson J (2007) Re-establishment of Vegetation in South Australia 2006. Report, DWLBC2007. 978-1-921218-72-9. SA Department of Water, Land and Biodiversity Conservation, Adelaide.

Snowdon P, Eamus D, Gibbons P, Khanna P, Keith H, Raison J, Kirschbaum M (2000) Synthesis of allometrics, review of root biomass and design of future woody biomass sampling strategies. National Carbon Accounting System Technical Report No. 17. Australian Greenhouse Office, Canberra.

Snowdon P, Raison J, Keith H, Ritson P, Grierson P, Adams M, Montagu K, Bi H, Burrows W, Eamus D (2002) Protocol for sampling tree and stand biomass. National Carbon Accounting System Technical Report No. 31. Australian Greenhouse Office, Canberra.

Stein W, Tobiasen L (2007) Biofuel Database: A database of energy-related characteristics for Australian biomass. Publication No. 07/064. Rural Industry Research and Development Corporation, Canberra. Stucley CR, Schuck SM, Sims REH, Larsen PL, Turvey ND, Marino BE (2004) Biomass energy production in Australia Status costs and opportunities for major technologies. A report for JVAP in conjunction with the AGO. Publication No 04/031. Rural Industries Research and Development Corporation, Canberra.

Trees For Life (2012) Trees For Life – Annual Report. 2009, 2010, 2011. Accessed March 2012, from Trees For Life:

http://www.treesforlife.org.au/home/contactus/annualr eport/

Waterworth RM, Richards GP, Brack CL, Evans DMW (2007) A generalised hybrid process-empirical model for predicting plantation forest growth. *Forest Ecology and Management* **238**, 231-243.

Zorzetto A, Chudleigh P (1999) Commercial prospects for low rainfall agroforestry. Publication No. 99/152. Rural Industries Research and Development Corporation, Canberra.

GLOSSARY

AICc — Akaike information criterion (corrected), a measure of the relative quality of a statistical model, for a given set of data. AIC deals with the trade-off between the complexity of the model and the goodness of fit of the model.

ArcGIS — a geographic information system developed by ESRI that integrates hardware, software, and data for capturing, managing, analysing, and displaying all forms of spatial information.

BiosEquil (BE) — a steady state biosphere model used for the assessment of carbon, nitrogen, phosphorus and water in Australian landscapes (Raupach *et al.* 2001).

CABALA — a growth model for predicting forest growth (CArbon BALAnce; Battaglia *et al.* 2004).

CFI — Carbon Farming Initiative.

CO₂-e — carbon dioxide equivalent.

CRC — Cooperative Research Centre.

CSIRO — Commonwealth Scientific and Industrial Research Organisation (Australian Government).

DCCEE — Department of Climate Change and Energy Efficiency (pre April 2013), now DOTE (Australian Government).

DEWNR — Department of Environment, Water and Natural Resources (Government of South Australia).

DOA — Department of Agriculture (Australian Government).

DOIC — Domestic Offsets Integrity Committee (Australian Government).

DOTE — Department of the Environment (Australian Government).

DSEWPC — Department of Sustainability, Environment, Water, Population and Communities (pre September 2013), now DOTE (Australian Government).

FPI — Forest Productivity Index. An index of climate and soil parameters that influence forest productivity (Landsberg & Kesteven 2001).

FullCAM — Fully integrated Carbon Accounting Model for estimating and predicting all biomass, litter and soil carbon pools in forest and agricultural systems (Department of Climate Change 2009).

GIS — Geographic Information System; computer software linking geographic data (for example land parcels) to textual data (soil type, land value,

ownership). It allows for a range of features, from simple map production to complex data analysis.

IBRA — Interim Biogeographic Regions of Australia (Version 7.0); regions containing similar landscapes, climates and native ecosystems (Department of Sustainability, Environment, Water, Population and Communities 2012a).

Indigenous species — a species that occurs naturally in a region.

MAI — mean annual increment; typically used to describe growth of stemwood volumes in forestry.

Model — a conceptual or mathematical means of understanding elements of the real world that allows for predictions of outcomes given certain conditions.

NCAT — National Carbon Accounting Toolbox. A Model that estimate changes in emissions resulting from changed land management actions, such as forest establishment and harvesting, soil cultivation, fire management and fertiliser application (Richards *et al.* 2005).

NRM — Natural Resources Management; all activities that involve the use or development of natural resources and/or that impact on the state and condition of natural resources, whether positively or negatively.

NVIS — National Vegetation Information System (Version 4.1); national mapping and description of native plant communities (Department of Sustainability, Environment, Water, Population and Communities 2012b).

PIRSA — Primary Industries and Resources South Australia (Government of South Australia).

Plant density — plants per hectare; average number of trees, mallees and/or tall shrubs planted per unit area; refers only to species that are Kyoto-compliant (i.e. >2m tall at maturity).

 r^2 — a statistical measure of the proportion of variation of observations explained by models, when all variation is explained $r^2 = 1$.

RIRDC — Rural Industries Research and Development Corporation (Australian Government).

RMT — Reforestation Modelling Tool.

TFL — Trees For Life, a not-for-profit South Australian community environmental organisation and significant provider of native plant for revegetation in the state.

APPENDICES

Appendix A - Regional Species Lists	76
Appendix B - Revegetation Species	82
Appendix C - Destructive Sampling and Biometric Studies	89
Appendix D - Productivity and Carbon Sequestration Studies	92
Appendix E - SA Soil Mapping Classes used in Spatial Modelling	107
Appendix F - Improving National Carbon Accounting Models: Moorlands Case Study	108

APPENDIX A - REGIONAL SPECIES LISTS

 Table 33. Frequency of dominant plant species in the Adelaide & Mt Lofty Ranges NRM Region.

Height	Adelaide & Mt Lofty Ranges	le & Mt Lofty Ranges Rainfall Zone (mm/yr)							
Class	Dominant Species	200	300	400	500	600	700	800+	Total
Tall	Eucalyptus fasciculosa				66	547	324	448	1385
	Eucalyptus leucoxylon ssp.			20	123	468	298	356	1265
	Allocasuarina verticillata		1	20	108	363	599	168	1259
	Eucalyptus obliqua			1	1	60	184	930	1176
	Bursaria spinosa ssp.			29	89	237	245	379	979
	Banksia marginata			6	40	98	246	477	867
	Eucalyptus goniocalyx ssp.			3	10	394	137	63	607
	Eucalyptus microcarpa				46	141	290	116	593
	Eucalyptus baxteri				3	30	96	413	542
	Eucalyptus cosmophylla				1	48	80	365	494
	Eucalyptus camaldulensis var.			5	42	237	127	69	480
	Eucalyptus viminalis ssp.			1	4	54	110	290	459
	Callitris gracilis		7	46	110	199	80	9	451
	Acacia retinodes			2	29	39	158	197	425
	Eucalyptus odorata			47	123	138	60	11	379
	Eucalyptus porosa			21	214	78	30	13	356
	Acacia melanoxylon			15	4	16	53	267	355
	Pittosporum angustifolium		6	55	95	34	74	2	266
	Acacia provincialis				3	30	38	142	213
	Melaleuca lanceolata		2	49	51	40	21	15	178
Moderately	Acacia pycnantha			45	148	819	892	605	2509
Tall	Hakea rostrata				22	215	435	675	1347
	Leptospermum myrsinoides			1	39	198	398	690	1326
	Dodonaea viscosa ssp.		7	23	102	427	445	199	1203
	Exocarpos cupressiformis			3	18	162	358	590	1131
	Acacia paradoxa			14	130	305	388	179	1016
	Allocasuarina muelleriana ssp.			9	34	258	360	248	909
	Leptospermum continentale			_	3	46	84	446	579
	Hardenbergia violacea			7	35	80	194	137	453
	Allocasuarina striata				9	96	89	199	393
	Melaleuca decussata				5	60	72	182	319
	Acacia verticillata ssp.			4	2	18	58	232	314
	Leptospermum lanigerum				5	29	41	159	234
	Acacia vernicifiua		11	47	9	10	42	122	183
	knagodia candolleana ssp.		11	4/	41	72	1	4	105
	Cellistemen sieheri			1	40	72	0	14 41	109
	Acaria ligulata		7	27	14 65	50	50	41	120
			1	21	/13	22	6	1	105
	Acacia cupularis		1	21	10	30	52	12	104
Medium	Yanthorrhoea semiplana ssn				20	51/	 	886	1839
Wediam	Olearia ramulosa		3	З	20	213	708	442	1396
	Pultenaea daphnoides		5	5	6	15	217	828	1066
	Hakea carinata			2	15	159	421	452	1049
	Calvtrix tetragona			8	106	341	351	152	963
	Grevillea lavandulacea ssp.			5	70	180	230	423	908
	Epacris impressa			-	3	10	154	687	854
	Acacia myrtifolia				7	89	303	334	733
	Daviesia leptophylla			2	8	48	103	511	672
	Spyridium parvifolium			1	12	154	144	222	533
	Acacia acinacea			42	125	95	109	69	440
	Xanthorrhoea quadrangulata			4	7	144	259	20	434
	Daviesia ulicifolia ssp.				9	68	106	222	405
	Goodenia ovata			1	4	10	48	310	373
	Hakea rugosa				28	125	65	62	280
	Acacia spinescens			14	19	75	57	64	229
	Eutaxia microphylla			6	64	67	68	24	229
	Prostanthera behriana			2	16	96	73	29	216
	Persoonia juniperina					7	17	187	211
	Cullen australasicum			13	43	45	40	42	183

Height	Eyre Peninsula			Rainfal	ll Zone (I	mm/yr)			
Class	Dominant Species	200	300	400	500	600	700	800+	Total
Tall	Melaleuca lanceolata	14	862	343	205	2			1426
	Eucalyptus oleosa ssp.	9	836	84	43				972
	Pittosporum angustifolium	10	537	281	87				915
	Eucalyptus dumosa	8	492	114	6				620
	Eucalyptus diversifolia ssp.		164	244	209	3			620
	Eucalyptus socialis ssp.	1	390	80	8				479
	Eucalyptus calcareana	2	371	88	7				468
	Allocasuarina verticillata	-	68	214	108	8			398
	Fucalyptus porosa		208	158	11	0			377
	Callitris gracilis	2	238	123	3	1			367
	Acacia euthycarna	-	165	91	21	1			278
	Bursaria spinosa ssp		88	112	67	7			270
	Myonorum insulare	1	123	3/	66	,			274
	Myoporum platycarpum ssp	6	215	2	00				224
	Eucolyptus odorata	0	215	116	67	Δ			224
	Melaleuca halmaturorum		20	104	20	4			174
			52	204	20				1/4
	Eucalyptus peninsularis		63	82	23				108
	Acacia longitolia ssp.	1	0	50	85				147
	Eucalyptus rugosa	T	20	41	/2	<i>c</i>			134
	Eucalyptus albopurpurea	<u> </u>	6.40	9	112	6			127
Moderately	Exocarpos aphyllus	9	649	180	84				922
Tall	Eucalyptus gracilis	11	683	109	49	1			853
	Melaleuca uncinata	1	505	234	99	7			846
	Santalum acuminatum	13	527	138	39				717
	Eucalyptus incrassata	7	459	124	36				626
	Rhagodia candolleana ssp.	4	264	173	165				606
	Melaleuca pauperiflora ssp.	3	574	14					591
	Eucalyptus leptophylla	4	405	138	41	1			589
	Eucalyptus brachycalyx	9	461	71	1				542
	Melaleuca acuminata ssp.	1	345	146	19				511
	Dodonaea viscosa ssp.	3	268	129	76				476
	Acacia ligulata	7	320	79	15				421
	Exocarpos sparteus	1	223	98	79	10			411
	Leptospermum coriaceum	5	288	81	37				411
	Acacia rigens	4	267	75	2				348
	Allocasuarina muelleriana ssp.	1	126	92	75	9			303
	Acacia calamifolia	1	157	113	23	1			295
	Acacia oswaldii	10	256	10	1				277
	Leucopogon parviflorus		8	92	174	1			275
	Eucalyptus valatensis		145	124	4				273
Medium	Geiiera linearifolia	12	688	52	23				775
	Eutaxia microphylla	2	392	247	107	3			751
	Acacia spinescens		364	223	125	1			713
	Beveria lechenaultii	2	374	150	142				668
	Senna artemisioides ssn	15	546	73	1				635
	Calvtrix tetragona	1	245	126	109	5			486
	Alveia huvifolia	7	293	67	89	5			456
	Phagodia projecij sep	2 2	200	20	05				435
	Calutrix involuerata	1	203	110	15	С			433
	Phobalium bullatum	2	205	110	2	2			419
	Rabinatonia bohrii	5	150	120	102	11			410
			100	140	102	11			401
	Nitravia killandianai	1	169	149	82				400
		1	196	85	98	10			380
	Pimelea flava ssp.		84	174	97	19			374
	Acacia rupicola		35	133	134	15			317
	Eremophila scoparia	10	300	2	1				313
	Acacia sclerophylla var.	8	215	67	21				311
	Scaevola spinescens	6	284	10					300
	Acacia merrallii	8	267	5					280
	Correa backhouseana var.		60	127	66	7			260

Table 34. Frequency of dominant plant species in the Eyre Peninsula NRM Region.

Table 35.	Frequency o	of dominant r	plant sp	ecies in th	he Kangaroo	Island NRM	Region.

Height	Kangaroo Island			Rainfal	l Zone (i	nm/vr)			
Class	Dominant Species	200	300	400	500	600	700	800+	Total
Tall	Fucalvatus diversifalia ssa			6	197	99	95	9	406
	Melaleuca lanceolata			3	170	62	35 77	9	312
	Banksia marginata			2	10	65	94	65	275
				6		75	22	20	273
				3	136	/3	36	6	233
	Eucalyptus rugosa			1/	140	3/	1	0	190
				14	05	/1	11	1	171
					24	52	70	15	171
	Eucalyptus clauocalyx				6	16	64	40	156
	Muoporum insularo			1	0	20	25	40	150
				2	07 27	39	23 61	11	132
	Allocasuarina vorticillata			5	42	44	01 //1	1	121
					42	47 25	41 21	7	110
	Acadia unicitolia Eucalviatus laucavidan sen			2	4/	25	20	/	104
	Eucalyptus reucoxyton ssp.			1	12	22	29	4	02
	Eucalyptus obliqua			1	5	17	20	52	95
	Eucalypius oleosa ssp.			1	10	17	4 25	10	04 70
	Acadia retinodes			1	10	1/	35	10	/3
				2	7	10	28	10	63
	Acacia iongitolia ssp.			-	32	1/	6	1	56
Modoratoly				5	28	110	105	25	56
Tall				3	74	118	105	25	325
1 dii	Allocasuarina striata			3	/1	100	81	69	324
	Hakea rostrata			-	50	100	82	12	304
	Acacia paradoxa			5	107	101	64	16	293
	Leucopogon parviflorus			2	128	42	/6		248
	Dodonaea viscosa ssp.			2	93	78	55	4	232
	Allocasuarina muelleriana ssp.			4	56	64	48	22	194
	Leptospermum continentale			5	22	34	65	60	186
	Melaleuca uncinata			7	80	68	23	1	179
	Eucalyptus remota				2	28	47	75	152
	Leptospermum myrsinoides			1	29	27	48	24	129
	Melaleuca brevifolia				39	41	42	4	126
	Rhagodia candolleana ssp.				76	20	19	2	117
	Acacia pycnantha			2	45	24	23	6	100
	Callistemon rugulosus			5	35	32	22		94
	Callitris rhomboidea			2	17	24	22	4	69
	Exocarpos cupressiformis			2	19	20	15	6	62
	Acacia verticillata ssp.				6	14	26	12	58
	Hardenbergia violacea				32	12	10		54
	Eucalyptus phenax ssp.			7	32	7	5	2	53
Medium	Melaleuca gibbosa			14	155	146	138	37	490
	Olearia microdisca			264	91		3		358
	Xanthorrhoea semiplana ssp.			2	59	109	105	62	337
	Calvtrix tetragona			4	101	74	70	28	277
	Beveria lechenaultii			1	130	54	73	2	260
	Lasiopetalum schulzenii				106	56	87	8	257
	Choretrum glomeratum var.			6	113	58	49	9	235
	Logania ovata				94	71	56	11	232
	Adenanthos terminalis			2	30	63	73	53	221
	Pomaderris halmaturina ssp.			41	36	140	2		219
	Adenanthos macropodianus			9	65	21	77	39	211
	Daviesia asperula ssp.			4	47	52	78	27	208
	Grevillea quinquenervis					25	73	88	186
	Pimelea flava ssp.			7	56	56	60	3	182
	Banksia ornata				25	27	54	62	168
	Acacia myrtifolia				51	31	48	30	160
	Pomaderris obcordata			1	90	23	29		143
	Acacia leiophylla			1	82	20	26	4	133
	Pomaderris paniculosa ssp.			5	72	26	26		129
	Eutaxia microphylla				46	34	38	6	124

Height	Northern & Yorke			Rainfa	ll Zone (I	nm/yr)			
Class	Dominant Species	200	300	400	500	600	700	800+	Total
Tall	Bursaria spinosa ssp.	3	58	277	248	71			657
	Eucalyptus odorata		35	201	289	67			592
	Allocasuarina verticillata		29	251	235	60			575
	Melaleuca lanceolata		81	379	100	5			565
	Eucalyptus porosa	5	106	288	75	20			494
	Pittosporum angustifolium		126	283	36	8			453
	Eucalyptus socialis ssp.	5	103	206	52	30			396
	Eucalyptus leucoxylon ssp.		3	62	181	125			371
	Eucalyptus oleosa ssp.		63	168	44	1			276
	Callitris glaucophylla	1	93	67	64	21			246
	Acacia victoriae ssp.	13	125	65	28	4			235
	Eucalyptus diversifolia ssp.			158	64	3			225
	Callitris gracilis		36	68	49	17			170
	Myoporum insulare		42	107	8				157
	Myoporum platycarpum ssp.	7	63	47	10	3			130
	Eucalyptus rugosa		1	68	47				116
	Eucalyptus microcarpa		1	27	68	19			115
	Eucalyptus dumosa		30	65	8	4			107
	Eucalyptus goniocalyx ssp.			1	53	52			106
	Eucalyptus cladocalyx		1	15	45	43			104
Moderately	Dodonaea viscosa ssp.	4	146	177	181	31			539
Tall	Exocarpos aphyllus	3	138	307	63	7			518
	Acacia pycnantha		28	131	197	72			428
	Rhagodia candolleana ssp.		66	277	46				389
	Eucalyptus gracilis	5	118	191	41	4			359
	Acacia ligulata	3	128	158	50	8			347
	Cassinia laevis	3	46	97	131	25			302
	Santalum acuminatum		75	139	45	8			267
	Pimelea microcephala ssp.	8	105	84	47	11			255
	Acacia hakeoides		69	137	28	5			239
	Acacia calamifolia	2	84	89	48	3			226
	Leucopogon parviflorus		5	180	32				217
	Alectryon oleifolius ssp.	3	111	79	5	7			205
	Acacia oswaldii	3	89	89	8	5			194
	Myoporum montanum	6	34	78	62	6			186
	Eucalyptus phenax ssp.		15	157	8				180
	Melaleuca acuminata ssp.		20	131	21	1			173
	Acacia notabilis	2	20	110	21	14			167
	Eremophila longifolia	1	77	72	11	6			167
	Exocarpos cupressiformis		6	26	78	54			164
Medium	Rhaqodia parabolica	5	211	237	68	7			528
	Senna artemisioides ssp.	2	208	188	37	8			443
	Beyeria lechenaultii	2	47	295	90	8			442
	Eutaxia microphylla		17	177	158	27			379
	Calytrix tetragona		11	167	139	46			363
	Pomaderris paniculosa ssp.		32	190	65	10			297
	Acacia continua	1	26	64	132	55			278
	Alvxia buxifolia		25	210	36	3			274
	Xanthorrhoea quadrangulata		8	46	135	47			236
	Nitraria billardierei	9	119	71	31				230
	Templetonia retusa		2	137	89	1			229
	Acacia spinescens		6	156	53	1			216
	Genera linearitolia		96	111	3	1			211
	Acacia nematophylla		1	158	42				201
	Olearia decurrens	2	41	78	63	16			200
	Maireana pyramidata	20	112	14	3	1			150
	Scaevola spinescens		90	52	4				146
	Acacia rupicola		1	76	50	16			143
	Acacia wattsiana		2	26	68	42			138
	Spyridium parvitolium		1	1	84	51			137

Table 36. Frequency of dominant plant species in the Northern & Yorke NRM Region.

Height	South Australian Murray-Darling Basin			Rainfa					
Class	Dominant Species	200	300	400	500	600	700	800+	Total
Tall	Eucalyptus largiflorens	846	184	8	1				1039
	Eucalyptus socialis ssp.	108	678	214	13	1	2		1016
	Melaleuca lanceolata	61	568	254	18	2			903
	Eucalyptus oleosa ssp.	99	627	39	5				770
	Eucalyptus camaldulensis var.	471	226	28	5	3	5	9	747
	Eucalyptus dumosa	92	554	96	1				743
	Myoporum platycarpum ssp.	155	390	103	7				655
	Bursaria spinosa ssp.	1	64	208	70	21	14	40	418
	Eucalyptus porosa	12	156	214	6				388
	Eucalyptus leucoxylon ssp.		30	182	68	29	32	41	382
	Callitris gracilis	30	136	186	25	2	1		380
	Eucalyptus fasciculosa		4	98	37	55	55	121	370
	Acacia stenophylla	284	81						365
	Eucalyptus odorata	1	37	150	108	35	16	6	353
	Pittosporum angustifolium	38	210	99	6				353
	Allocasuarina verticillata		17	147	77	11	15	12	279
	Eucalyptus cosmophylla			1	7	40	62	119	229
	Acacia euthycarpa		64	150	8	3		1	226
	Banksia marginata		2	54	24	25	20	93	218
	Casuarina pauper	110	90	3					203
Moderately	Eucalyptus gracilis	114	718	114	4				950
Tall	Eucalyptus incrassata	27	494	280	29	8	3	1	842
	Eucalyptus leptophylla	33	515	248	19	17	7		839
	Dodonaea viscosa ssp.	139	259	192	27	12	15	9	653
	Leptospermum coriaceum	4	313	243	3	1			564
	Acacia pycnantha		66	231	88	45	42	48	520
	Callitris verrucosa	58	288	121					467
	Melaleuca acuminata ssp.		251	172	11	1		1	436
	Allocasuarina muelleriana ssp.		129	155	28	42	28	31	413
	Exocarpos aphyllus	122	251	5					378
	Melaleuca uncinata		170	180	14	7		1	372
	Acacia rigens	42	217	106	2				367
	Alectryon oleifolius ssp.	112	201	9					322
	Leptospermum myrsinoides		2	74	18	42	48	125	309
	Acacia brachybotrva	31	170	91	3			1	296
	Eucalyptus brachycalyx	22	226	45	2	2			295
	Hakea mitchellii	1	95	1/3	22	3	-		294
	Santaium acuminatum	29	185	62	14	1	1		291
	Eucalyptus calycogona ssp.	2	1/4	94	8 21	1	4		279
Medium	Eucalyptus phenax ssp.	2	83	161	21	5	4		2/6
Wieddini	Serina artemisioides SSD.	235	487	/1	4				797 E 4 4
		215	259	202	4	40	27	27	5 44 лол
		1	115	203	21	20	16	7	404
	Rabinatonia bobrii	1	226	160	21	29	10	/	205
	Eutavia microphylla	28	157	1/15	31	3	6		393
		87	240	8	2	5	0		370
	Phebalium bullatum	9	188	121	2				318
	Geijera linearifolia	19	268	4	1				292
	Maireana pyramidata	202	81	1	-				284
	Beveria lechenaultii	9	186	86	1				282
	Xanthorrhoea semiplana ssp.	Ĩ	-00	21	20	41	52	140	274
	Rhagodia parabolica	50	183	32	7		0-	2.0	272
	Acacia sclerophylla var.	39	179	44	·				262
	Grevillea huegelii	87	156	8					251
	Eremophila scoparia	82	163	2					247
	Correa glabra var.	52	56	139	27	18	5		245
	Olearia pimeleoides ssp.	79	145	12	1				237
	Acacia wilhelmiana	32	167	26					225
	Grevillea lavandulacea ssp.		7	88	21	26	31	48	221

Table 37. Frequency of dominant plant species of South Australian Murray-Darling Basin NRM Region.

Height	South East								
Class	Dominant Species	200	300	400	500	600	700	800+	Total
Tall	Banksia marginata			114	365	223	84	41	827
	Eucalyptus leucoxylon ssp.			162	319	151	55		687
	Acacia longifolia ssp.			4	205	180	139	49	577
	Eucalyptus fasciculosa			45	328	179	20	2	574
	Eucalyptus diversifolia ssp.			170	306	73	17		566
	Bursaria spinosa ssp.			83	190	135	36	34	478
	Melaleuca lanceolata			128	170	90	58	7	453
	Eucalyptus viminalis ssp.			19	85	150	86	50	390
	Eucalyptus arenacea			50	182	76	67	11	386
	Acacia melanoxylon				30	110	77	79	296
	Melaleuca halmaturorum				151	71	31		253
	Allocasuarina verticillata			15	77	89	35	11	227
	Eucalyptus baxteri			3	40	48	34	72	197
	Eucalyptus obliqua				4	39	95	57	195
	Myoporum insulare			1	90	33	23	9	156
	Acacia mearnsii				15	60	29	46	150
	Melaleuca squarrosa			1	1	1	72	74	149
	Acacia oxycedrus				12	18	33	76	139
	Eucalyptus camaldulensis var.			3	49	56	3		111
	Eucalyptus ovata var.				2	23	38	31	94
Moderately	Leptospermum myrsinoides			163	339	171	71	59	803
Tall	Leucopogon parviflorus				144	149	215	70	578
	Allocasuarina muelleriana ssp.			208	295	58	12	1	574
	Acacia pycnantha			70	183	118	65	29	465
	Leptospermum continentale			3	138	159	94	71	465
	Melaleuca brevifolia			16	267	156	21		460
	Hakea mitchellii			199	214	17			430
	Eucalyptus incrassata			217	198				415
	Hakea rostrata			19	253	111	16	5	404
	Dodonaea viscosa ssp.			13	141	170	29	11	364
	Eucalyptus leptophylla			198	159			1	358
	Rhagodia candolleana ssp.				120	52	97	11	280
	Acacia verticillata ssp.			1	66	117	54	41	279
	Exocarpos cupressiformis			3	60	88	56	35	242
	Melaleuca uncinata			75	145	9			229
	Exocarpos sparteus			98	124	3	3		228
	Leptospermum coriaceum			163	24		1		188
	Hakea nodosa				46	83	13	23	165
	Allocasuarina paludosa				19	67	36	35	157
	Exocarpos syrticola				71	35	50		156
Medium	Calytrix tetragona			213	344	156	36	7	756
	Correa reflexa var.			192	286	84	68	26	656
	Banksia ornata			186	325	124	12		647
	Acacia spinescens			192	288	29	1	2	512
	Allocasuarina pusilla			167	175	21	12	1	376
	Epacris impressa			3	96	145	67	55	366
	Leucopogon ericoides			1	147	138	41	39	366
	Acacia myrtifolia			29	158	70	40	35	332
	Hakea vittata			57	180	68	8		313
	Adenanthos terminalis			130	173	7			310
	Babingtonia behrii			167	127				294
	Hakea rugosa			33	168	78	12		291
	Acacia leiophylla			11	95	67	62	3	238
	Grevillea ilicifolia ssp.			110	116	7	2		235
	Persoonia juniperina			44	132	33	12		221
	Allocasuarina mackliniana ssp.			13	116	61	13	6	209
	Eutaxia microphylla			79	105	10	1	1	196
	Calytrix alpestris			49	127	13	3	1	193
	Dillwynia glaberrima			3	16	75	48	35	177
	Solanum laciniatum				38	48	45	28	159

Table 38. Frequency of dominant plant species of South East NRM Region.

APPENDIX B - REVEGETATION SPECIES

 Table 39.
 Dominant revegetation species of the Adelaide & Mt Lofty Ranges NRM Region.

Height	Adelaide & Mt Lofty Ranges	ges Trees For Life Zone - % of total per zone									10 Year
Class	Dominant Species	AH	AP	AS	BV	СН	NO	VI	WN	YA	Total
Tall	Eucalyptus leucoxylon	44		2	12	18	2	5	5	13	309,700
	Eucalyptus fasciculosa	45		2		16	3	8	8	19	227,475
	Eucalyptus camaldulensis	41	12	1	11	16	1	4	4	11	225,750
	Allocasuarina verticillata	34	11	3	11	13	2	4	7	14	225,350
	Acacia melanoxylon	59				18		4	5	15	148,475
	Eucalyptus viminalis	63		3		9		4	6	15	126,150
	Melaleuca lanceolata	<1	40	3	17		6	3	11	21	85,025
	Acacia retinodes	54			17	25				5	75,275
	Eucalyptus odorata	<1	39	<1	36	19			6		72,000
	Bursaria spinosa	45	8	4	10	11	3	3	6	9	65,825
	Eucalyptus obliqua	51				18		6	7	18	59,175
	Eucalyptus porosa		40	7	16	17	9		11		57,875
	Eucalyptus cosmophylla	57						10	8	25	48,875
	Acacia provincialis	66		2		1		5	8	16	47,000
	Eucalyptus baxteri	46				20		8	6	21	42,625
	Banksia marginata	36			12	30	4	7	11		40,525
	Callitris gracilis		26	6	17	24	6			21	39,550
	Eucalyptus dalrympleana	100									32,400
	Eucalyptus socialis		71		29						27,400
	Pittosporum angustifolium		34	4	28		13		20		23,000
	Eucalyptus microcarpa			27			28		44		16,425
	Melaleuca halmaturorum		70	2				28			16,175
	Eucalyptus oleosa		94		6						12,650
Mod-Tall	Acacia pycnantha	37	12	4	10	13	3	5	5	10	215,350
	Acacia paradoxa	43	<1	6	10	16	4	6	6	8	127,850
	Dodonaea viscosa	44	<1	5	11	17	5	4	5	9	122,750
	Leptospermum continentale	52		2	6	14	2	4	5	14	79,775
	Melaleuca decussata	61		2			3	5	9	20	69,625
	Callistemon sieberi	81				15	4				66,975
	Allocasuarina muelleriana	47		3		23	3	5	5	15	65,300
	Leptospermum lanigerum	69				19		6	6		57,900
	Hardenbergia violacea	37		14	5	17	5	6	16		37,075
	Acacia verniciflua	72		4		19	5				36,675
	Allocasuarina striata	59		4			3	6	7	21	34,600
	Acacia notabilis		61		39						28,075
	Acacia ligulata		58	2	19	21					27,750
	Eucalyptus gracilis	<1	78		22						25,775
	Acacia oswaldii	<1	100								17,000
	Eucalyptus brachycalyx	<1	100								14,775
	Acacia hakeoides		100								14,700
	Melaleuca acuminata		100								14,025
	Eucalyptus incrassata		56		44						13,225
Medium	Acacia myrtifolia	53		3	1	18	2	3	6	14	104,750
	Acacia acinacea	14	28	8	18	13	5	6	8		70,750
	Xanthorrhoea semiplana	49		3		15	4	4	13	12	48,775
	Olearia ramulosa	53		6		11	6	4	8	12	45,325
	Pultenaea daphnoides	74				16			10		31,125
	Rhagodia parabolica		52		48						30,275
	Gahnia sieberiana	66				17				18	15,850
	Acacia rupicola	<1		19			22			58	13,850
Tall	Total Tall	39	11	2	9	14	2	4	6	13	2,073,625
Mod-Tall	Total Mod-Tall	40	15	3	10	13	3	4	5	8	1,163,925
Medium	Total Medium	34	15	4	10	16	3	2	6	9	441,325
Med-Low	Total Med-Low	29	23	2	14	16	5	<1	8	3	74,000
Low	Total Low	49	12	1	6	13	4		7	8	65,700
Ground	Total Ground	12	25	10	15	18	9		10		75,900
Undefined	Total Undefined native species	31	9	11	6	9	6	4	17	6	425,625
All	Grand Total	37	13	4	9	14	3	4	7	10	4,320,100

Height	Eyre Peninsula	Trees For Life Zone - % of total per zone									
Class	Dominant Species	CD	с٧	EL	FH	КВ	LE	LH	SK	TU	Total
Tall	Eucalyptus petiolaris				1		69			30	61,525
	Eucalyptus camaldulensis			19			81				53,725
	Allocasuarina verticillata		17	8	1		45		9	21	43,900
	Melaleuca lanceolata	8	12	8	2	4	32	8	11	16	43,650
	Melaleuca halmaturorum		4	7	<1		55	3	2	30	37,100
	Eucalyptus cladocalyx						77			23	28,800
	Eucalyptus porosa	5	19	7	5	3	16	6	24	14	24,125
	Eucalyptus oleosa	8	9	9	4	8	8	14	30	10	22,775
	Eucalyptus dumosa	9	23	1	4	7	3	13	31	10	20,150
	Eucalyptus albopurpurea						100				13,550
	Eucalyptus diversifolia			15			59			26	12,525
	Eucalyptus socialis	16	30	3	8	17		27			11,925
	Eucalyptus odorata				3		61			36	11,700
	Callitris gracilis	6	17	13	3	2	31	2	15	12	6,625
	Pittosporum angustifolium	7	6	10		3	37	7	16	14	5,375
	Eucalyptus peninsularis			12	1		32			55	4,575
	Acacia longifolia ssp. sophorae						100				4,400
	Acacia papyrocarpa	42			24	34					4,150
	Bursaria spinosa		4	14	1		47		25	10	3,550
	Eucalyptus rugosa						100				2,725
Mod-Tall	Eucalyptus gracilis	7	17		5	6	20	7	22	16	23,200
	Acacia pycnantha		17				67			16	17,450
	Acacia oswaldii	9	19	10	4	8	21	17	34	15	16,075
	Melaleuca uncinata	5	25	3	2	3	31	4	12	15	15,800
	Callistemon rugulosus	-	10	_		-	80	10		10	14,100
	Eucalyptus incrassata	5	10	5	9	2	6	12	34	18	12,975
	Dodonaea viscosa	6	18	8	4	3	31	12	1/		12,625
	Acacia calamitolia	4	18	8		6	36	9	10	11	12,425
	Eucalyptus brachycalyx	12	23	8	c	- 11		16	30		12,300
	Acacia ligulata	9	19	15	6	/	10	20	25	24	11,800
	Eucalyptus leptophylla	7	29	0	/	2	16	14	21	34	11,800
		/	11	8 5	4	3	26	5	21	14	11,575
	Acacia notabilis	5	27	5	3	5	23	2	10	13	9,125
		10	17	15		-	63	10	22	37	9,075
		12	25	11		5	10	10	52	42	6,000
	Eucaryptus carycogona Malalauca dagussata		25	11		9	70			42	0,525
	Allocacuarina muelloriana		24				70			50	3,373
		11	24	30		5	10	22		11	4,825
		11		30		J	8	25	58	11	4,025
	Acacia cupularis			24	9		10		26	30	4 300
	Fucalvotus cretata		100	27	5		10		20	50	3 050
	Acacia paradoxa		100				77			23	2,425
Medium	Acacia sclerophylla	6	29	4	3	6	17	17	7	12	7,500
	Rhagodia parabolica	Ŭ	93		7	Ū	17	17	,		6,500
	Templetonia retusa		55				59			41	6.500
	Rhagodia candolleana				4		57		19	20	5,850
	Senna artemisioides	6	3	24	8		18	7	21	13	3.125
	Acacia myrtifolia						100			-	3,050
	Acacia leiophylla						100				2,575
Tall	Total Tall	3	7	7	2	3	50	4	7	17	421,525
Mod-Tall	Total Mod-Tall	5	17	6	3	4	28	8	16	14	247,700
Medium	Total Medium	1	22	2	3	1	43	4	5	18	43,325
Med-Low	Total Med-Low	1	7		1	1	55	11	9	14	5,025
Low	Total Low	1	6	4	2	1	46	6	16	17	8,300
Ground	Total Ground			9		3	52	12	23	1	5,225
Undefined	Total Undefined native species	<1	25	4	5	3	45	3	9	7	49,600
All	Grand Total	3	12	6	2	3	42	5	10	15	780,700

Table 40. Dominant revegetation species of the Eyre Peninsula NRM Region.

Table 41. Dominant revegetation species of the Kangaroo Island NRM Region.

Height	Kangaroo Island	Trees For Life Zone - % of total per zone	10 Year
Class	Dominant Species	КІ	Total
Tall	Eucalyptus cladocalyx	100	28,000
	Eucalyptus leucoxylon	100	26,925
	Allocasuarina verticillata	100	22,450
	Eucalyptus fasciculosa	100	21,250
	Eucalyptus cneorifolia	100	14,950
	Eucalyptus camaldulensis	100	13,125
	Melaleuca halmaturorum	100	12,500
	Eucalyptus cosmophylla	100	12,300
	Melaleuca lanceolata	100	9,200
	Eucalyptus diversifolia	100	8,875
	Eucalyptus viminalis	100	8,525
	Eucalyptus rugosa	100	5,750
	Eucalyptus albopurpurea	100	5,175
	Eucalyptus ovata	100	4,825
	Callitris gracilis	100	3,750
	Acacia provincialis	100	2,700
	Acacia uncifolia	100	2,400
	Eucalyptus obliqua	100	2,225
	Banksia marginata	100	2,200
	Eucalyptus baxteri	100	2,100
	Bursaria spinosa	100	1,700
	Acacia euthycarpa	100	50
	Acacia melanoxylon	100	50
Mod-Tall	Callistemon rugulosus	100	12,225
	Acacia pycnantha	100	9,075
	Melaleuca uncinata	100	6,300
	Melaleuca brevifolia	100	4,800
	Acacia paradoxa	100	4,450
	Allocasuarina muelleriana	100	3,525
	Dodonaea viscosa	100	3,175
	Eucalyptus leptophylla	100	3,150
	Allocasuarina striata	100	3,075
	Acacia cupularis	100	3,025
	Melaleuca acuminata	100	2,050
	Leptospermum continentale	100	2,000
	Leptospermum lanigerum	100	1,975
	Acacia dodonaeifolia	100	1,375
	Acacia ligulata	100	1,375
	Callitris rhomboidea	100	1,125
	Hakea rostrata	100	900
	Hakea mitchellii	100	875
	Eucalyptus remota	100	350
	Acacia calamifolia	100	50
Medium	Melaleuca gibbosa	100	7,900
	Acacia leiophylla	100	3,225
	Xanthorrhoea semiplana	100	2,100
	Banksia ornata	100	1,425
	Acacia myrtifolia	100	975
	Templetonia retusa	100	925
	Acacia triquetra	100	850
Tall	Total Tall	100	211,025
Mod-Tall	Total Mod-Tall	100	64,875
Medium	Total Medium	100	17,400
Med-Low	Total Med-Low	100	150
Low	Total Low	0	0
Ground	Total Ground	0	0
Undefined	Total Undefined native species	100	39,500
All	Grand Total	100	332,950

Height	Northern & Yorke	Trees For Life Zone - % of total per zone									10 Year
Class	Dominant Species	CG	СҮ	FR	LN	ML	WA	WR	YO	YU	Total
Tall	Allocasuarina verticillata	21	11	8	11	12	9	7	5	15	106,875
	Eucalyptus camaldulensis	41		14	19		12			13	106,500
	Melaleuca lanceolata	14	13	9	13	10	12	5	6	19	102.150
	Eucalyptus porosa	10	16	9	11	15	12	3	6	20	92,475
	Eucalyptus leucoxylon	51		18	31						90,525
	Eucalyptus socialis	9	12	9	14	13	12	3	4	24	78,225
	Eucalyptus odorata	40		15	20		18	-		7	66,000
	Eucalyptus oleosa		14		20	20	17	7	7	35	46 600
	Callitris gracilis	29	7		12	8	24	,	4	16	22 450
	Pittosporum angustifolium	16	, 8	11	8	8	27	з	7	17	19 725
	Bursaria spinosa	29	1	9	5	7	22	2	, 8	12	15,100
	Melaleuca halmaturorum	25	-	5	5	54	22	17	29	12	11 775
				/11	з	54	56	17	25		10 550
				7	24		33			36	9 775
	Eucolyptus diversifelia			/	24		55	85	15	50	9,773
								65	13	100	7 1 25
		100								100	6 175
	Panksia marginata	100									6,175
		100		100							6,000 E 200
Mod Tall		22	10	100	15	10	14		6	7	5,300
IVIOU-Tall		22	13	10	15	13	14	2	6	7	62,650
	Eucaryptus gracilis	21	1/	<1	11	19	19	2	0	35	48,300
	Dodonaea viscosa	21	8	13	11	9	14	2	4	18	34,900
	Acacia notabilis	14	11	9	18	10	16	0	0	21	31,850
	Eucalyptus incrassata	10	14	10		1/	11	8	9	27	29,575
	Acacia hakeoides	24	8	13	21	10	13		8	27	28,925
	Melaleuca acuminata	21	16			15	17	4	7	20	28,250
	Acacia oswaldii		11	11	16	3	22			37	27,750
	Eucalyptus brachycalyx		14				35			51	27,125
	Callistemon rugulosus	56	13	10		14			8		25,425
	Acacia ligulata		20	2		20	21			36	19,575
	Acacia paradoxa	40	8	7	23	18			4	<1	16,800
	Eucalyptus phenax		18			19	18	5	6	35	16,375
	Eucalyptus leptophylla		33			47		6	14		15,825
	Eucalyptus calycogona		31			39	25			5	11,875
	Acacia calamifolia	41		32	28						11,800
	Melaleuca brevifolia	100									10,450
	Acacia microcarpa		31			28	27		15		9,400
	Melaleuca uncinata		47			53					9,150
	Allocasuarina muelleriana	49		1		24		11	15	1	8,325
	Acacia brachybotrya	48		10	30		12				8,300
	Hardenbergia violacea	90	1					10			6,275
	Acacia argyrophylla					66			34		6,100
Medium	Rhagodia parabolica	24		17	24		14			21	46,875
	Acacia acinacea	66			18		17				11,475
	Acacia sclerophylla		16			12	33			39	11,450
	Senna artemisioides	19	3	14	10	5	23		2	24	11,275
	Rhagodia candolleana		14			20	11	6	18	31	10,050
	Acacia wattsiana	68		17	14						9,175
	Xanthorrhoea quadrangulata	65		18	17						7,100
	Callistemon teretifolius			100							6,925
Tall	Total Tall	24	7	11	14	8	12	4	4	15	831,900
Mod-Tall	Total Mod-Tall	17	14	7	8	15	14	2	5	19	523,400
Medium	Total Medium	27	4	14	13	3	11	4	5	18	148,825
Med-Low	Total Med-Low	37	1	13	2	3	30	4	11		14,025
Low	Total Low	3	13	22		23	15	3	11	11	8,775
Ground	Total Ground	57	1	5	9	3	7	3	1	13	19,200
Undefined	Total Undefined native species	7	8	9	14	15	15	4	3	26	91,375
All	Grand Total	22	9	10	12	10	13	4	5	17	1,637,500

Height	SA Murray-Darling Basin	Trees For	· Life Zo	one - %	of total	per zor	ne	10 Year	
Class	Dominant Species		GO	MN	MS	MW	РН	PP	Total
Tall	Eucalyptus camaldulensis		13	26	21	3	14	23	158,625
	Melaleuca lanceolata		13	21	27	8		31	143,075
	Allocasuarina verticillata		15		20	7	14	45	136,400
	Eucalyptus fasciculosa				<1	2	33	65	111,175
	Eucalyptus leucoxylon		34				42	24	103,950
	Eucalyptus socialis		13	22	36	12		17	88,200
	Eucalyptus porosa		12	16	37	10		26	79,600
	Eucalyptus largiflorens			52	37	10	<1		66,200
	Eucalyptus odorata		36		1	9		54	57,950
	Eucalyptus oleosa		14	29	40	13		3	54,825
	Eucalyptus dumosa		13	30	39	13		4	53,400
	Callitris gracilis		9	18	22	15		36	39,775
	Melaleuca halmaturorum							100	37,950
	Pittosporum angustifolium		9	16	23	10		42	28,425
	Acacia melanoxylon						100		22,550
	Bursaria spinosa		9	3	12	6	27	44	18,725
	Eucalyptus viminalis						100		16,350
	Casuarina pauper		31	69					12,925
	Acacia provincialis						100	<1	11,475
Mod-Tall	Acacia pycnantha		14		28	3	19	36	93,750
	Eucalyptus gracilis		15	23	29	11		22	77,850
	Dodonaea viscosa		<1	14	20	11	17	38	67,275
	Eucalyptus leptophylla			23	40	11		26	47,950
	Acacia brachybotrya			20	33	11		36	44,400
	Acacia ligulata		7	32	26	11		25	43,250
	Eucalyptus brachycalyx		18	24	44	14			41,300
	Eucalyptus incrassata			19	31	8		42	41,050
	Eucalyptus calycogona			17	42	11		30	34,875
	Melaleuca uncinata				52			48	31,925
	Callistemon rugulosus							100	31,525
	Melaleuca acuminata				44			56	31,275
	Acacia oswaldii		15	63		22			30,950
	Acacia calamifolia		22		35	11		33	28,450
	Acacia paradoxa						43	57	26,700
	Acacia hakeoides		20	31	29	12		8	25,675
	Acacia microcarpa			18	27	11		44	24,075
	Eucalyptus phenax			14	44	13		29	21,775
	Callistemon sieberi						83	17	20,500
	Acacia rigens			31	30	9		30	18,425
	Acacia argyrophylla		38		34	29			16,325
	Allocasuarina muelleriana				42		58		14,025
	Eucalyptus cyanophylla			100					13,825
	Callitris verrucosa			64	36				12,725
	Leptospermum lanigerum						87	13	12,475
	Melaleuca decussata						100		12,350
Medium	Acacia acinacea		12			2	34	52	29,825
	Rhagodia parabolica		69	4		27			17,800
	Senna artemisioides		15	28	14	7		36	15,000
	Acacia sclerophylla			44	39	16			14.525
	Acacia myrtifolia						100		12,050
Tall	Total Tall		13	15	19	6	17	30	1,305,050
Mod-Tall	Total Mod-Tall		7	16	27	8	12	30	942,150
Medium	Total Medium		19	13	11	9	28	21	154,300
Med-Low	Total Med-Low		19	27	17	10	8	19	31,475
Low	Total Low		26	22	22	5		25	22,875
Ground	Total Ground		16	21	25	8	11	19	32,675
Undefined	Total Undefined native species		4	12	16	4	20	44	233,325
All	Grand Total		11	15	21	7	16	30	2,721.850

Table 43. Dominant revegetation species of the SA Murray-Darling Basin NRM Region.

Height	South East	Trees For Life Zone - % of total per zone 1								
Class	Dominant Species		BL	со	MX	SC	SE	SU	Total	
Tall	Eucalyptus leucoxylon		1	2	32	2	34	28	146,725	
	Eucalyptus fasciculosa		4	4	38	2	26	26	82,675	
	Allocasuarina verticillata		1	4	25	4	45	22	66,950	
	Eucalyptus camaldulensis		3				54	43	65,725	
	Melaleuca lanceolata		4	3	33	5	36	19	50,250	
	Melaleuca halmaturorum			8	23	3	41	26	49,475	
	Acacia melanoxylon					3	97		31,375	
	Eucalyptus diversifolia			8	35	7	41	10	30,425	
	Eucalyptus ovata					3	97		25,250	
	Eucalyptus viminalis		3		<1		62	35	23,175	
	Eucalyptus baxteri				40		47	13	16,950	
	Eucalyptus dumosa		1		91			8	15,525	
	Melaleuca squarrosa					10	90		15,400	
	Eucalyptus socialis				100				11,925	
	Banksia marginata			6	15	6	53	20	11,300	
	Eucalyptus obliqua					7	84	9	10,650	
	Eucalyptus willisii						100		7,950	
	Acacia mearnsii					10	90		7,450	
	Allocasuarina luehmannii		51					49	7,425	
	Acacia longifolia ssp. sophorae			13	30	16	38	3	6,725	
	Eucalyptus odorata		32					68	5,600	
	Bursaria spinosa		2	6	14	3	50	25	5,525	
	Eucalyptus arenacea		6		26		43	26	3,525	
	Eucalyptus oleosa				100				3,300	
	Eucalyptus porosa		-		100	-	2.4		3,025	
Mod-Tall	Acacia pycnantha		3	4	29	3	34	27	40,275	
	Callistemon rugulosus		4	2	28		37	31	38,575	
	Melaleuca brevitolia		2	3	1/		50	28	24,700	
	Dodonaea viscosa		3	3	30	4	35	25	17,850	
	Eucalyptus incrassata		1	/	/3	7	50	19	17,825	
	Leptospermum continentale		4	5		/	56	28	13,125	
	Allocasuarina paludosa		4		F1	8	88	45	13,075	
			4	0	51			45	10,825	
				8	92	0	21	27	7,700	
			10	4	20	ŏ	31	37	7,575	
			10	6	20			70	6,050	
			5	0	60	10	01	52	6,500 E 67E	
	A sasia misro sarpa		11		76	19	01	10	5,075	
	Hakoa nodosa		11		70		85	15	4,075	
			22				05	77	3,075	
	Fucalyntus bebriana		17		2			21	3,073	
			1/		100			01	2,050	
Medium	Melaleuca wilsonii		10		50			40	10,750	
incului	Acacia myrtifolia		5	5	10	2	52	26	9 850	
	Acacia lejophylla		5	11	10	6	74	9	7 525	
	Banksia ornata			3	25	Ū	42	30	3 800	
	Allocasuarina mackliniana		3	5	56		.2	41	3,000	
	Acacia farinosa		14		72			14	2 850	
	Xanthorrhoea australis		11		12		60	28	2,050	
Tall	Total Tall		3	3	25	3	44	22	713.125	
Mod-Tall	Total Mod-Tall		4	3	31	2	33	27	233.075	
Medium	Total Medium		5	5	29	2	37	23	48.475	
Med-Low	Total Med-Low			10	5	9	67	9	4.200	
Low	Total Low				-	9	91		825	
Ground	Total Ground				100				225	
Undefined	Total Undefined native species		1	5	33	3	32	26	72,325	
All	Grand Total		3	3	27	3	41	23	1,072,250	

Table 44. Dominant revegetation species of the South East NRM Region.

Table 45. Dominant revegetation species of the Arid Zone region.

Height	Arid Zone*	Trees For Life Zone - % of total per zone	6 of total per zone					
Class	Dominant Species		FN	NP	Total			
Tall	Eucalyptus camaldulensis		74	26	10,850			
	Melaleuca lanceolata		68	32	8,025			
	Eucalyptus socialis		65	35	5,950			
	Acacia papyrocarpa		100		5,425			
	Eucalyptus oleosa		62	38	5,025			
	Eucalyptus dumosa		60	40	5,000			
	Eucalyptus intertexta		100		3,025			
	Casuarina pauper		50	50	2,925			
	Eucalyptus porosa		28	72	2,425			
	Callitris glaucophylla		55	45	2,125			
	Acacia aneura		90	10	2,050			
	Pittosporum angustifolium		70	30	2,000			
	Eucalyptus odorata		100		1,825			
	Acacia salicina		100		1,750			
	Allocasuarina verticillata			100	1,500			
	Acacia victoriae		77	23	1,200			
	Eucalyptus youngiana		100		850			
	Acacia euthycarpa		86	14	700			
	Acacia stenophylla		100		650			
	Bursaria spinosa		83	17	575			
	Acacia burkittii		100		525			
	Eucalyptus largiflorens			100	325			
Mod-Tall	Eucalyptus gracilis		56	44	6,175			
	Acacia oswaldii		56	44	5,400			
	Dodonaea viscosa		68	32	2,650			
	Acacia calamifolia		70	30	2,400			
	Eucalyptus gillii		100		2,300			
	Acacia hakeoides		52	48	2,125			
	Eucalyptus concinna		100		1,825			
	Acacia ligulata		54	46	1,525			
	Acacia notabilis		100		1,375			
	Hakea leucoptera		71	29	875			
	Eucalyptus incrassata			100	850			
	Acacia kempeana		100		700			
	Acacia tetragonophylla		100		600			
	Acacia rivalis		100		575			
	Acacia ramulosa		100		450			
	Acacia brachystachya		100		250			
	Eucalyptus leptophylla			100	200			
	Acacia beckleri		100		75			
	Callitris verrucosa			100	50			
Medium	Rhagodia parabolica		100		1,450			
	Acacia sclerophylla			100	1,375			
	Senna artemisioides		44	56	1,125			
	Templetonia egena			100	625			
	Acacia nyssophylla			100	425			
	Olearia pimeleoides			100	375			
	Acacia colletioides			100	275			
	Acacia tarculensis		100		100			
Tall	Total Tall		71	29	64,725			
Mod-Tall	Total Mod-Tall		68	32	30,400			
Medium	Total Medium		36	64	5,750			
Med-Low	Total Med-Low		21	79	2,775			
Low	Total Low			100	475			
Ground	Total Ground			100	125			
Undefined	Total Undefined native species		26	74	9,100			
All	Grand Total		63	37	113,350			

Source: Trees For Life records, 1999-2008. *includes SA Arid Lands & Alinytjara Wilurara NRM Regions, and arid parts of other NRM Regions.

APPENDIX C - DESTRUCTIVE SAMPLING AND BIOMETRIC STUDIES

Species	Rain fall	Age (years)	Obs. Plants	Height (m)	Lifeform (Tree/	Crown Width	Crown Area	Foliage Density	Basal Area [#]	Stemwood Volume	Basic Density	Dry Biomass	Proportion Dry Bio by Weight		Dry Bion /eight	mass	
	(mm)		(n)		Mallee/ Shrub)	(m)	(m²)	(%)	(cm²)	x 1000 (m³)	(kg/m³)	(kg/plant)	Wood	Bark	Branch	Leaf	
Acacia calamifolia	348	15.4	6	1.8	S	2.4	5.0	-	148 ^{#1}	13.1	-	37.7	-	-	-	-	
Acacia ligulata	249	8.5	3	1.8	S	3.0	6.9	81	63 ^{#2}	4.7	840	15.9	0.07	0.02	0.67	0.24	
Acacia ligulata	260	13.8	3	3.2	S	4.4	15.5	62	182	45.0	820	52.9	0.66	0.16	0.13	0.05	
Acacia mearnsii	492	12.5	3	9.9	Т	3.3	9.7	57	180	96.1	650	73.5	0.67	0.13	0.12	0.08	
Acacia oswaldii	249	8.5	2	1.4	S	2.1	3.5	57	30 ^{#1}	1.9	878	4.6	0.09	0.02	0.60	0.29	
Acacia oswaldii	336	12.5	3	2.0	S	2.9	6.6	95	132 ^{#2}	12.4	859	25.8	0.19	0.03	0.48	0.30	
Acacia pycnantha	338	13.5	3	4.1	Т	3.8	11.5	43	68	16.2	785	32.4	0.44	0.09	0.29	0.18	
Acacia pycnantha	386	7.0	3	3.4	S	3.2	8.3	86	97	21.5	675	35.2	0.33	0.08	0.24	0.35	
Acacia rigens	336	12.5	3	2.6	S	2.1	3.7	100	92	10.4	776	24.3	0.22	0.06	0.38	0.34	
Acacia rigens	356	31.2	3	2.8	S	7.2	41.9	71	448	75.5	874	168.6	0.52	0.09	0.21	0.18	
Acacia salicina	356	4.8	24	1.3	Т	1.0	1.0	32	4	0.2	687	0.9	0.31	0.08	0.29	0.32	
Acacia saligna ssp. lindleyi	356	4.8	24	3.2	Т	1.5	1.9	36	33	4.4	632	4.3	0.59	0.18	0.14	0.09	
Allocasuarina verticillata	336	12.5	3	5.7	Т	3.3	8.4	43	184	54.8	723	48.3	0.55	0.13	0.18	0.14	
Allocasuarina verticillata	348	15.4	7	3.8	Т	2.5	5.4	31	132	30.8	-	37.2	-	-	-	-	
Allocasuarina verticillata	493	10.9	3	9.6	Т	4.9	19.1	38	484	207.4	724	202.3	0.68	0.15	0.07	0.10	
Atriplex nummularia	252	7.5	3	1.2	S	1.6	2.1	34	37 ^{#1}	1.2	762	3.3	0.13	0.01	0.80	0.06	
Atriplex nummularia	253	7.5	3	1.9	S	3.2	8.2	81	133 ^{#1}	7.9	793	16.9	0.16	0.01	0.65	0.18	
Atriplex nummularia	463	3.0	3	1.8	S	2.5	4.8	86	68 ^{#2}	6.3	626	7.6	0.35	0.00	0.39	0.26	
Callitris gracilis	249	8.5	3	2.1	S	1.4	1.5	76	17 ^{#2}	1.4	619	2.5	0.11	0.03	0.39	0.47	
Callitris gracilis	348	15.4	1	2.0	S	1.8	2.5	-	85	9.8	-	25.7	-	-	-	-	
Callitris gracilis	376	42.0	3	8.6	Т	5.7	26.1	86	844	350.6	525	216.4	0.64	0.09	0.13	0.14	
Callitris verrucosa	356	31.3	3	4.6	S	4.8	18.1	86	643	158.8	642	160.8	0.53	0.09	0.19	0.19	
Corymbia maculata	493	10.8	3	8.0	Т	3.2	7.8	52	114	39.8	601	23.8	0.47	0.24	0.13	0.16	
Dodonaea bursariifolia	348	15.4	4	1.4	S	1.4	2.0	-	55 ^{#1}	3.7	-	6.7	-	-	-	-	
Dodonaea viscosa ssp.	260	13.8	3	2.9	S	2.9	6.7	29	142	24.0	830	20.1	0.69	0.12	0.13	0.06	
Eucalyptus calycogona ssp.	260	8.5	3	2.7	М	2.5	5.1	57	76 ^{#2}	8.4	775	17.0	0.24	0.06	0.26	0.44	
Eucalyptus calycogona ssp.	349	20.4	6	6.1	М	5.8	28.0	57	367	115.3	-	167.4	-	-	-	-	
Eucalyptus calycogona ssp.	381	42.0	3	6.9	М	8.2	52.8	43	548	198.5	906	274.3	0.77	0.07	0.07	0.09	
Eucalyptus camaldulensis var.	356	4.8	24	3.0	Т	1.9	2.9	30	19	2.4	562	2.4	0.40	0.14	0.21	0.25	
Eucalyptus camaldulensis var.	458	10.7	3	11.2	Т	4.9	19.1	57	450	202.0	483	92.3	0.60	0.18	0.10	0.12	
Eucalyptus cladocalyx	356	4.8	24	3.6	Т	2.0	3.2	59	34	5.0	699	7.6	0.29	0.10	0.26	0.35	

Table 46. Summary of average biophysical attributes of plant species measured and destructively sampled for biometric studies.

Appendix C - Destructive Sampling and Biometric Studies

Species	Rain fall	Age (years)	Obs. Plants	Height (m)	Lifeform (Tree/	Crown Width	Crown Area	Foliage Density	Basal Area [#]	Stemwood Volume	Basic Density	Dry Biomass	Proportion Dry Bio by Weight		Dry Bion 'eight	mass	
	(mm)		(n)		Shrub)	(m)	(m ⁻)	(%)	(cm ⁻)	x 1000 (m³)	(kg/m²)	(Kg/plant)	Wood	Bark	Branch	Leaf	
Eucalyptus cladocalyx	459	6.7	3	5.8	Т	2.4	4.5	86	142	38.3	600	34.4	0.45	0.13	0.17	0.25	
Eucalyptus cladocalyx	460	6.7	3	7.1	Т	2.7	5.7	71	119	38.4	634	31.0	0.40	0.14	0.21	0.25	
Eucalyptus cneorifolia	356	4.8	24	1.7	М	1.3	1.4	61	18	1.7	779	3.0	0.17	0.06	0.29	0.48	
Eucalyptus cneorifolia	381	42.0	3	5.4	М	4.9	19.2	66	450	145.1	821	159.3	0.66	0.14	0.10	0.10	
Eucalyptus cyanophylla	260	9.5	3	2.9	М	2.5	5.2	62	62	9.0	787	22.3	0.20	0.08	0.26	0.46	
Eucalyptus cyanophylla	349	20.4	4	3.9	М	4.5	16.4	47	192	42.3	-	64.2	-	-	-	-	
Eucalyptus diversifolia ssp.	348	15.4	1	0.5	М	0.5	0.2	-	2 ^{#1}	0.04	-	1.9	-	-	-	-	
Eucalyptus diversifolia ssp.	461	12.7	3	5.5	М	4.3	15.6	66	209	67.8	581	91.7	0.32	0.06	0.42	0.20	
Eucalyptus dumosa	349	20.4	1	2.1	М	4.2	13.9	57	235	26.1	-	33.7	-	-	-	-	
Eucalyptus dumosa	385	12.0	3	3.3	М	2.7	6.5	62	63	11.7	767	20.4	0.35	0.10	0.33	0.22	
Eucalyptus fasciculosa	348	15.4	2	2.6	М	2.6	5.3	57	218	25.1	-	20.2	-	-	-	-	
Eucalyptus fasciculosa	348	15.4	1	3.9	Т	2.4	4.5	43	100	25.1	-	19.8	-	-	-	-	
Eucalyptus globulus	458	10.7	3	13.8	Т	3.5	10.1	57	224	142.2	530	90.8	0.63	0.09	0.10	0.18	
Eucalyptus gracilis	260	6.6	3	1.8	М	2.0	3.0	91	31 ^{#1}	1.5	830	6.1	0.06	0.02	0.35	0.57	
Eucalyptus gracilis	349	20.4	4	6.8	М	5.5	24.5	50	307	117.6	-	129.7	-	-	-	-	
Eucalyptus gracilis	356	31.2	3	10.0	М	7.5	48.1	71	702	368.5	908	422.1	0.79	0.12	0.05	0.04	
Eucalyptus incrassata	349	20.4	1	2.4	Т	3.1	7.5	57	32	5.6	-	14.3	-	-	-	-	
Eucalyptus incrassata	349	20.4	10	3.7	М	4.4	16.3	56	176	40.7	-	65.6	-	-	-	-	
Eucalyptus incrassata	356	31.2	3	5.8	М	7.5	44.9	43	423	128.1	824	221.5	0.63	0.10	0.14	0.13	
Eucalyptus incrassata	356	4.8	24	1.7	М	1.5	1.7	52	13	1.2	778	2.6	0.14	0.06	0.20	0.60	
Eucalyptus incrassata	461	12.7	3	3.6	М	4.3	14.8	71	133	29.0	726	50.9	0.33	0.11	0.29	0.27	
Eucalyptus intertexta	381	42.0	3	12.5	Т	5.6	24.6	43	1157	664.4	896	352.7	0.79	0.12	0.05	0.04	
Eucalyptus largiflorens	260	10.5	3	3.8	М	2.6	5.4	52	95	19.8	687	19.2	0.41	0.14	0.22	0.23	
Eucalyptus largiflorens	381	42.0	3	9.5	Т	6.5	34.0	43	643	282.1	920	248.6	0.79	0.14	0.04	0.03	
Eucalyptus leptophylla	348	15.4	3	3.9	М	4.6	18.1	71	190	40.9	-	67.7	-	-	-	-	
Eucalyptus leptophylla	349	20.4	6	3.5	М	4.1	14.4	64	186	36.6	-	61.4	-	-	-	-	
Eucalyptus leptophylla	349	20.4	2	3.0	Т	1.6	2.0	29	19	3.6	-	6.1	-	-	-	-	
Eucalyptus leptophylla	356	31.3	3	6.6	М	9.0	65.2	71	666	257.1	844	388.8	0.68	0.08	0.13	0.11	
Eucalyptus leptophylla	376	42.0	3	6.9	М	7.7	47.9	57	368	125.9	919	169.1	0.66	0.13	0.12	0.09	
Eucalyptus leucoxylon ssp.	348	15.4	4	4.9	Т	2.9	6.5	46	198	47.6	-	44.9	-	-	-	-	
Eucalyptus leucoxylon ssp.	376	42.0	3	8.8	Т	8.8	60.5	57	615	268.4	835	269.8	0.70	0.15	0.06	0.09	
Eucalyptus leucoxylon ssp.	494	10.7	3	9.7	Т	2.9	6.6	43	172	72.9	657	42.7	0.56	0.23	0.08	0.13	
Eucalyptus loxophleba ssp.	356	4.8	24	3.5	М	1.9	2.9	53	18	2.9	737	5.9	0.27	0.07	0.21	0.45	
Eucalyptus occidentalis	356	4.8	24	4.5	Т	1.8	2.7	50	37	8.2	668	10.2	0.33	0.09	0.21	0.37	

Appendix C - **Destructive Sampling and Biometric Studies**

Species	Rain fall	Age (years)	Obs. Plants	Height (m)	Lifeform (Tree/ Mallee/ Shrub)	Crown Width	Crown Area	Foliage Density	Basal Area [#]	Stemwood Volume	Basic Density	Dry Biomass	Proportion Dry Biomass by Weight			
	(mm)		(n)			(m)	(m²)	(%)	(cm²)	x 1000 (m ³)	(kg/m³)	(kg/plant)	Wood	Bark	Branch	Leaf
Eucalyptus occidentalis	381	42.0	3	14.6	Т	8.0	53.4	43	1811	1392.6	801	1247.3	0.82	0.12	0.02	0.04
Eucalyptus occidentalis	459	6.7	3	8.6	Т	2.3	4.5	57	134	59.9	604	39.8	0.58	0.09	0.12	0.21
Eucalyptus occidentalis	460	5.7	3	10.0	Т	3.3	8.7	57	238	113.0	538	68.1	0.65	0.09	0.09	0.17
Eucalyptus oleosa ssp.	260	10.4	3	2.9	М	3.5	9.9	76	86	10.9	793	25.1	0.26	0.08	0.27	0.39
Eucalyptus oleosa ssp.	348	15.4	1	3.3	М	4.0	12.6	43	124	28.7	-	42.9	-	-	-	-
Eucalyptus oleosa ssp.	349	20.4	1	1.2	М	1.8	2.5	86	11	0.8	-	4.4	-	-	-	-
Eucalyptus oleosa ssp.	352	31.2	3	6.4	М	8.5	57.9	57	556	199.1	841	343.2	0.61	0.10	0.13	0.16
Eucalyptus phenax ssp.	349	20.4	5	3.5	М	3.9	13.1	54	170	33.5	-	44.6	-	-	-	-
Eucalyptus polybractea	356	4.8	24	2.4	М	1.6	2.2	57	21	2.8	832	4.5	0.23	0.04	0.24	0.49
Eucalyptus porosa	260	9.5	3	2.4	М	3.1	7.8	76	68	7.3	668	11.6	0.20	0.06	0.39	0.35
Eucalyptus porosa	336	12.4	3	4.5	М	3.6	10.3	71	218	49.6	663	55.4	0.44	0.13	0.18	0.25
Eucalyptus porosa	348	15.4	31	4.5	М	3.9	13.2	67	267	70.6	-	78.1	-	-	-	-
Eucalyptus porosa	349	20.4	2	6.0	М	6.9	38.3	71	571	193.9	-	239.7	-	-	-	-
Eucalyptus porosa	386	6.7	3	3.9	М	3.8	11.7	71	93	17.7	577	23.3	0.29	0.08	0.26	0.37
Eucalyptus socialis ssp.	260	10.5	3	3.3	М	4.5	16.0	71	137	25.8	757	51.5	0.27	0.08	0.29	0.36
Eucalyptus socialis ssp.	348	15.4	2	4.0	М	3.2	9.2	72	188	42.6	-	75.1	-	-	-	-
Eucalyptus socialis ssp.	349	20.4	8	5.4	М	6.0	29.7	64	393	123.8	-	177.1	-	-	-	-
Eucalyptus socialis ssp.	352	26.1	3	5.6	М	7.2	40.8	71	517	142.0	778	185.9	0.64	0.13	0.11	0.12
Eucalyptus socialis ssp.	356	4.8	24	1.9	М	2.2	3.8	75	24	2.1	754	5.6	0.13	0.05	0.23	0.59
Eucalyptus viminalis ssp.	460	5.7	3	11.1	Т	3.9	12.6	52	313	151.4	487	75.4	0.57	0.13	0.10	0.20
Melaleuca armillaris ssp.	348	15.4	1	2.7	Т	3.0	7.1	-	750 ^{#1}	97.5	-	47.9	-	-	-	-
Melaleuca armillaris ssp.	348	15.4	4	2.8	S	2.7	5.8	-	472 ^{#1}	64.1	-	49.9	-	-	-	-
Melaleuca halmaturorum	348	15.4	1	2.1	S	2.0	3.1	-	145 ^{#1}	14.7	-	22.8	-	-	-	-
Melaleuca lanceolata	348	15.4	5	2.7	S	3.3	8.6	-	385 ^{#1}	52.1	-	54.5	-	-	-	-
Melaleuca lanceolata	356	31.2	3	4.0	S	5.2	21.6	71	487	106.6	776	148.8	0.56	0.15	0.15	0.14
Melaleuca uncinata	336	12.4	3	1.8	S	1.7	2.3	100	73 ^{#1}	2.9	711	10.7	0.11	0.03	0.45	0.41
Melaleuca uncinata	348	15.4	2	2.3	S	2.5	5.5	-	374 ^{#1}	41.2	-	40.4	-	-	-	-
Melaleuca uncinata	358	16.3	3	2.3	S	2.2	3.9	71	89 ^{#2}	10.1	769	11.6	0.39	0.09	0.28	0.24
Pittosporum phylliraeoides	352	16.2	3	2.5	S	2.2	4.0	43	97	13.2	754	18.0	0.55	0.11	0.24	0.10
Senna artemisioides ssp.	348	15.4	2	1.9	S	1.1	1.0	-	47 ^{#1}	4.2	-	7.8	-	-	-	-
Senna artemisioides ssp. coriacea	260	13.4	3	1.6	S	1.9	2.9	62	34 ^{#1}	2.7	955	5.4	0.00	0.00	0.65	0.35

[#] basal area at 0.5m height unless otherwise indicated (^{#1} 0.1m ^{#2} 0.2m).

APPENDIX D - PRODUCTIVITY AND CARBON SEQUESTRATION STUDIES

Table 47.	Observed above-	ground biomass and	carbon sec	uestration fro	m revegetatio	n sites in agı	ricultural regio	ons of South A	Australia.

REVEGETATION	SITE DETAIL			FIELD SURVEY					STAN	DING BIO	MASS	ROOT	SEQUESTRATION			1	
NRM REGION SPECIES Proportion of site biomass by species	Rain [mm]	NCAT Max. Dry Matter [t/ha]	NCAT Forest Prod. Index	Bios Equil [t C/ha/yr]	Age [years]	Plant Density [trees/ha]	Observations	Proportion Trees	Height [m]	Dry Biomass [t/ha]	Carbon [t/ha]	CO ₂ e [t/ha]	Root/Shoot Ratio	Stem Volume MAI [m ³ /ha/yr]	Dry Biomass [t/ha/yr]	Carbon [t/ha/yr]	CO ₂ e [t/ha/yr]
Adelaide & Mt Lofty Ranges																	
Acacia implexa	487	117.3	7.1	2.2	7.4	830	36	1.00	6.0	33.45	16.59	60.89	0.57	3.52	4.52	2.24	8.23
Callitris gracilis	491	117.2	7.1	2.2	7.4	219	36	0.00	2.2	0.79	0.39	1.44	1.32	0.06	0.11	0.05	0.19
Corymbia maculata	490	118.2	7.2	2.2	7.4	380	36	1.00	6.1	20.06	9.95	36.51	0.57	2.17	2.71	1.34	4.93
Eucalyptus camaldulensis	565	81.2	5.5	2.6	14.9	833	36	1.00	10.8	156.44	77.60	284.78	0.40	9.60	10.52	5.22	19.15
E. camaldulensis/goniocalyx, Ac. retinodes, +6sp	595	89.0	5.9	2.6	10.9	1722	60	0.88	7.6	122.53	60.78	223.05	0.57	9.84	11.24	5.57	20.45
E. goniocalyx ssp. goniocalyx (40.0%), E. camaldulensis var. (29.4%), Ac. retinodes (12.5%), Ac. pycnantha (10.5%), Ac. paradoxa (2.7%), Al. verticillata (2.7%), Dodonaea viscosa ssp. (1.7%), Hakea carinata (0.3%), Al. muelleriana ssp. (0.1%)																	
Eucalyptus cladocalyx	541	137.2	8.0	2.4	10.4	736	36	1.00	9.1	65.46	32.47	119.15	0.43	5.28	6.29	3.12	11.46
Eucalyptus cladocalyx [coppice]	435	100.8	6.4	2.0	29.9	488	36	1.00	10.5	92.68	45.97	168.71	0.38	2.78	3.10	1.54	5.64
E. fasciculosa, Ac. retinodes/pycnantha, +3sp E. fasciculosa (72.7%), Ac. retinodes (15.6%), E. leucoxylon s	592 ssp. (7.3%),	128.7 Ac. pycnant	7.6 ha (2.1%), A	2.4 I. verticillata	14.9 (1.6%), Me	1245 I. lanceolata	60 (0.8%)	0.85	6.0	64.74	32.11	117.85	0.66	3.65	4.34	2.15	7.91
E. fasciculosa, Ac. retinodes/pycnantha, +4sp	592	128.7	7.6	2.4	14.9	660	60	0.80	6.5	78.13	38.75	142.22	0.48	4.81	5.24	2.60	9.54
Corymbia maculata (50.5%), E. fasciculosa (30.2%), Ac. retin	nodes (13.19	%), E. vimina	lis ssp. cygr	netensis (4.8	%), Ac. pycr	nantha (1.1%	b), Al. vertic	illata (0.3%),	Mel. lance	olata (<0.1%)							
E. fasciculosa, M. lanceolata, +3sp	519	120.4	7.3	2.4	16.9	1480	36	0.75	5.7	106.50	52.83	193.87	0.53	5.46	6.30	3.12	11.46
E. fasciculosa (53.1%), E. leucoxylon ssp. (21.9%), E. camaldu	ulensis var.	(15.5%), Al.	verticillata (7.5%), Mel. l	anceolata (2.1%)											
Eucalyptus globulus ssp. globulus	826	145.3	8.4	3.4	13.9	441	36	1.00	24.4	385.80	191.36	702.28	0.23	28.87	27.80	13.79	50.60
Eucalyptus leucoxylon ssp.	672	92.3	6.0	3.0	96.9	545	36	1.00	20.6	431.03	213.79	784.61	0.28	4.62	4.45	2.21	8.10
E. leucoxylon/camaldulensis, Ac. pycnantha, +4sp	711	88.6	5.9	3.2	11.8	2714	60	0.85	5.1	53.86	26.72	98.05	1.08	3.39	4.55	2.26	8.28
E. leucoxylon ssp. (34.5%), Ac. pycnantha (29.9%), E. camalo	dulensis var	. (25.0%), Ac	. retinodes	(8.8%), Dode	onaea visco	osa ssp. (0.9%	6), Ac. dodo	onaeifolia (0	.6%), Ac. pa	radoxa (0.3%)							
E. leucoxylon/sideroxylon, Al. verticillata, +5sp	485	113.3	7.0	2.2	19.8	295	60	1.00	9.6	83.43	41.38	151.87	0.43	4.03	4.20	2.09	7.65
E. leucoxylon ssp. (37.2%), E. sideroxylon (24.8%), E. cladoca	alyx (20.7%)), Al. verticill	ata (6.1%), E	. camaldule	nsis var. (5	4%), E. vimir	alis ssp. cy	gnetensis (3	.3%), E. odc	orata (2.5%), E.	socialis ssp. (<0.1%)					
E. porosa/odorata, Ac. notabilis, +9sp	414	93.1	6.1	1.6	18.8	1005	60	0.43	3.6	20.73	10.28	37.73	1.09	0.84	1.10	0.55	2.01
E. porosa (47.2%), E. odorata (24.0%), Callitris gracilis (8.4%) lanceolata (0.1%)), Ac. notab	oilis (7.4%), E	. incrassata	(4.3%), Ac. c	oswaldii (3.3	3%), Ac. brac	hybotrya (2	2.1%), Ac. sc	lerophylla v	ar. sclerophyll	a (1.4%), E. so	cialis ssp. (0.89	%), Ac. acina	cea (0.7%), <i>i</i>	Ac. ligulata (0.3%), Mel.	
E. viminalis/sideroxylon/leucoxylon, +11sp	595	130.2	7.7	2.7	12.8	806	60	0.62	5.9	72.81	36.11	132.54	0.56	5.15	5.69	2.82	10.35
E. sideroxylon (38.5%), E. viminalis ssp. cygnetensis (20.4%), odorata (1.3%), Dodonaea viscosa ssp. (1.2%), E. baxteri (1.3	, E. camaldu 1%), Grevill	ulensis var. (ea robusta (9.3%), Casua 0.1%)	arina cunnin	ghamiana ((7.0%), E. leu	coxylon ss	o. (6.5%), Ac	. retinodes	(5.1%), Ac. pyc	nantha (3.5%), Al. verticillat	a (2.1%), Ac.	paradoxa (2	2.0%), E. fas	iculosa (1.9	}%), E.
Eyre Peninsula																	
Ac. calamifolia/notabilis/ligulata, +5sp	340	41.2	3.8	1.6	9.8	1333	60	0.35	2.9	16.09	7.98	29.29	1.18	1.15	1.64	0.81	2.98
Ac. calamifolia (54.1%), Ac. ligulata (11.8%), Ac. notabilis (10	0.4%), E. bra	achycalyx (6	.8%), E. incra	assata (6.0%), E. phenax	c ssp. (5.4%),	E. dumosa	(4.4%), Ac.	teaphylla (1	L.2%)							
Eucalyptus camaldulensis var.	452	61.9	4.7	2.1	21.2	1111	36	1.00	7.7	136.26	67.58	248.03	0.42	5.70	6.42	3.18	11.69

Appendix D - Productivity and Carbon Sequestration Studies

REVEGETATION		SITE I	DETAIL		FIELD SURVEY					STANDING BIOMASS			ROOT	9	SEQUESTRATION		
NRM REGION SPECIES Proportion of site biomass by species	Rain [mm]	NCAT Max. Dry Matter [t/ha]	NCAT Forest Prod. Index	Bios Equil [t C/ha/yr]	Age [years]	Plant Density [trees/ha]	Observations	Proportion Trees	Height [m]	Dry Biomass [t/ha]	Carbon [t/ha]	CO ₂ e [t/ha]	Root/Shoot Ratio	Stem Volume MAI [m³/ha/yr]	Dry Biomass [t/ha/yr]	Carbon [t/ha/yr]	CO ₂ e [t/ha/yr]
Eucalyptus cladocalyx	410	80.5	5.5	1.9	72.8	714	36	1.00	14.9	183.64	91.08	334.28	0.27	2.34	2.52	1.25	4.59
E. dumosa/brachycalyx/calycogona, +4sp E. dumosa (37.2%), E. brachycalyx (25.6%), E. oleosa ssp. (1)	317 9.3%), E. ca	36.6 Ivcogona ss	3.6 p. (13.2%), A	1.5 	19.8 (2.4%), Ac.	836 igulata (1.69	60 %), Mel. pau	0.92 Iperiflora ss	3.2 p. mutica (0	12.10	6.00	22.03	1.03	0.43	0.61	0.30	1.11
Eucalyptus dundassii	355	477	41	17	293	269	36	1 00	96	51 27	25 43	93 33	0 54	1 57	1 75	0.87	3 1 9
E gomphocenhala/camaldulensis +3sp	428	54 5	4.4	1.7	23.5	957	60	0.93	11.4	291.60	144 63	530.80	0.34	13 33	13.85	6.87	25.21
E. gomphocephala (67.6%), E. camaldulensis var. (27.7%), E. calycogona ssp. (2.6%), Al. verticillata (1.0%), Mel. lanceolata (1.0%), Mel. uncinata (0.1%)															25.21		
Fucalyptus loxophleba	319	38.4	37	15	26.8	169	36	1 00	97	51 17	25 38	93 15	0.46	1 80	1 91	0.95	3 47
E. occidentalis. Al. verticillata. +3sp	425	53.6	4.3	2.0	33.5	188	60	0.98	14.4	138.39	68.64	251.92	0.37	4.25	4.14	2.05	7.53
E. occidentalis (68.2%), Al. verticillata (18.7%), E. sargentii (1	11.0%), E. c	amaldulensi	s var. (2.0%)	, Mel. lanced	olata (<0.1%	6)											
E. oleosa/gracilis/socialis, +13sp	294	35.1	3.5	1.4	19.8	245	60	0.70	4.7	22.74	11.28	41.39	0.63	0.99	1.15	0.57	2.09
E. oleosa sp. (18.1%), E. gracilis (13.9%), E. vegrandis (13.1%), E. petiolaris (9.7%), E. socialis sp. (9.2%), E. stricklandii (7.7%), E. brachycalyx (6.6%), Ac. calamifolia (6.1%), E. astringens sp. astringens (3.7%), Mel. lanceolata (2.8%), E. torquata (2.5%), E. incrassa (2.1%), Ac. notabilis (1.9%), E. socialis (0.8%), E. evothronema var. marginata (0.8%), Ac. notabilis (1.9%), E. socialis (0.8%), Ac. notabilis (1.9%), Ac. notabilis (1.9%), E. socialis (0.8%), Ac. notabilis (1.9%), Ac.														crassata			
E. petiolaris/brockwayi/porosa, +8sp	298	30.7	3.3	1.2	22.8	170	60	0.83	5.8	21.44	10.63	39.02	0.53	0.84	0.94	0.47	1.71
E. petiolaris (61.1%), E. brockwayi (13.2%), E. porosa (9.4%),	Callitris gr	acilis (9.0%),	Al. verticilla	ata (1.8%), A	c. ligulata (1	L.5%), Senna	artemisioi	des ssp. (1.0	%), Ac. cala	mifolia (0.9%)	, Mel. lanceola	ita (0.8%), Exo	carpos spar	teus (0.8%),	Mel. nesoph	nila (0.3%)	
E. socialis/oleosa, + 6sp	293	32.3	3.4	1.2	19.1	366	60	0.88	4.7	23.42	11.62	42.64	0.76	1.02	1.23	0.61	2.24
E. socialis ssp. (52.5%), E. oleosa ssp. (27.1%), E. incrassata ((8.5%), E. ca	lycogona ss	p. (4.8%), M	el. lanceolat	ta (3.0%), Al	. verticillata	(2.7%), Ac.	ligulata (1.1	%), Ac. osw	aldii (0.3%)							
E. spathulata, Al. verticillata, + 3sp	367	96.4	6.2	1.7	35.4	489	60	0.80	6.3	87.49	43.40	159.26	0.41	2.28	2.47	1.23	4.50
E. spathulata (62.2%), Al. verticillata (28.7%), E. platypus (4.	7%), Mel. la	nceolata (3.	7%), Hakea	leucoptera s	ssp. leucopt	era (0.6%)											
Kangaroo Island																	
Al. verticillata, +2sp	503	71.3	5.1	2.3	16.6	332	36	1.00	6.8	30.99	15.37	56.41	0.55	1.60	1.86	0.92	3.39
Al. verticillata (99.5%), E. cneorifolia (0.4%), E. diversifolia ss	sp. diversifo	olia (0.1%)															
Al. verticillata, E. diversifolia, +6sp	503	69.5	5.0	2.3	16.6	1485	60	0.83	5.0	55.16	27.36	100.41	0.83	2.66	3.32	1.65	6.04
Al. verticillata (44.1%), E. fasciculosa (21.2%), E. diversifolia	ssp. diversi	folia (18.2%)), E. cneorifo	lia (6.9%), N	1el. halmatu	irorum (6.7%	6), E. cosmo	phylla (1.5%	6), Mel. gibb	oosa (1.3%), A	c. retinodes va	ar. uncifolia (0.	.1%)				
E. camaldulensis, M. decussata, +3sp	659	94.0	6.1	2.7	14.6	2453	60	0.67	8.8	362.96	180.03	660.70	0.45	23.32	24.81	12.31	45.17
E. camaldulensis var. (99.2%), Mel. decussata (0.5%), Mel. g	ibbosa (0.2	%), Mel. und	inata (0.1%)), Callistemo	n rugulosus	5 (<0.1%)											
E. cladocalyx/cosmophylla/fasciculosa	603	92.6	6.0	2.7	18.7	470	60	1.00	5.2	45.76	22.70	83.30	0.55	2.13	2.45	1.21	4.45
E. cosmophylla (55.3%), E. cladocalyx (32.6%), E. fasciculosa	a (12.1%)																
E. cladocalyx/occidentalis, Al. verticillata, +6sp	476	68.4	5.0	2.1	15.6	8575	60	0.68	4.7	241.30	119.69	439.25	0.70	13.53	15.44	7.66	28.10
E. cladocalyx (65.0%), E. occidentalis (17.6%), Al. verticillata	(11.1%), A	c. pycnantha	i (3.8%), E. v	iminalis ssp.	cygnetensi	s (0.8%), E. l	eucoxylon s	ssp. (0.6%), I	E. diversifoli	a ssp. diversif	olia (0.5%), E.	camaldulensis	var. (0.4%),	E. cneorifoli	a (0.1%)		
E. cladocalyx/ovata/fasciculosa, +1sp	596	89.1	5.9	2.6	15.6	728	60	0.68	8.0	139.43	69.16	253.80	0.44	8.40	8.92	4.43	16.25
E. ciadocalyx (45.6%), E. ovata var. (31.4%), E. tasciculosa (2	1.5%), Mel.	uncinata (1	.0%)														
E. viminalis/ovata, +8sp E. viminalis ssp. cygnetensis (80.1%), E. ovata var. (9.3%), E.	660 camaldule	93.5 nsis var. (3.9	6.1 %), E. clado	2.7 calyx (3.2%),	11.6 E. obliqua	554 (2.8%), Ac. d	60 odonaeifol	0.90 ia (0.3%), M	13.1 el. gibbosa	294.48 (0.2%), Al. ver	146.06 ticillata (0.1%)	536.05 , Ac. retinodes	0.36 s (0.1%), Me	25.73 . uncinata (·	25.33 <0.1%)	12.56	46.10

Appendix D - Productivity and Carbon Sequestration Studies

REVEGETATION	SITE DETAIL				FIELD SURVEY					STAN	DING BIO	ROOT	SEQUESTRATION]	
NRM REGION SPECIES Proportion of site biomass by species	Rain [mm]	NCAT Max. Dry Matter [t/ha]	NCAT Forest Prod. Index	Bios Equil [t C/ha/yr]	Age [years]	Plant Density [trees/ha]	Observations	Proportion Trees	Height [m]	Dry Biomass [t/ha]	Carbon [t/ha]	CO ₂ e [t/ha]	Root/Shoot Ratio	Stem Volume MAI [m³/ha/yr]	Dry Biomass [t/ha/yr]	Carbon [t/ha/yr]	CO ₂ e [t/ha/yr]
Northern & Yorke																	
Ac. pycnantha/ligulata, D. viscosa, +8sp	418	99.5	6.3	1.7	13.4	3037	60	0.33	3.3	25.90	12.85	47.15	1.39	1.31	1.93	0.96	3.52
Dodonaea viscosa ssp. (24.5%), Ac. pycnantha (23.4%), Ac. ligulata (22.2%), Ac. wattsiana (10.3%), E. leptophylla (8.4%), E. cyanophylla (4.3%), E. socialis ssp. (2.9%), Ac. brachybotrya (1.7%), Ac. anceps (1.0%), Al. verticillata (0.7%), Ac. notabilis (0.7%)																	
Allocasuarina verticillata	443	104.8	6.6	2.0	43.9	485	36	0.97	9.7	70.72	35.08	128.73	0.48	1.43	1.61	0.80	2.93
Casuarina glauca	399	85.6	5.7	1.5	21.3	427	36	1.00	8.2	44.86	22.25	81.65	0.65	1.78	2.10	1.04	3.83
Casuarina pauper	433	90.6	6.0	1.7	97.9	371	36	1.00	12.7	196.47	97.45	357.65	0.37	2.00	2.01	1.00	3.65
Eucalyptus vegrandis	418	99.5	6.3	1.7	13.4	635	36	1.00	7.6	58.17	28.85	105.88	0.55	3.67	4.34	2.15	7.90
E. astringens/spathulata, Al. verticillata, +9sp	387	92.3	6.0	1.8	19.8	451	60	0.92	5.9	31.67	15.71	57.65	0.65	1.33	1.60	0.79	2.91
Al. verticillata (45.2%), E. sargentii (13.7%), E. occidentalis (11.1%), E. spathulata (8.0%), E. astringens ssp. astringens (5.8%), E. dundasii (4.1%), E. pterocarpa (3.4%), E. ceratocorys (2.8%), E. dumosa (2.2%), E. diptera (1.7%), E. socialis ssp. (1.1%), Mel. lanceolata (0.9%)														eolata			
Eucalyptus calycogona	367	44.6	3.9	1.5	15.8	419	36	1.00	3.4	11.78	5.84	21.44	1.08	0.55	0.74	0.37	1.35
E. calycogona/porosa/gracilis, +11sp	325	35.1	3.5	1.6	19.8	242	60	0.88	5.4	25.60	12.70	46.59	0.68	1.12	1.29	0.64	2.35
E. calycogona ssp. (29.5%), E. porosa (17.9%), E. phenax ssp Senna artemisioides ssp. (0.3%), Ac. ligulata (0.2%)	o. (10.4%), E	. socialis ssp	o. (10.3%), E.	gracilis (9.5	%), E. oleos	a ssp. (8.6%), Callitris gı	racilis (3.5%)), E. incrassa	ata (3.1%), Ac.	notabilis (1.99	%), E. odorata	(1.8%), Al. ve	erticillata (1.	5%), E. brac	hycalyx (1.5	%),
E. calycogona/socialis, +10sp	361	45.2	4.0	1.7	21.3	387	60	0.73	3.9	18.73	9.29	34.09	0.84	0.71	0.88	0.44	1.60
E. calycogona ssp. (41.8%), E. odorata (14.2%), E. socialis ss petiolaris (0.3%)	p. (11.5%),	Mel. lanceol	ata (7.5%), E	. oleosa ssp	. (7.3%), E. s	alicola (4.4%	%), Ac. oswa	ıldii (3.8%), .	Al. verticilla	ta (3.3%), E. gi	acilis (3.1%), I	E. leptophylla (1.7%), Ac. lig	gulata (1.1%), Senna art	emisioides :	ssp.
Eucalyptus camaldulensis var.	404	86.4	5.8	1.6	15.8	833	36	1.00	10.3	86.29	42.80	157.07	0.67	4.64	5.45	2.70	9.93
Eucalyptus camaldulensis var. camaldulensis	444	105.0	6.6	2.0	43.9	568	36	1.00	12.2	169.21	83.93	308.02	0.33	3.65	3.85	1.91	7.01
Eucalyptus camaldulensis var. camaldulensis	490	114.0	7.0	2.0	130.9	410	36	1.00	24.4	740.06	367.07	1347.15	0.22	6.38	5.65	2.80	10.29
Eucalyptus camaldulensis var. camaldulensis	561	112.4	6.9	2.5	25.8	1243	36	1.00	18.3	340.81	169.04	620.38	0.26	12.42	13.21	6.55	24.05
E. camaldulensis/cladocalyx, +10sp	564	70.0	5.1	2.6	18.8	936	60	0.83	8.5	121.72	60.37	221.57	0.50	5.83	6.48	3.21	11.79
E. cladocalyx (42.6%), E. camaldulensis var. camaldulensis (: (0.2%), Corymbia maculata (0.2%), Callistemon rugulosus ((34.1%), E. l€ 0.1%)	eucoxylon ss	p. (11.2%), E	. fasciculosa	(2.9%), E. p	oorosa (2.9%	6), Al. vertici	illata (2.6%),	, Callitris gra	acilis (1.5%), E	socialis ssp. (1.4%), Dodona	aea viscosa s	sp. (0.4%),	Mel. acumin	ata ssp. acu	ıminata
E. camaldulensis/occidentalis, C. citriodora, +3sp	471	54.9	4.4	2.1	22.9	219	60	1.00	9.9	55.12	27.34	100.33	0.40	2.26	2.41	1.19	4.38
E. camaldulensis var. camaldulensis (36.3%), E. occidentalis	(20.5%), E.	astringens s	sp. astringer	ns (17.9%), C	Corymbia ci	triodora (13	.7%), E. leud	oxylon ssp.	(6.5%), E. c	ladocalyx (5.1	%)						
Eucalyptus cladocalyx	356	89.0	5.9	1.3	15.2	477	36	1.00	8.2	50.96	25.28	92.76	0.47	2.89	3.35	1.66	6.09
Eucalyptus cladocalyx	369	47.3	4.1	1.7	15.2	736	36	1.00	9.3	70.10	34.77	127.61	0.49	3.89	4.60	2.28	8.38
Eucalyptus cladocalyx	379	95.0	6.2	1.8	9.8	388	36	1.00	6.4	24.38	12.09	44.37	0.66	2.01	2.48	1.23	4.51
Eucalyptus cladocalyx	417	100.4	6.4	1.9	15.2	692	36	1.00	8.2	48.11	23.86	87.57	0.63	2.60	3.16	1.57	5.75
Eucalyptus cladocalyx	446	55.8	4.4	2.0	11.8	609	36	1.00	10.1	97.78	48.50	178.00	0.42	7.39	8.26	4.10	15.03
Eucalyptus cladocalyx	459	61.0	4.7	1.9	19.8	805	36	1.00	9.0	84.49	41.91	153.80	0.50	3.63	4.26	2.11	7.75
Eucalyptus cladocalyx	460	103.7	6.5	1.9	99.9	243	36	1.00	16.6	121.58	60.30	221.31	0.34	1.20	1.22	0.60	2.22
Eucalyptus cladocalyx	484	100.2	6.4	2.0	99.9	322	36	1.00	16.5	177.51	88.04	323.12	0.34	1.77	1.78	0.88	3.23
Eucalyptus cladocalyx	489	103.1	6.5	2.0	99.9	222	36	1.00	28.0	514.06	254.98	935.76	0.23	5.81	5.15	2.55	9.37
Eucalyptus cladocalyx	497	122.4	7.3	2.1	126.9	199	36	1.00	35.4	917.38	455.02	1669.92	0.18	8.82	7.23	3.58	13.15
REVEGETATION		SITE D	DETAIL			FIE	LD SUR	/EY		STAN	DING BIO	MASS	ROOT	5	EQUEST	RATION	
---	----------------------	--------------------------------	----------------------------	---------------------------	-----------------------	-----------------------------	---------------------	-----------------------	----------------------	--------------------------	------------------------	--------------------------	---------------------	-------------------------------	--------------------------	---------------------	----------------
NRM REGION SPECIES Proportion of site biomass by species	Rain [mm]	NCAT Max. Dry Matter [t/ha]	NCAT Forest Prod. Index	Bios Equil [t C/ha/yr]	Age [years]	Plant Density [trees/ha]	Observations	Proportion Trees	Height [m]	Dry Biomass [t/ha]	Carbon [t/ha]	CO ₂ e [t/ha]	Root/Shoot Ratio	Stem Volume MAI [m³/ha/yr]	Dry Biomass [t/ha/yr]	Carbon [t/ha/yr]	CO2e [t/ha/yr]
Eucalyptus cladocalyx	561	112.4	6.9	2.5	25.8	1312	36	1.00	19.3	519.29	257.57	945.27	0.22	19.57	20.13	9.99	36.65
E. dumosa/oleosa/socialis, +8sp	451	99.5	6.3	2.1	14.8	596	60	0.90	5.3	33.52	16.63	61.02	0.87	1.85	2.26	1.12	4.12
E. dumosa (32.5%), E. oleosa ssp. (26.5%), E. socialis ssp. (23	3.9%), E. gra	acilis (6.4%),	Ac. notabili	s (4.1%), Cal	llitris gracili	s (3.3%), E. o	dorata (1.0	%), Al. vertio	cillata (0.9%), E. brachycal	yx (0.9%), Mel	. lanceolata (0	.4%), Ac. vic	toriae ssp. v	ictoriae (0.19	%)	
E. dumosa/socialis, Al. verticillata, +6sp E. dumosa (46.7%), E. socialis ssp. (20.8%), Al. verticillata (9.	349 .7%), E. brad	42.1 chycalyx (6.1	3.8 %), Mel. lan	1.3 ceolata (5.0	14.8 %), E. gracil	336 is (4.7%), Ac	60 . notabilis (0.70 4.5%), E. ole	3.8 eosa ssp. (2.	11.81 5%)	5.86	21.50	0.85	0.62	0.80	0.40	1.45
Eucalyptus dundasi	443	104.8	6.6	2.0	43.9	476	36	1.00	18.0	215.10	106.69	391.56	0.36	4.77	4.89	2.43	8.91
E. gracilis/leucoxylon/odorata, +5sp	469	105.6	6.6	2.2	23.2	333	60	0.93	5.7	30.07	14.91	54.74	0.76	1.11	1.30	0.64	2.36
E. gracilis (33.8%), E. Odorata (20.1%), Al. verticiliata (15.8%)), E. SOCIAIIS	ssp. (13.1%)	, E. largillon	ens (8.1%), i		ansis var. (5.	3%), AC. NO	1 00	o, E. prienax	(1.8%)	24.27	00.00	0.40	0.40	0.50	0.25	0.01
	433	90.6	6.0	1./	97.9	136	36	1.00	8.8	48.92	24.27	89.06	0.49	0.48	0.50	0.25	0.91
Eucalyptus largiflorens	444	105.0	6.6	2.0	48.9	568	36	1.00	10.3	105.09	52.13	191.30	0.49	1.93	2.15	1.07	3.91
	499	02.2	7.4	2.3	20.8	494	30	1.00	11.8	180.51	92.51	539.50 62.21	0.43	1.51	1.55	0.77	2.83
Eucalyptus leucoxylon ssp.	300	92.2	6.0	1.0	29.0	372	20	1.00	4.5	54.7Z	24 52	00.02	0.95	0.92	1.10	0.56	2.12
Eucalyptus leucoxylon ssp.	440	96.0 107.2	6.7	2.0	47.9	555	26	1.00	9.0	49.40	24.55	90.05	0.59	0.91	1.05	1.25	1.00
Eucalyptus leucoxylon ssp.	474	11/ 2	7.0	2.2	120.0	228	36	1.00	15.5	1/12/12	27.70	269.65	0.38	2.12	2.35	0.57	2.08
E Joucovidon/porosa +4sp	200	01.2	6.0	2.0	129.9	/12	60	0.95	66	27.25	19.47	67.80	0.57	1.10	1.14	0.37	2.00
E. leucoxylon ssp. (39.2%), E. porosa (28.6%), E. largiflorens	(23.1%), E.	camaldulens	o.o sis var. (4.4%	۲.5 6), Al. vertici	llata (4.2%),	Ac. notabili	is (0.4%)	0.95	0.0	57.25	10.40	07.80	0.50	1.70	1.90	0.98	5.00
E. leucoxylon/socialis, Al. verticillata, +2sp	396	83.5	5.6	1.9	21.9	318	60	0.93	4.9	20.17	10.01	36.72	0.70	0.76	0.92	0.46	1.68
E. leucoxylon ssp. (35.6%), Al. verticillata (27.2%), E. socialis	ssp. (22.1%	b), E. porosa	(12.9%), E. c	yanophylla	(2.2%)												
Eucalyptus loxopheba	446	104.7	6.6	2.0	36.9	522	36	1.00	10.6	95.35	47.29	173.56	0.56	2.37	2.58	1.28	4.70
Eucalyptus occidentalis	350	87.3	5.8	1.3	14.7	739	36	1.00	12.7	138.14	68.52	251.46	0.47	8.48	9.38	4.65	17.08
Eucalyptus occidentalis	357	86.2	5.8	1.7	15.2	725	36	1.00	9.9	77.73	38.55	141.49	0.47	4.37	5.11	2.53	9.29
Eucalyptus occidentalis	407	81.4	5.6	1.9	19.3	339	36	1.00	10.9	73.28	36.35	133.40	0.50	3.46	3.80	1.89	6.92
Eucalyptus occidentalis	447	58.7	4.6	2.1	10.8	660	36	1.00	10.1	70.30	34.87	127.96	0.55	5.52	6.49	3.22	11.81
Eucalyptus occidentalis	459	61.0	4.7	1.9	11.8	810	36	1.00	10.0	67.13	33.30	122.19	0.57	4.73	5.67	2.81	10.31
E. odorata, Al. verticillata, Ac. wattsiana, +2sp E. odorata (75.3%), Ac. wattsiana (15.3%), Al. verticillata (8.9	474 9%), Ac. pyc	60.7 mantha (0.49	4.8 %), Ac. parac	2.2 doxa (0.1%)	18.7	1156	60	0.67	5.1	52.17	25.88	94.97	0.86	2.32	2.79	1.38	5.08
Eucalyptus oleosa ssp.	441	98.1	6.3	2.0	49.9	581	36	1.00	8.6	64.35	31.92	117.13	0.76	1.11	1.29	0.64	2.35
Eucalyptus porosa	334	87.5	5.8	1.6	20.8	95	36	1.00	9.5	36.55	18.13	66.53	0.58	1.68	1.76	0.87	3.20
Eucalyptus porosa	367	46.2	4.0	1.5	15.8	192	36	1.00	3.7	12.96	6.43	23.60	0.76	0.67	0.82	0.41	1.49
E. porosa/calycogona/incrassata, Al. vertic., +5sp E. oleosa ssp. (23.8%), Al. verticillata (22.1%), E. calycogona	418 ssp. (16.2%	95.4 6), E. porosa	6.2 (13.8%), E. i	1.7 ncrassata (1	10.8 3.1%), Ac. p	711 bycnantha (8	60 .5%), E. ode	0.75 orata (1.4%),	3.7 E. socialis s	17.83 ssp. (0.6%), E.	8.84 brachycalyx (0	32.45 .6%)	0.93	1.26	1.64	0.82	2.99
E. porosa/odorata, Al. verticillata, +8sp	381	52.5	4.3	1.5	12.9	487	60	0.75	4.8	25.75	12.77	46.88	0.72	1.64	2.00	0.99	3.64

REVEGETATION		SITE D	DETAIL			FIE	LD SUR	/EY		STAN	DING BIO	MASS	ROOT	5	SEQUEST	RATION	1
NRM REGION SPECIES Proportion of site biomass by species	Rain [mm]	VCAT Max. Dry Matter [t/ha]	VCAT Forest Prod. Index	3ios Equil t C/ha/yr]	Age [years]	Plant Density [trees/ha]	Observations	Proportion Trees	Height [m]	Dry Biomass [t/ha]	Carbon [t/ha]	CO ₂ e [t/ha]	Root/Shoot Ratio	Stem Volume MAI [m³/ha/yr]	Dry Biomass [t/ha/yr]	Carbon [t/ha/yr]	CO ₂ e [t/ha/yr]
E rugosa/socialis. +7sp	410	90.1	59	16	15.9	1834	60	0.78	37	32 51	16.13	59.18	0.85	1 51	2.05	1.02	3 7 3
E. socialis ssp. (45.2%), E. rugosa (42.1%), Mel. lanceolata (5	5.2%), Al. ve	rticillata (2.0	1%), Ac. nota	bilis (1.2%),	Senna arte	misioides s	p. X coriace	ea (1.2%), Ao	. pycnantha	a (1.2%), E. od	orata (1.1%), E	E. cladocalyx (0).7%)				
Eucalyptus salmonophloia	443	104.5	6.3	2.0	46.9	692	36	1.00	10.8	107.20	53.17	195.14	0.43	2.03	2.28	1.13	4.16
Eucalyptus sideroxylon	442	100.7	6.4	2.0	45.9	587	36	1.00	10.1	151.60	75.19	275.96	0.36	3.06	3.30	1.64	6.01
Eucalyptus sideroxylon	505	127.1	7.6	2.1	120.9	782	36	1.00	19.4	987.89	489.99	1798.27	0.20	8.93	8.17	4.05	14.87
E. socialis/oleosa/brachycalyx, +5sp	333	86.3	5.8	1.6	15.8	210	60	0.98	5.3	15.78	7.83	28.72	0.66	0.84	1.00	0.49	1.82
E. socialis ssp. (62.5%), E. brachycalyx (12.3%), E. oleosa ssp	. (8.9%), E. g	gracilis (8.4%	6), Al. vertici	llata (3.9%),	E. calycogo	ona ssp. (2.8	%), E. dumc	osa (0.8%), A	.c. ligulata (0.4%)							
E. socialis/oleosa/phenax, +4sp	327	41.4	3.8	1.6	19.8	413	60	0.98	4.9	23.14	11.48	42.13	0.81	0.94	1.17	0.58	2.13
E. socialis ssp. (40.4%), E. oleosa ssp. (22.9%), E. phenax ssp	. (18.1%), E	. dumosa (9.	8%), E. graci	ilis (7.0%), E	. brachycaly	vx (1.7%), Al	verticillata	(0.1%)									
SA Murray-Darling Basin																	
Acacia Iigulata	260	22.9	3.0	1.1	13.8	511	30	0.07	2.7	20.69	10.26	37.67	0.75	1.19	1.50	0.74	2.73
Acacia pycnantha	334	44.8	3.9	1.6	13.8	1644	30	0.30	3.7	42.23	20.95	76.88	0.86	2.28	3.05	1.51	5.55
Ac. pycnantha/microcarpa, +6sp	366	68.8	5.0	1.7	18.0	7005	60	0.53	4.0	57.25	28.40	104.22	1.65	2.10	3.19	1.58	5.80
Ac. pycnantha (38.5%), Ac. microcarpa (36.9%), E. incrassata	a (12.7%), E	. leucoxylon	ssp. (6.2%),	Dodonaea	viscosa ssp.	cuneata (3.	5%), Ac. pa	radoxa (1.2%	6), Al. vertic	illata (0.6%), A	. calamifolia	(0.5%)					
Acacia salicina	356	46.7	4.0	1.7	4.8	2014	232	0.00	0.9	1.80	0.89	3.28	2.20	0.05	0.37	0.18	0.68
Acacia saligna ssp. Lindleyi	356	46.7	4.0	1.7	4.8	1476	170	0.02	2.9	8.25	4.09	15.02	1.36	1.11	1.71	0.85	3.11
Allocasuarina verticillata	414	71.4	5.1	1.9	21.8	1963	36	0.83	4.8	39.37	19.53	71.66	1.05	1.33	1.81	0.90	3.29
Al. verticillata, E. leucoxylon, +1sp	394	94.9	6.1	1.9	33.0	264	60	0.95	6.0	37.90	18.80	68.99	0.51	1.02	1.15	0.57	2.09
Al. verticillata (47.9%), E. leucoxylon ssp. (38.8%), Callitris g	racilis (13.4	%)															
Al. verticillata, E. socialis, +7sp	397	49.9	4.2	1.6	15.0	1040	36	0.81	4.8	34.70	17.21	63.17	0.85	1.81	2.32	1.15	4.22
Al. verticillata (44.7%), E. socialis ssp. (29.4%), E. incrassata ((7.9%), E. ol	eosa ssp. (7.	0%), E. cama	aldulensis va	ar. (5.7%), A	.c. rigens (3.	1%), Dodon	aea viscosa	ssp. spatula	ata (1.1%), Cal	litris gracilis ((0.6%), E. lepto	ohylla (0.4%)				
Callitris gracilis, E. platypus/dundasii, +7sp E. platypus (29.4%), E. leucoxylon ssp. (29.1%), E. dundasii (361 16.7%), Cal	48.7 litris gracilis	4.1 (10.7%), E. c	1.7 amaldulens	18.9 is var. (6.3%	198 6), Mel. lanc	60 eolata (2.6%	0.80 6), E. socialis	7.2 ssp. (1.7%)	56.75 , E. leptophyll	28.15 a (1.4%), Mel.	103.30 halmaturorum	0.41 n (1.2%), Al. v	2.94 verticillata (0	3.00 0.9%)	1.49	5.46
Callitris gracilis, E. leucoxylon/porosa, +6sp	379	108.9	6.8	1.8	31.9	259	60	0.97	7.0	47.87	23.74	87.13	0.58	1.40	1.50	0.74	2.73
E. spathulata (36.3%), E. porosa (23.2%), E. leucoxylon ssp.	(15.0%), Cal	litris gracilis	(9.7%), E. go	omphoceph	ala (4.9%), I	E. gardneri (4.9%), E. ca	mpaspe (3.2	?%), E. phen	ax ssp. (2.7%)	, Brachychitor	n populeneus (0.1%)				
Casuarina cunninghamiana	567	121.8	7.3	2.5	14.9	649	36	1.00	6.3	30.52	15.14	55.56	0.86	1.62	2.05	1.02	3.73
Casuarina cunninghamiana, +5sp	515	116.9	7.1	2.3	14.9	379	36	0.92	5.6	22.76	11.29	41.43	0.67	1.25	1.53	0.76	2.78
Casuarina cunninghamiana (66.1%), E. cladocalyx (17.8%), E	E. leucoxylo	n ssp. (7.5%), Corymbia	maculata (4	.0%), Ac. py	cnantha (2.	1%), Al. vert	ticillata (2.3%	6)								
Corymbia maculata	601	86.2	5.8	2.6	8.4	811	36	1.00	8.7	73.78	36.59	134.30	0.56	7.42	8.78	4.36	15.99
Dodonaea viscosa	260	22.9	3.0	1.1	13.8	791	30	0.00	2.6	10.38	5.15	18.89	1.18	0.52	0.75	0.37	1.37
Eucalyptus camaldulensis var.	361	48.2	4.1	1.7	7.6	96	30	1.00	5.7	4.93	2.45	8.97	0.66	0.52	0.65	0.32	1.19
Eucalyptus camaldulensis var.	375	48.5	4.1	1.6	15.0	914	36	1.00	15.5	259.71	128.82	472.76	0.35	16.64	17.35	8.61	31.58
Eucalyptus camaldulensis var.	375	50.8	4.2	1.5	7.7	1007	30	1.00	9.6	101.49	50.34	184.74	0.43	11.35	13.18	6.54	23.99
Eucalyptus camaldulensis var. camaldulensis	356	46.7	4.0	1.7	4.8	2118	244	1.00	2.8	7.62	3.78	13.87	2.13	0.91	1.57	0.78	2.87

REVEGETATION		SITE D	DETAIL			FIE	LD SUR	VEY		STAN	DING BIO	MASS	ROOT	:	SEQUEST	RATION	1
NRM REGION SPECIES Proportion of site biomass by species	Rain [mm]	NCAT Max. Dry Matter [t/ha]	NCAT Forest Prod. Index	Bios Equil [t C/ha/yr]	Age [years]	Plant Density [trees/ha]	Observations	Proportion Trees	Height [m]	Dry Biomass [t/ha]	Carbon [t/ha]	CO ₂ e [t/ha]	Root/Shoot Ratio	Stem Volume MAI [m³/ha/yr]	Dry Biomass [t/ha/yr]	Carbon [t/ha/yr]	CO2e [t/ha/yr]
E. camaldulensis, Cas. cunninghamiana, +1sp	561	115.3	7.0	2.4	14.9	507	60	0.98	6.1	24.71	12.26	44.98	0.70	1.39	1.66	0.82	3.02
E. camaldulensis var. (75.3%), Casuarina cunninghamiana (23.8%), E. si	ideroxylon (0).9%)														
E. camaldulensis/goniocalyx, M. acuminata, +9sp	596	141.1	8.2	2.7	17.9	1549	60	0.77	7.7	211.20	104.76	384.46	0.46	11.16	11.80	5.85	21.47
E. camaldulensis var. (52.5%), E. goniocalyx ssp. goniocalyx (0.5%), Ac. pycnantha (0.3%), Callistemon rugulosus (0.2%)	: (15.5%), Al	l. verticillata	(9.7%), E. vir	ninalis ssp.	cygnetensis	s (6.2%), Ac.	melanoxylo	on (4.6%), Ao	c. retinodes	(4.3%), E. ova	ta var. (2.4%),	Mel. sp. (2.2%), Mel. acum	iinata ssp. a	cuminata (1.	7%), E. fasc	iculosa
E. camaldulensis/largiflorens, Ac. ligulata, +6sp	386	47.2	4.1	1.8	11.9	959	60	0.67	4.6	43.43	21.54	79.06	0.72	2.98	3.64	1.80	6.62
Ac. ligulata (45.3%), E. largiflorens (29.1%), E. camaldulensi	s var. (17.7%	%), Ac. calam	ifolia (3.6%)	, Cal. canes	cens (2.1%),	, Ac. rigens ((1.3%), E. sc	cialis ssp. (C).6%), Dodo	naea viscosa s	sp. angustissi	ma (0.4%), E. c	oleosa ssp. ((0.1%)			
E. camaldulensis/leucoxylon	370	47.2	4.1	1.5	15.0	550	60	1.00	6.6	33.18	16.46	60.39	0.86	1.87	2.22	1.10	4.03
E. camaldulensis var. (58.6%), E. leucoxylon ssp. (41.4%)																	
E. camaldulensis/oleosa, +6sp	386	47.2	4.1	1.8	9.9	928	60	0.80	4.5	36.67	18.19	66.76	0.78	3.00	3.69	1.83	6.71
E. camaldulensis var. (48.3%), E. oleosa ssp. (20.4%), Ac. rig	ens (13.7%)), E. socialis s	sp. (9.8%), A	Al. muelleria	na ssp. (3.5	%), Al. vertic	illata (3.2%), E. incrassa	ata (0.8%), E	. cyanophylla	(0.2%)						
E. camaldulensis/tricarpa/cladocalyx, +4sp	481	108.0	6.7	2.2	20.9	1133	60	1.00	13.0	219.80	109.02	400.11	0.53	9.62	10.49	5.21	19.10
E. cladocalyx (31.3%), E. camaldulensis var. (26.8%), E. trica	rpa (16.7%)	, E. leucoxylc	on ssp. (12.6	%), E. siderc	xylon (9.5%	6), E. spathul	lata (1.8%),	E. platypus	(1.3%)								
Eucalyptus cladocalyx	335	39.5	3.7	1.6	98.0	249	36	1.00	10.7	53.03	26.30	96.52	0.36	0.50	0.54	0.27	0.98
Eucalyptus cladocalyx	354	53.4	4.3	1.7	9.4	582	36	1.00	6.1	26.53	13.16	48.30	0.63	2.29	2.82	1.40	5.14
Eucalyptus cladocalyx	356	46.7	4.0	1.7	4.8	2188	252	1.00	3.6	16.02	7.95	29.17	1.62	2.10	3.31	1.64	6.03
Eucalyptus cladocalyx	372	37.6	3.7	1.4	97.8	233	36	1.00	10.0	65.91	32.69	119.97	0.26	0.63	0.67	0.33	1.23
Eucalyptus cladocalyx	391	45.6	4.0	1.8	8.4	676	36	1.00	6.3	19.43	9.64	35.38	0.64	1.77	2.31	1.15	4.21
Eucalyptus cladocalyx	392	45.6	4.0	1.9	8.4	262	36	1.00	5.4	8.12	4.03	14.78	0.80	0.73	0.97	0.48	1.76
Eucalyptus cladocalyx	400	103.5	6.5	1.9	7.4	646	36	1.00	5.3	13.04	6.47	23.74	0.86	1.28	1.76	0.87	3.21
Eucalyptus cladocalyx	404	52.2	4.3	1.7	8.4	444	36	1.00	9.9	63.23	31.36	115.09	0.42	6.65	7.53	3.73	13.70
Eucalyptus cladocalyx	409	87.5	5.8	1.9	8.4	578	35	1.00	6.3	23.78	11.79	43.28	0.70	2.22	2.83	1.40	5.15
Eucalyptus cladocalyx	412	65.9	4.9	1.9	8.4	583	36	1.00	6.0	20.25	10.04	36.86	0.79	1.86	2.41	1.20	4.39
Eucalyptus cladocalyx	437	76.9	5.4	1.8	10.0	543	36	1.00	11.5	112.88	55.99	205.48	0.41	10.39	11.29	5.60	20.55
Eucalyptus cladocalyx	438	75.7	5.3	2.0	7.4	465	36	1.00	11.9	79.55	39.46	144.80	0.43	9.57	10.75	5.33	19.57
Eucalyptus cladocalyx	442	66.9	4.9	2.1	8.3	326	36	1.00	7.2	21.24	10.53	38.66	0.59	2.08	2.56	1.27	4.66
Eucalyptus cladocalyx	503	110.8	6.8	2.2	8.4	930	36	1.00	9.3	68.75	34.10	125.14	0.55	6.80	8.18	4.06	14.90
Eucalyptus cladocalyx	512	80.9	5.5	2.4	7.4	827	36	1.00	8.7	48.52	24.07	88.33	0.54	5.27	6.56	3.25	11.94
Eucalyptus cladocalyx	536	120.2	7.3	2.4	14.9	439	36	1.00	12.1	58.70	29.12	106.85	0.59	3.44	3.94	1.95	7.16
Eucalyptus cladocalyx	556	131.0	7.7	2.5	17.9	706	36	1.00	13.0	106.74	52.94	194.30	0.55	5.37	5.95	2.95	10.83
Eucalyptus cladocalyx	601	86.2	5.8	2.6	8.4	837	36	1.00	10.1	67.64	33.55	123.13	0.51	6.68	8.05	3.99	14.66
E. cladocalyx/camaldulensis	480	101.7	6.4	2.2	21.9	883	36	1.00	16.3	181.73	90.14	330.80	0.47	7.58	8.28	4.11	15.07
E. cladocalyx (58.2%), E. camaldulensis var. (41.8%)																	

REVEGETATION		SITE D	DETAIL			FIE		VEY		STAN	DING BIO	MASS	ROOT	9	SEQUEST	RATION	
NRM REGION SPECIES Proportion of site biomass by species	Rain [mm]	NCAT Max. Dry Matter [t/ha]	NCAT Forest Prod. Index	Bios Equil [t C/ha/yr]	Age [years]	Plant Density [trees/ha]	Observations	Proportion Trees	Height [m]	Dry Biomass [t/ha]	Carbon [t/ha]	CO ₂ e [t/ha]	Root/Shoot Ratio	Stem Volume MAI [m ³ /ha/yr]	Dry Biomass [t/ha/yr]	Carbon [t/ha/yr]	CO₂e [t/ha/yr]
E. cladocalyx/camaldulensis, +1sp	480	102.2	6.5	2.2	21.9	1004	60	1.00	14.6	204.25	101.31	371.80	0.46	8.59	9.31	4.62	16.94
E. Cladocalyx (51.7%), E. camaldulensis var. (48.1%), E. phen	ax ssp. (0.2	%)						1.00		6.00	2.44	10.50		0.75		0.71	0.50
Eucalyptus cneorifolia	356	46.7	4.0	1./	4.8	2161	249	1.00	1.6	6.88	3.41	12.53	1.56	0.75	1.42	0./1	2.59
Eucalyptus cyanophylla	260	22.9	3.0	1.1	13.4	362	30	1.00	3.6	16.91	8.39	30.78	1.02	0.99	1.26	0.63	2.29
E. cyanophylla/dumosa, +5sp	250	19.8	2.9	1.2	16.0	1620	60	0.92	3.3	15.80	7.84	28.76	1.39	0.66	0.99	0.49	1.80
E. cyanophylla (63.6%), E. dumosa (21.0%), E. leptophylla (5	./%), Ac. lig	julata (5.2%)), Mel. lance	olata (2.3%)	, E. socialis	ssp. (1.4%),	E. gracilis (C).9%)									
E. cyanophylla/oleosa/gracilis, +9sp	252	21.4	2.9	1.0	13.0	168	60	0.90	3.2	5.82	2.89	10.60	0.93	0.35	0.45	0.22	0.82
E. cyanophylla (29.3%), E. gracilis (24.1%), E. oleosa ssp. (20	.9%), E. dun	nosa (9.1%),	E. leptophy	lla (8.3%), N	1el. lanceol	ata (2.0%), N	1el. acumina	ata ssp. acu	ninata (1.59	%), E. socialis s	sp. (1.4%), E. _I	porosa (1.3%),	Ac. oswaldii	(1.2%), Call	itris gracilis	(0.9%)	
Eucalyptus dumosa	385	46.4	4.0	1.8	12.0	680	31	1.00	3.8	16.62	8.24	30.26	0.99	1.03	1.39	0.69	2.53
E. fasciculosa, Ac. pycnantha/retinodes, +5sp	497	113.4	7.0	2.0	16.9	414	60	0.93	5.8	23.38	11.60	42.56	0.57	1.14	1.38	0.69	2.52
E. fasciculosa (35.4%), Ac. retinodes (28.2%), Ac. pycnantha	(11.8%), E.	leucoxylon	ssp. (10.7%),	E. camaldu	lensis var. (5.3%), E. vim	iinalis ssp. o	cygnetensis	(4.6%), Al. v	erticillata (3.9	%), Mel. lance	olata (0.2%)					
E. fasciculosa/leucoxylon, Al. verticillata, +3sp	538	129.5	7.7	2.4	18.0	587	60	0.97	9.5	118.76	58.91	216.19	0.47	6.25	6.60	3.27	12.02
E. fasciculosa (38.6%), E. leucoxylon ssp. (32.9%), E. camaldu	ulensis var.	(21.8%), Al.	verticillata (5.4%), E. odo	orata (1.2%)), Callistemo	n rugulosu:	s (<0.1%)									
Eucalyptus globulus ssp.	452	64.7	4.8	1.9	14.0	228	36	1.00	23.7	189.51	94.00	344.97	0.21	13.88	13.54	6.71	24.64
Eucalyptus gracilis	260	22.9	3.0	1.1	14.3	462	30	1.00	3.4	14.83	7.35	26.99	0.83	0.78	1.04	0.51	1.89
E. gracilis/porosa/incrassata, +7sp	340	46.3	4.0	1.6	15.0	288	60	0.92	4.4	21.80	10.81	39.68	0.58	1.23	1.46	0.72	2.65
E. gracilis (34.0%), E. porosa (22.5%), E. camaldulensis var. (21.6%), E. ir	ncrassata (8.	4%), E. largit	lorens (6.3%	6), E. leuco	ylon ssp. (2.	7%), Ac. os	waldii (1.9%), Mel. lance	eolata (1.3%),	Callitris gracili	s (0.7%), E. cal	ycogona ssp). (0.6%)			
E. gracilis/socialis/incrassata, +7sp	316	46.1	4.0	1.5	16.0	419	60	0.87	3.7	22.02	10.92	40.09	0.75	1.11	1.38	0.68	2.51
E. gracilis (16.6%), E. socialis ssp. (14.1%), E. calycogona ssp	o. (13.5%), E	. leptophylla	a (12.7%), E.	incrassata (1	L0.5%), E. cy	yanophylla (9.7%), E. ole	eosa ssp. (9.	3%), E. odoi	rata (6.0%), Ca	Illistemon brad	chyandrus (4.2	%), Mel. lan	ceolata (3.3	%)		
E. gracilis/socialis/oleosa, +5sp	286	23.9	3.0	1.2	16.0	460	60	0.93	4.3	17.97	8.91	32.71	1.07	0.89	1.13	0.56	2.05
E. gracilis (34.5%), E. socialis ssp. (24.0%), E. oleosa ssp. (21.	.4%), E. dum	nosa (8.9%),	E. leptophyl	lla (5.8%), E.	calycogon	a ssp. (1.9%)	, Ac. ligulat	a (1.8%), Do	donaea viso	cosa ssp. angu	istissima (1.6%	6)					
E. grandis/camaldulensis	480	101.7	6.4	2.2	21.9	1389	36	1.00	18.9	334.66	165.99	609.18	0.29	14.08	15.26	7.57	27.77
E. grandis (58.3%), E. camaldulensis var. (41.7%)																	
Eucalyptus incrassata	356	46.7	4.0	1.7	4.8	2170	250	1.00	1.6	5.85	2.90	10.65	1.84	0.59	1.21	0.60	2.20
Eucalyptus incrassata	377	47.3	4.1	1.6	8.0	878	30	1.00	3.7	21.54	10.68	39.21	0.88	2.00	2.70	1.34	4.92
E. incrassata, Al. verticillata, +12sp	368	51.3	4.2	1.5	16.0	530	60	0.82	3.9	18.87	9.36	34.34	0.88	0.92	1.18	0.58	2.15
E. incrassata (17.2%), E. oleosa ssp. (15.9%), Al. verticillata (1 (1.3%), Pittosporum angustifolium (1.2%), Banksia ornata (1	13.8%), Doc 1.2%), Ac. p	lonaea visco ycnantha (0.	osa ssp. (10.0 2%))%), E. lepto	phylla (8.89	%), E. phenax	k ssp. (8.5%), E. leucoxy	lon ssp. (7.3	8%), E. odorata	a (6.3%), E. dui	mosa (4.7%), E	. diversifolia	ssp. diversi	folia (3.8%),	E. socialis s	sp.
E. incrassata, Al. verticillata, +5sp	446	71.3	5.1	2.1	20.6	1610	60	0.85	6.1	124.80	61.90	227.18	0.61	5.24	6.06	3.01	11.04
Al. verticillata (48.3%), E. incrassata (23.1%), Callitris gracilis	(22.6%), M	el. lanceolat	a (3.4%), Me	el. acuminat	a ssp. acum	ninata (1.5%)	, E. leptoph	nylla (1.0%),	Ac. pycnant	ha (<0.1%)							
E. incrassata/Ac. ligulata, +8sp	399	49.1	4.1	1.6	15.0	644	60	0.43	3.2	11.39	5.65	20.74	1.27	0.55	0.76	0.38	1.39
E. incrassata (39.3%), Ac. ligulata (21.5%), Al. verticillata (8.3	3%), Al. mue	elleriana ssp	. (7.6%), Call	itris verruco	sa (7.0%), E	E. socialis ssp	o. (6.2%), Ac	c. rigens (2.8	%), Dodona	iea viscosa ss	o. spatulata (2	.6%), Cal. cane	scens (2.4%)), Callitris gr	acilis (2.2%)		
E. incrassata/leptophylla, +7sp E. incrassata (52.2%), E. leptophylla (27.3%), E. brachycalyx	357 (11.7%), Me	49.9 el. uncinata (4.2 3.3%), Al. m	1.7 uelleriana s	28.9 sp. (2.6%), A	1289 Al. verticillata	60 a (1.6%), Me	0.85 el. lanceolat	3.9 a (0.7%), Me	26.37 el. acuminata :	13.08 ssp. acuminata	48.00 a (0.6%)	1.24	0.68	0.91	0.45	1.66

REVEGETATION		SITE D	DETAIL			FIE	LD SUR	VEY		STAN	DING BIO	MASS	ROOT	S	EQUEST	RATION	
NRM REGION SPECIES Proportion of site biomass by species	Rain [mm]	NCAT Max. Dry Matter [t/ha]	NCAT Forest Prod. Index	Bios Equil [t C/ha/yr]	Age [years]	Plant Density [trees/ha]	Observations	Proportion Trees	Height [m]	Dry Biomass [t/ha]	Carbon [t/ha]	CO ₂ e [t/ha]	Root/Shoot Ratio	Stem Volume MAI [m ³ /ha/yr]	Dry Biomass [t/ha/yr]	Carbon [t/ha/yr]	CO2e [t/ha/yr]
Eucalyptus largiflorens	260	22.9	3.0	1.1	14.4	343	30	1.00	4.5	20.87	10.35	37.99	0.67	1.18	1.45	0.72	2.64
E. largiflorens, Al. verticillata, +3sp	321	77.7	5.4	1.5	17.0	603	60	0.82	4.7	19.11	9.48	34.79	0.96	0.88	1.12	0.56	2.05
E. largiflorens (55.8%), E. camaldulensis var. (24.9%), Al. ver	ticillata (10.	6%), E. odor	ata (5.2%), C	Callitris grac	ilis (3.6%)												
E. largiflorens/camaldulensis/socialis, +2sp E. largiflorens (51.3%), E. camaldulensis var. (29.9%), E. soci	384 alis ssp. (17	81.9 .6%), Al. vert	5.6 ticillata (0.7%	1.4 6), E. oleosa	25.3 ssp. (0.4%)	159	59	1.00	7.0	39.95	19.81	72.72	0.43	1.49	1.58	0.78	2.88
E. largiflorens/cladocalyx E. largiflorens (87.0%), E. cladocalyx (13.0%)	333	39.0	3.7	1.6	98.0	329	60	1.00	7.0	33.02	16.38	60.11	0.51	0.29	0.34	0.17	0.61
Eucalyptus leptophylla	260	22.9	3.0	1.1	13.4	843	30	1.00	2.0	9.21	4.57	16.76	1.29	0.46	0.69	0.34	1.25
Eucalyptus leucoxylon ssp.	339	45.1	4.0	1.4	14.0	320	36	1.00	4.6	23.82	11.82	43.37	0.62	1.42	1.70	0.85	3.10
Eucalyptus leucoxylon ssp.	362	43.5	3.9	1.5	99.0	192	36	1.00	8.3	34.01	16.87	61.90	0.45	0.31	0.34	0.17	0.63
Eucalyptus leucoxylon ssp.	382	54.9	4.4	1.8	32.9	469	36	1.00	6.3	40.77	20.22	74.22	0.64	1.05	1.24	0.61	2.25
Eucalyptus leucoxylon ssp. leucoxylon	403	53.3	4.3	1.7	8.4	493	36	1.00	7.6	70.58	35.01	128.48	0.38	7.59	8.40	4.17	15.29
E. leucoxylon, +2sp E. leucoxylon ssp. (85.6%), Al. verticillata (14.0%), Mel. brevi	552 ifolia (0.4%)	127.2	7.6	2.5	16.0	482	36	0.97	5.4	44.24	21.94	80.53	0.52	2.37	2.77	1.37	5.04
E. leucoxylon, +3sp	423	117.9	7.2	2.0	33.0	492	60	1.00	5.3	35.96	17.84	65.46	0.72	0.90	1.09	0.54	1.99
E. leucoxyton ssp. (90.0%), E. lasciculosa (5.7%), E. odorata	(2.3%), E. gr	acilis (1.4%)		1.4	150	0.42	60	0.22	2.0	20.04	14.00	E 4 24	1.10	1 40	1.07	0.00	2.41
 E. leucoxylon, Ac. ligulata/brachybotrya, +3sp E. leucoxylon ssp. (58.9%), Ac. ligulata (25.6%), E. cladocaly: 	348 x (6.1%), Ac	47.3 . brachybotr	4.1 ya (4.1%), D	1.4 odonaea vis	15.9 cosa ssp. (3	943 3.6%), Callitr	60 is verrucos	0.33 a (1.7%)	3.9	29.84	14.80	54.31	1.19	1.49	1.87	0.93	3.41
E. leucoxylon, Ac. salicina, +7sp	401	74.8	5.3	1.9	10.7	1915	60	0.65	5.1	89.34	44.31	162.62	0.65	7.10	8.32	4.12	15.14
Ac. salicina (45.2%), E. leucoxylon ssp. (32.7%), Al. verticillat	ta (9.6%), Ao	c. pycnantha	(6.3%), Ac.	calamifolia	2.9%), Dod	onaea visco	sa ssp. (2.8	%), E. leptop	hylla (0.4%), E. porosa (0	1%)						
E. leucoxylon, Cal. gracilis, +2sp E. leucoxylon ssp. (63.1%), Callitris gracilis (28.6%), E. astrino	376 gens ssp. as	52.9 stringens (7.	4.3 7%), E. lepto	1.8 phylla (0.5%	32.9 。)	213	60	1.00	7.8	57.88	28.71	105.35	0.47	1.67	1.76	0.87	3.20
E. leucoxylon, Cal. gracilis, +8sp	380	57.0	4.5	1.8	32.9	232	60	0.93	6.0	28.38	14.08	51.66	0.62	0.76	0.86	0.43	1.57
E. leucoxylon ssp. (80.4%), Callitris gracilis (8.6%), E. phenax	k ssp. (2.9%)), E. microca	rpa (2.7%), E	. socialis ssp	o. (2.0%), E.	oleosa ssp.	(1.1%), E. d	umosa (0.9%	6), E. fascicu	Josa (0.9%), P	ittosporum ar	igustifolium (C	.3%), Al. ver	ticillata (0.19	6)		
E. leucoxylon, Cal. gracilis, Ac. retinodes, +5sp E. leucoxylon ssp. (65.1%), Ac. retinodes (12.4%), Callitris gr	341 racilis (10.49	89.5 %), E. fascicu	5.9 Iosa (9.2%),	1.6 E. largiflore	18.0 ns (1.9%), E	492 . dumosa (0	60 .5%), Ac. br	0.93 achybotrya	9.9 (0.3%), Ac. ı	109.36 notabilis (0.1%	54.24	199.07	0.53	5.76	6.09	3.02	11.08
E. leucoxylon/camaldulensis E. leucoxylon ssp. (57.5%), E. camaldulensis var. (42.5%)	314	40.0	3.7	1.5	9.0	364	60	1.00	5.7	22.22	11.02	40.44	0.68	2.02	2.47	1.23	4.50
E. leucoxylon/camaldulensis, +1sp	375	48.6	4.1	1.8	24.0	237	36	1.00	11.8	154.41	76.59	281.08	0.36	6.76	6.44	3.20	11.73
E. leucoxylon ssp. (57.2%), E. camaldulensis var. (39.5%), E.	diversifolia	ssp. diversif	olia (3.3%)														
E. leucoxylon/cladocalyx/tricarpa, +2sp E. cladocalyx (36.5%), E. leucoxylon ssp. (21.4%), E. tricarpa	487 (16.0%), E.	106.5 sideroxylon	6.7 (15.6%), E. p	2.2 latypus (10.	20.9 4%)	917	36	1.00	12.4	192.87	95.66	351.08	0.53	8.55	9.21	4.57	16.76
E. leucoxylon/fasciculosa, Ac. calamifolia, +3sp Ac. calamifolia (48.3%), E. leucoxylon ssp. (21.1%), E. fascicu	572 Josa (12.3%	129.8 6), Ac. pycna	7.7 ntha (7.2%),	2.6 Dodonaea	11.8 viscosa ssp	535 . (7.2%), Al.	60 verticillata	0.33	3.7	17.16	8.51	31.24	0.91	1.12	1.45	0.72	2.64

REVEGETATION		SITE D	ETAIL			FIE	LD SUR	VEY		STAN	DING BIO	MASS	ROOT	5	EQUEST	RATION	1
NRM REGION SPECIES	ain [mm]	CAT Max. Dry latter [t/ha]	CAT Forest rod. Index	ios Equil : C/ha/yr]	ge [years]	lant Density rees/ha]	bservations	roportion rees	eight [m]	ry Biomass /ha]	arbon [t/ha]	O ₂ e [t/ha]	oot/Shoot atio	tem Volume IAI [m³/ha/yr]	ry Biomass /ha/yr]	arbon /ha/yr]	0 ₂ e [t/ha/yr]
Proportion of site biomass by species	~	Z 2	ZG	<u>6</u>	A		0		—		U	Ŭ	~~~	≤ N		U E	Ŭ
E. leucoxylon/fasciculosa, Ac. retinodes, +3sp	583	136.6	8.0	2.6	12.8	1016	60	0.95	7.0	70.12	34.78	127.65	0.66	4./1	5.47	2.71	9.95
E. Tasciculosa (47.4%), E. Teucoxyton ssp. (57.8%), Ac. Techno	ues (7.0%),		a (5.4%), AC		(3.1%), Cal		(0.7%)	0.05	6.4	27.50	10.00	60.20	0.62	1 1 0	1.20	0.65	2.27
 E. IeucoxyiOn/graciiis/incrassata, +10sp E. oleosa ssp. (23.0%), E. gracilis (21.4%), E. leucoxylon ssp. E. diversifolia ssp. diversifolia (0.1%) 	352 (18.8%), E.	40.2 socialis ssp.	4.0 (11.5%), E. ir	L.7 ncrassata (6.	28.9 .8%), E. faso	ZZ7 ciculosa (5.29	60 %), E. leptoj	0.95 phylla (3.9%	0.4), E. phenax	37.56 ssp. (3.3%), N	18.63 Iel. lanceolata	68.38 (2.3%), Al. ver	0.62 rticillata (1.99	1.19 %), Ac. calan	1.30 nifolia (1.0%	0.65), E. porosa	2.37 ı (0.9%),
E. leucoxylon/largiflorens, +12sp	381	58.4	4.5	1.8	17.0	1537	60	0.82	5.9	83.47	41.40	151.94	0.63	4.16	4.92	2.44	8.96
E. leucoxylon ssp. (60.4%), E. largiflorens (21.8%), E. platypı (0.7%), E. brachycalyx (0.4%), Lepto. laevigatum (0.4%), Me	us (4.3%), E. I. lanceolata	fasciculosa (a (0.1%)	(2.3%), Callit	tris gracilis (2.1%), Ac. a	argyrophylla	(1.9%), E. le	eptophylla (1	1.8%), Mel.	armillaris ssp.	armillaris (1.6	%), E. socialis	ssp. (1.2%), E	. oleosa ssp	. (1.1%), E. c	amaldulens	sis var.
E. leucoxylon/porosa/calycogona, +7sp	376	111.2	6.9	1.8	32.9	226	60	1.00	7.2	44.13	21.89	80.33	0.56	1.22	1.34	0.66	2.44
E. leucoxylon ssp. (36.1%), E. porosa (27.1%), E. calycogona	ssp. (8.8%)	, Al. verticilla	ta (8.6%), C	allitris graci	lis (6.0%), N	/lel. lanceola	ta (4.9%), E	. gomphoce	phala (3.4%	5), E. torquata	(2.6%), E. fasc	iculosa (1.9%),	, Mel. armilla	ris ssp. armi	illaris (0.6%)		
Eucalyptus loxophleba ssp. lissophloia	318	40.1	3.7	1.5	8.0	1379	36	1.00	4.8	27.73	13.75	50.48	1.01	2.53	3.47	1.72	6.32
Eucalyptus loxophleba ssp. lissophloia	356	46.7	4.0	1.7	4.8	2144	247	1.00	3.7	12.99	6.44	23.65	1.79	1.61	2.69	1.33	4.89
E. microcarpa/brockwayii/calycogona, +8sp	381	54.9	4.4	1.8	32.9	273	60	0.97	7.9	75.20	37.30	136.89	0.49	2.23	2.28	1.13	4.16
E. brockwayi (54.8%), E. microcarpa (10.4%), E. cyanophylla	(9.4%), E. c	occidentalis (8.6%), E. cal	ycogona ssp	o. (6.6%), E.	torquata (4.	1%), E. dun	dasii (2.8%),	, Callitris gra	acilis (1.6%), E	incrassata (1.	.5%), Brachych	iton populn	eus ssp. (0.1	%), E. leuco	kylon ssp. ((0.1%)
Eucalyptus occidentalis	354	51.0	4.2	1.5	9.4	1075	36	1.00	6.7	37.26	18.48	67.83	0.58	3.04	3.96	1.97	7.22
Eucalyptus occidentalis	356	46.7	4.0	1.7	4.8	2205	254	1.00	4.5	24.95	12.38	45.42	1.14	3.56	5.16	2.56	9.39
Eucalyptus occidentalis	412	67.8	5.0	1.9	8.4	583	36	1.00	6.0	20.26	10.05	36.87	0.79	1.86	2.41	1.20	4.39
Eucalyptus occidentalis	437	80.3	5.5	1.8	10.0	692	36	1.00	14.3	179.46	89.01	326.67	0.33	16.91	17.95	8.90	32.67
Eucalyptus occidentalis	450	67.0	4.9	1.9	12.4	544	36	1.00	16.8	129.96	64.46	236.56	0.35	9.66	10.48	5.20	19.08
Eucalyptus occidentalis	463	66.9	4.9	2.1	8.4	592	36	1.00	7.1	36.88	18.29	67.13	0.43	3.58	4.39	2.18	7.99
Eucalyptus occidentalis	494	106.6	6.7	2.2	8.4	744	36	1.00	9.1	51.15	25.37	93.11	0.55	5.01	6.09	3.02	11.08
Eucalyptus occidentalis	512	77.1	5.4	2.3	7.4	636	36	1.00	9.4	55.60	27.58	101.21	0.45	6.31	7.51	3.73	13.68
E. occidentalis/leucoxylon, +3sp E. occidentalis (41.5%), E. leucoxylon ssp. (37.3%), E. dunda	367 Isii (9.5%), E	43.1 . porosa (8.9	3.9 %), E. astrin	1.7 gens ssp. as	19.0 stringens (2	330 .8%)	60	1.00	9.7	41.77	20.72	76.04	0.67	1.92	2.20	1.09	4.01
E. odorata/camaldulensis, +5sp	477	67.9	5.0	2.2	12.0	1241	60	0.90	6.7	62.48	30.99	113.74	0.93	4.24	5.21	2.59	9.49
E. odorata (48.8%), E. camaldulensis var. (22.0%), E. leucoxy	lon ssp. (12	2.5%), Ac. ligi	ulata (6.8%),	Ac. argyrop	phylla (4.0%	6), E. fascicul	osa (3.7%),	E. incrassata	a (2.1%)								
E. odorata/leucoxylon, Ac. wattsiana, +1sp	465	56.1	4.4	2.1	17.8	1826	60	0.73	5.3	54.38	26.97	98.98	0.84	2.40	3.05	1.51	5.55
E. odorata (63.7%), E. leucoxylon ssp. pruinosa (31.2%), Ac.	wattsiana (4.8%), Mel. a	icuminata s	sp. acumina	ta (0.2%)												
Eucalyptus oleosa ssp.	260	22.9	3.0	1.1	10.4	339	30	1.00	3.2	6.51	3.23	11.85	1.06	0.45	0.63	0.31	1.14
Eucalyptus oleosa ssp.	356	49.9	4.2	1.7	28.9	1046	36	1.00	5.0	35.16	17.44	64.01	1.10	0.95	1.22	0.60	2.22
Eucalyptus oleosa ssp.	357	49.9	4.2	1.7	28.9	1628	36	1.00	5.0	34.58	17.15	62.94	1.37	0.89	1.20	0.59	2.18
Eucalyptus oleosa ssp.	386	47.2	4.1	1.8	6.8	1072	30	1.00	3.0	12.63	6.26	22.98	1.57	1.27	1.86	0.92	3.39
E. oleosa/brachycalyx, +2sp	340	57.2	4.5	1.6	17.9	314	60	1.00	5.1	28.32	14.05	51.55	0.81	1.38	1.58	0.78	2.88
E. cladocalyx (46.0%), E. oleosa ssp. (27.4%), E. brachycalyx	(18.3%), E.	socialis ssp. ((8.2%)														
Eucalyptus polybractea	318	39.3	3.7	1.5	8.0	1270	36	1.00	4.2	28.97	14.37	52.74	0.97	2.66	3.63	1.80	6.60

REVEGETATION		SITE D	DETAIL			FIE		/EY		STAN	DING BIO	MASS	ROOT	:	SEQUEST	RATION	J .
NRM REGION SPECIES Proportion of site biomass by species	Rain [mm]	NCAT Max. Dry Matter [t/ha]	NCAT Forest Prod. Index	Bios Equil [t C/ha/yr]	Age [years]	Plant Density [trees/ha]	Observations	Proportion Trees	Height [m]	Dry Biomass [t/ha]	Carbon [t/ha]	CO ₂ e [t/ha]	Root/Shoot Ratio	Stem Volume MAI [m³/ha/yr]	Dry Biomass [t/ha/yr]	Carbon [t/ha/yr]	CO ₂ e [t/ha/yr]
Eucalyptus polybractea	356	46.7	4.0	1.7	4.8	2161	249	1.00	2.4	8.87	4.40	16.15	1.81	1.04	1.83	0.91	3.34
Eucalyptus porosa	386	47.2	4.1	1.8	6.7	1058	33	1.00	3.9	36.54	18.13	66.52	1.03	4.21	5.45	2.70	9.92
E. porosa, +2sp	423	117.5	7.1	2.0	33.0	2852	60	1.00	3.3	33.46	16.59	60.90	1.07	0.70	1.01	0.50	1.85
E. porosa (84.1%), E. fasciculosa (8.0%), E. leucoxylon ssp. (7.9%)																
[#] E. porosa, Al. verticillata, M. armillaris, +26sp E. porosa (49.7%), Mel. lanceolata (8.5%), Mel. armillaris ssp Ac. calamifolia (1.4%), E. fasciculosa (1.2%), Senna artemisis	348 p. (7.5%), Al pides ssp. (1	50.8 . verticillata 1.0%), Dodoi	4.2 (6.6%), E. leu naea bursari	1.7 Icoxylon ssp ifolia (0.9%)	15.4 b. (5.0%), E. , Ac. trineur	293 socialis ssp. ra (0.8%), M	581 (3.5%), Me el. halmatur	0.54 I. uncinata (rorum (0.6%	3.3 3.2%), E. cyl), E. cladoca	18.23 indrocarpa (2. alyx (0.6%), Ha	9.04 4%), E. leptop kea francisian	33.18 hylla (2.2%), C la (0.3%), Calli	0.50 Chamaecytisu tris gracilis ((0.99 us palmensi).3%), Cal. g	1.19 s (1.9%), Ac. laucophylla	0.59 pycnantha (0.2%), E. p	2.16 (1.5%), henax
ssp. (0.2%), E. calycogona ssp. (0.2%), E. diversifolia ssp. div	ersitolia (0.	1%), Pittosp	orum angus	tifolium (0.1	.%), E. oleos	5a ssp. (0.1%	b), E. Incrass	ata (0.1%), A	Ac. spinesce	ens (<0.1%), W	estringia fruti	cosa (<0.1%)	0.59	2.25	2 50	1 70	6 5 4
E. camaldulensis var. (34.9%), E. porosa (30.6%), E. leucoxyl	514 on ssp. (13.	44.4 4%), E. dum	5.9 osa (8.9%), E	1.5 Bursaria spin	L7.0 Iosa ssp. (5.	769 6%), Ac. cala	amifolia (1.7	0.56 7%), E. incra	4.4 ssata (1.5%)	, Callitris grac	50.51 ilis (1.4%), E. fa	asciculosa (1.0	0.56 1%), Mel. Ian	5.25 ceolata (0.9	3.39 %), Al. vertic	1.70 illata (0.2%))
E. porosa/dumosa, +8sp E. porosa (28.5%), Callitris gracilis (16.3%), E. dumosa (15.7%)	285 %), E. social	25.6 is ssp. (11.49	3.1 %), Mel. unc	1.4 inata (10.5%	19.9 b), E. largiflo	272 orens (10.0%	60), E. incrass	0.68 ata (3.8%), E	3.8 . calycogon	12.42 a ssp. (2.0%),	6.16 E. cyanophylla	22.60 a (1.0%), Hake	0.88 a leucoptera	0.50 ssp. leucop	0.62 otera (0.8%)	0.31	1.13
E. porosa/fasciculosa, Al. verticillata, +8sp	343	84.2	5.7	1.6	17.0	474	60	0.78	4.8	22.26	11.04	40.52	0.75	1.06	1.31	0.65	2.38
E. leucoxylon ssp. (28.4%), E. porosa (27.1%), E. fasciculosa	(18.2%), Al.	verticillata (12.6%), E. o	dorata (6.5%	6), Callitris v	verrucosa (5	.1%), Ac. br	achybotrya	(0.7%), Ac. I	igulata (0.7%),	Ac. pycnanth	a (0.3%), Mel.	lanceolata (0.2%), E. glo	bulus ssp. g	lobulus (0.2	2%)
E. porosa/gracilis/socialis, +3sp	322	43.8	3.9	1.5	14.0	1808	60	1.00	4.3	63.60	31.55	115.77	1.04	3.56	4.54	2.25	8.26
E. porosa (30.7%), E. socialis ssp. (19.6%), E. gracilis (16.9%)	, E. leptoph	ylla (15.4%),	E. incrassat	a (11.9%), E.	dumosa (5	.5%)											
E. porosa/leucoxylon, +5sp	338	45.2	4.0	1.4	12.0	358	60	0.93	3.5	22.22	11.02	40.45	0.64	1.54	1.85	0.92	3.38
E. porosa (45.9%), E. leucoxylon ssp. (27.1%), E. platypus (9.	.6%), E. clad	ocalyx (9.6%	6), E. camald	ulensis var.	obtusa (6.5	%), Ac. pycr	antha (1.1%	%), Ac. calam	nifolia (0.2%)							
[#] E. porosa/leuc./eremo., M. lanceolata, +26sp	347	52.1	4.3	1.6	15.6	265	189	0.69	5.7	46.77	23.20	85.14	0.47	2.78	2.99	1.48	5.44
E. porosa (39.3%), E. eremophila (15.1%), E. leucoxylon ssp. fasciculosa (1.7%), E. calycogona ssp. (1.5%), Al. verticillata pycnantha (0.3%), Hakea carinata (0.3%), E. leptophylla (0.2	. (7.4%), E. c (1.3%), E. sı 2%), Dodona	ylindrocarpa ooradica (1.2 aea viscosa s	a (5.9%), Me ?%), E. brach ssp. cuneata	l. lanceolata ycalyx (1.1% (0.2%), Sen	(5.1%), Me 6), Callitris g na artemisi	l. armillaris : gracilis (1.0% oides ssp. (0	ssp. (2.9%), 5), Mel. unci 9.1%), Westi	E. socialis ss inata (1.0%), ringia eremi	p. (2.8%), E E. incrassa cola (0.1%),	. brockwayi (2 ta (0.7%), Ac. i Pittosporum	.7%), E. astring teaphylla (0.7 angustifolium	gens ssp. astri %), Ac. ligulata (<0.1%)	ngens (2.4%) a (0.6%), Ac.), E. odorata rigens (0.4%	i (1.9%), E. p 6), E. phenax	latypus (1.9 ssp. (0.3%)	%), E.), Ac.
E. pterocarpa/kondininensis/brockwayi, +12sp	369	34.1	3.5	1.4	35.8	181	60	0.97	7.5	27.97	13.88	50.92	0.52	0.70	0.78	0.39	1.42
E. brockwayi (22.8%), E. pterocarpa (20.4%), E. salmonopho (1.0%), E. forrestiana (0.6%), Ac. ligulata (0.1%), Ac. iteaphyl	oia (9.7%), E Ila (0.1%)	. melanoxyl	on (9.0%), E.	diptera (7.8	8%), Callitris	gracilis (6.3	8%), E. camp	oaspe (6.1%)), E. torquat	a (5.2%), E. ca	ycogona ssp.	(5.1%), E. kon	dininensis (4	.1%), E. soci	alis ssp. (2.0	%), E. flockt	toniae
Eucalyptus salmonaphloia	294	22.9	3.0	1.2	17.0	246	36	1.00	9.1	31.52	15.63	57.38	0.64	1.61	1.86	0.92	3.38
Eucalyptus salmonophoia	333	39.4	3.7	1.6	95.0	671	36	1.00	18.7	186.66	92.58	339.78	0.66	1.84	1.96	0.97	3.58
Eucalyptus socialis	260	22.9	3.0	1.1	14.4	552	30	1.00	3.8	24.13	11.97	43.92	0.95	1.31	1.67	0.83	3.05
Eucalyptus socialis	356	46.7	4.0	1.7	4.8	2135	246	1.00	1.5	6.35	3.15	11.55	2.21	0.62	1.31	0.65	2.39
[#] E. socialis/porosa/incrassata, +11sp	349	50.8	4.2	1.7	20.4	221	540	1.00	4.5	18.16	9.01	33.06	0.67	0.76	0.89	0.44	1.62
E. socialis ssp. (24.1%), E. porosa (15.9%), E. calycogona ssp leucoxylon ssp. (0.1%), Myoporum platycarpum ssp. (<0.19	o. (12.5%), E %)	. incrassata (10.5%), E. g	racilis (9.2%)), E. leptopł	nylla (7.5%),	E. cyanoph	ylla (5.2%), I	E. oleosa ssp	o. (4.5%), E. pł	ienax ssp. (4.5	%), E. dumosa	(4.2%), E. bi	rachycalyx (1.5%), Callitr	is gracilis (().4%), E.
Melaleuca halmaturorum	419	119.3	7.2	2.0	9.7	2884	36	0.00	3.2	74.15	36.78	134.97	0.60	5.74	7.62	3.78	13.87
Melaleuca lanceolata	260	22.9	3.0	1.1	12.5	297	30	0.00	2.2	6.03	2.99	10.98	0.69	0.35	0.48	0.24	0.88
Melaleuca lanceolata, +7sp	376	116.1	7.1	1.4	16.9	622	36	0.72	4.8	54.84	27.20	99.82	0.57	2.76	3.24	1.61	5.90
E. leptophylla (32.6%), Mel. lanceolata (32.3%), E. incrassata	a (14.5%), E.	phenax ssp	. (12.4%), M	el. acuminat	a ssp. acum	ninata (2.7%), Al. vertici	llata (2.2%),	E. platypus	(1.9%), E. fasc	iculosa (1.3%)						
Senna artemisioides ssp. coriacea	260	22.9	3.0	1.1	13.4	878	30	0.00	1.7	4.02	1.99	7.31	1.79	0.17	0.30	0.15	0.55

REVEGETATION		SITE D	DETAIL			FIE		VEY		STAN	DING BIO	MASS	ROOT	S	SEQUEST	RATION	
NRM REGION SPECIES Proportion of site biomass by species	Rain [mm]	NCAT Max. Dry Matter [t/ha]	NCAT Forest Prod. Index	Bios Equil [t C/ha/yr]	Age [years]	Plant Density [trees/ha]	Observations	Proportion Trees	Height [m]	Dry Biomass [t/ha]	Carbon [t/ha]	CO ₂ e [t/ha]	Root/Shoot Ratio	Stem Volume MAI [m ³ /ha/yr]	Dry Biomass [t/ha/yr]	Carbon [t/ha/yr]	CO2e [t/ha/yr]
South East																	
Acacia mearnsii	492	76.8	5.4	2.3	12.5	1595	32	1.00	9.9	166.71	82.69	303.47	0.53	11.99	13.33	6.61	24.26
Ac. mearnsii/melanoxylon, E. viminalis, +3sp	578	92.5	6.0	2.6	11.9	2320	60	0.97	8.6	185.96	92.24	338.51	0.63	13.53	15.66	7.77	28.50
Ac. mearnsii (55.0%), Ac. melanoxylon (19.7%), E. viminalis	ssp. cygnet	ensis (14.0%), E. leucoxy	lon ssp. (7.3	%), E. fascio	ulosa (4.0%:), Al. vertici	llata (0.2%)									
Allocasuarina verticillata	478	98.1	6.3	2.2	14.8	854	36	1.00	7.4	59.23	29.38	107.83	0.66	3.27	4.01	1.99	7.29
Allocasuarina verticillata	493	77.1	5.4	2.3	10.9	376	30	1.00	8.6	92.61	45.94	168.58	0.44	7.99	8.51	4.22	15.49
Atriplex nummularia	463	111.4	6.9	1.9	3.0	651	30	0.00	1.6	6.34	3.14	11.54	1.26	1.43	2.15	1.06	3.91
Corymbia maculata	492	77.4	5.4	2.3	6.9	526	28	1.00	10.2	62.32	30.91	113.44	0.40	7.85	9.10	4.51	16.56
Corymbia maculata	493	77.1	5.4	2.3	10.8	405	25	1.00	9.0	51.57	25.58	93.87	0.43	4.40	4.79	2.38	8.72
Eucalyptus camaldulensis var.	458	69.9	5.1	1.9	10.7	430	33	1.00	11.4	113.76	56.42	207.08	0.38	10.35	10.59	5.25	19.27
Eucalyptus camaldulensis var.	494	77.9	5.4	2.3	9.9	950	30	1.00	8.2	64.43	31.96	117.28	0.44	5.38	6.52	3.23	11.87
Eucalyptus cladocalyx	459	68.6	5.0	1.9	6.7	540	30	1.00	6.4	29.68	14.72	54.02	0.52	3.56	4.43	2.20	8.07
Eucalyptus cladocalyx	459	71.9	5.1	1.9	6.7	366	30	1.00	5.0	17.35	8.61	31.58	0.47	2.13	2.59	1.29	4.72
Eucalyptus cladocalyx	460	65.1	4.8	1.9	6.7	756	33	1.00	5.6	28.70	14.24	52.24	0.72	3.50	4.28	2.12	7.79
Eucalyptus cladocalyx	460	64.8	4.8	1.9	10.7	374	30	1.00	14.9	142.23	70.54	258.90	0.35	12.73	13.26	6.58	24.14
Eucalyptus cladocalyx	460	65.1	4.8	1.9	14.0	747	36	1.00	10.2	104.72	51.94	190.62	0.44	6.64	7.50	3.72	13.65
E. cladocalyx, Corymbia maculata, +3sp	566	98.7	6.3	2.4	12.9	353	60	0.95	9.0	106.51	52.83	193.89	0.39	7.86	8.27	4.10	15.06
E. cladocalyx (64.4%), Corymbia maculata (23.7%), E. divers	ifolia ssp. d	iversifolia (6	.3%), Casuar	rina cunning	hamiana (3	8.7%), Ac. py	cnantha (1.	8%)									
E. diversifolia/incrassata, +4sp	461	64.8	4.8	1.9	17.0	605	60	0.98	5.5	66.01	32.74	120.16	0.71	3.43	3.89	1.93	7.08
E. diversifolia ssp. diversifolia (78.7%), E. incrassata (10.5%),	E. platypus	; (5.0%), E. le	eucoxylon ss	p. (4.0%), A	. verticillata	a (1.3%), E. le	ptophylla ((0.5%)									
E. fasciculosa/leucoxylon, +8sp	470	38.2	3.7	2.2	10.7	2069	60	0.90	4.9	71.59	35.51	130.31	0.80	5.35	6.71	3.33	12.21
E. fasciculosa (38.0%), E. leucoxylon ssp. (27.8%), Dodonaea	a viscosa ss	p. (11.5%), A	.c. pycnanth	a (6.6%), E.	eptophylla	(5.5%), E. in	crassata (5.	0%), Ac. lon	gifolia ssp. :	sophorae (2.49	%), Al. verticill	ata (1.6%), E. o	diversifolia s	sp. diversifol	ia (1.2%), M	el. lanceola	ta (0.4%)
E. fasciculosa/ovata/odorata, +9sp	600	92.5	6.0	2.6	18.8	770	60	0.93	7.4	142.84	70.85	260.01	0.46	7.04	7.58	3.76	13.80
E. fasciculosa (28.9%), E. ovata var. (24.0%), E. odorata (20.4 (0.1%), Senna artemisioides ssp. (0.1%)	1%), E. corni	uta (12.8%),	Mel. lanceol	ata (10.5%)	Al. verticill	ata (1.9%), C	asuarina o	besa (0.7%),	Banksia ma	arginata (0.3%), E. leucoxylo	n ssp. leucoxy	lon (0.2%), H	lakea macra	eana (0.1%)	, Lepto. cor	iaceum
Eucalyptus globulus ssp.	458	64.5	4.8	1.9	10.7	784	33	1.00	12.5	123.74	61.37	225.24	0.41	10.84	11.52	5.71	20.97
Eucalyptus globulus ssp.	494	77.9	5.4	2.3	6.8	934	30	1.00	11.1	125.67	62.33	228.77	0.39	15.98	18.35	9.10	33.41
Eucalyptus globulus ssp. globulus	607	98.1	6.3	2.7	4.9	1140	24	1.00	18.6	287.18	142.44	522.75	0.36	53.50	58.25	28.89	106.04
Eucalyptus globulus/camaldulensis	442 2%)	62.8	4.7	1.8	15.6	341	36	1.00	16.0	139.33	69.11	253.62	0.31	8.71	8.93	4.43	16.26
Eucoluptus grandis	402	77 4	Ε 4	2.2	6.9	077	20	1.00	10.6	101 50	E0 24	10176	0.45	12 77	14.92	7 25	26.00
Eucaryptus granuis	492	77.4	5.4	2.5	10.7	022	30	1.00	10.0	101.50	50.54	104.70	0.45	12.//	0.71	1.55	20.90
Eucaryptus reucoxyton ssp.	494	78.0	5.4	2.3	10.7	1057	33	1.00	0.0 7.0	104.20	51.08	189.68	0.47	ð.04	9.71	4.82	17.08
E. Ieucoxyion, Ac. mearnsii/pycnantha, + 6sp E. Ieucoxylon ssp. (32.3%), Ac. mearnsii (30.6%), E. fasciculo	507 sa (12.5%),	81.8 E. ovata var.	5.6 . (12.0%), Ac	2.3 . pycnantha	14.8 (12.0%), M	4052 el. lanceolat	60 a (0.5%), Ca	0.83 allistemon r	7.2 ugulosus (0	204.64 .1%), E. gracili	101.50 s (0.1%), E. inc	372.52 rassata (<0.1%	0.61 %)	11.72	13.84	6.86	25.19
E. leucoxylon, Ag. flexuosa, +9sp	488	69.3	5.0	2.0	11.7	639	60	0.82	4.3	26.04	12.92	47.40	0.77	1.77	2.22	1.10	4.04
E. leucoxylon ssp. (56.4%). Agonis flexuosa (14.3%). E. diver	sifolia ssp.	divers. (7.0%	6). Mel. lance	eolata (5.7%). E. fascicul	losa (4.3%).	Al. verticilla	ta (4.3%). E.	incrassata	(3.2%). E. rugo	sa (2.3%). E. f	orrestiana (2.1	%). Mel. hali	maturorum (0.3%). Mel.	alternifolia	(0.2%)

REVEGETATION		SITE [DETAIL			FIE		/EY		STAN	DING BIO	MASS	ROOT		SEQUES	RATION	N
NRM REGION SPECIES Proportion of site biomass by species	Rain [mm]	NCAT Max. Dry Matter [t/ha]	NCAT Forest Prod. Index	Bios Equil [t C/ha/yr]	Age [years]	Plant Density [trees/ha]	Observations	Proportion Trees	Height [m]	Dry Biomass [t/ha]	Carbon [t/ha]	CO ₂ e [t/ha]	Root/Shoot Ratio	Stem Volume MAI [m ³ /ha/yr]	Dry Biomass [t/ha/yr]	Carbon [t/ha/yr]	CO ₂ e [t/ha/yr]
E. leucoxylon, Al. verticillata, +7sp	490	78.0	5.4	2.0	12.8	914	60	0.65	5.5	100.37	49.79	182.71	0.53	7.40	7.87	3.90	14.33
E. leucoxylon ssp. (39.7%), Al. verticillata (24.5%), Ac. pycna	ntha (14.0%	6), E. fascicu	losa (11.0%)	, Dodonaea	viscosa ssp). (8.1%), E. c	liversitolia s	ssp. diversifo	olia (1.3%), <i>I</i>	Ac. murrayana	(0.6%), Mel. I	anceolata (0.4	%), Al. muel	leriana ssp.	(0.3%)		
 E. leucoxylon/baxteri, +12sp E. leucoxylon ssp. leucoxylon (24.0%), E. baxteri (21.1%), E. verticillata (1.5%), Ac. mearnsii (1.0%), E. incrassata (0.7%), 	514 viminalis ss Mel. decuss	63.6 p. cygneten ata (0.2%), <i>i</i>	4.8 sis (15.7%), <i>i</i> Al. muelleria	2.1 Ac. pycnantł na ssp. mue	19.3 ha (10.5%), Ileriana (0.1	1792 E. camaldule .%)	60 ensis var. ca	0.55 amaldulensis	4.8 5 (10.1%), A	100.24 c. baileyana (6	49.72 6.4%), Lepto. c	182.47 ontinentale (4	0.62 .6%), Ac. bra	4.50 achybotrya (5.18 2.5%), E. fas	2.57 ciculosa (1.	9.43 7%), Al.
E. leucoxylon/camaldulensis, +6sp	525	83.6	5.7	2.4	12.8	5936	50	0.82	6.1	129.27	64.12	235.32	0.84	7.67	10.07	4.99	18.32
E. leucoxylon ssp. (57.7%), E. camaldulensis var. (25.2%), Ac	. pycnantha	a (12.8%), M	el. decussata	a (1.5%), E. g	gracilis (1.4%	%), Ac. mear	nsii (0.9%),	Mel. lanceo	lata (0.3%),	E. incrassata (0.2%)						
E. leucoxylon/fasciculosa, +4sp	525	116.8	7.1	2.2	15.9	3421	60	0.97	7.4	222.02	110.12	404.16	0.49	12.22	13.98	6.93	25.45
E. leucoxylon ssp. (78.2%), E. fasciculosa (19.5%), Ac. mearn	nsii (1.2%), A	. pycnanth	a (0.5%), E.	viminalis ssp	. cygneten:	sis (0.5%), A	. verticillata	a (0.1%)									
E. leucoxylon/fasciculosa, Ac. pycnantha, +12sp	466	71.6	5.1	2.1	10.8	2112	60	0.55	3.8	44.08	21.87	80.25	0.84	3.19	4.09	2.03	7.44
E. leucoxylon ssp. (30.9%), Ac. pycnantha (22.1%), E. fascicu E. incrassata (0.3%), E. porosa (0.1%), Callistemon rugulosu	ılosa (21.2% s (0.1%)	b), Ac. micro	carpa (5.8%)	, Al. verticill	ata (5.6%),	Mel. lanceol	ata (4.7%),	E. leptophyl	la (3.2%), E.	largiflorens (1	L.9%), E. platy	pus (1.8%), E. <u>c</u>	gracilis (1.7%	6), Mel. gibb	osa (0.5%),	Mel. uncina	ata (0.3%),
E. leucoxylon/viminalis, +5sp	535	74.5	5.3	2.4	10.9	5702	60	0.82	5.9	277.84	137.81	505.75	0.51	22.96	25.54	12.67	46.48
E. viminalis ssp. cygnetensis (45.1%), E. leucoxylon ssp. (27.	7%), Ac. py	cnantha (24	5%), E. cama	aldulensis va	ar. (2.5%), C	allitris graci	is (0.1%), A	l. verticillata	(0.1%), Ac.	paradoxa (<0	.1%)						
Eucalyptus occidentalis	459	71.9	5.1	1.9	6.7	570	32	1.00	8.2	39.44	19.56	71.79	0.46	5.06	5.89	2.92	10.72
Eucalyptus occidentalis	459	68.6	5.0	1.9	6.7	482	30	1.00	10.2	57.65	28.60	104.95	0.34	7.45	8.62	4.27	15.68
Eucalyptus occidentalis	460	64.2	4.8	1.9	5.7	639	34	1.00	9.8	90.56	44.92	164.85	0.40	14.44	15.87	7.87	28.89
Eucalyptus occidentalis	494	77.9	5.4	2.3	9.9	1165	30	1.00	10.5	140.16	69.52	255.13	0.37	12.30	14.18	7.04	25.82
E. occidentalis/camaldulensis, +5sp.	525	79.8	5.5	2.4	14.3	766	60	1.00	10.1	171.35	84.99	311.92	0.43	11.50	11.95	5.93	21.75
E. occidentalis (50.2%), E. camaldulensis var. (22.1%), E. glo	bulus ssp. g	lobulus (14	7%), E. vimi	nalis ssp. cy	gnetensis (6	5.1%), E. pet	olaris (4.6%	6), E. incrass	ata (1.2%), B	E. leucoxylon s	ssp. (1.1%)						
E. occidentalis/megacornuta, +1sp	456	60.5	4.6	1.9	15.0	726	60	1.00	8.4	126.95	62.97	231.09	0.49	7.60	8.48	4.21	15.44
E. occidentalis (47.4%), E. megacornuta (45.8%), E. tereticor	rnis (6.8%)																
E. odorata/incrassata, Ac. pycnantha, +8sp	446	61.1	4.7	1.8	19.0	2044	60	0.93	5.4	98.80	49.00	179.85	0.63	4.32	5.20	2.58	9.46
E. odorata (35.4%), E. viminalis ssp. cygnetensis (17.5%), Ac	. pycnantha	a (17.2%), E.	arenacea (1	0.5%), E. poi	rosa (6.9%),	E. incrassat	a (4.2%), Ac	. retinodes	(4.1%), E. di	versifolia ssp.	divers. (1.8%)	, Ac. microcarp	oa (1.3%), E.	leucoxylon	ssp. (0.9%),	E. leptophy	lla (0.2%)
E. ovata/camaldulensis/leucoxylon, +3sp	593	91.3	6.0	2.6	18.3	802	60	0.65	9.1	236.47	117.29	430.45	0.35	12.52	12.89	6.40	23.47
E. ovata var. (65.3%), E. camaldulensis var. (23.9%), E. leuco	xylon ssp. (6.1%), Mel. I	anceolata (2	.3%), E. occi	identalis (2.	3%), Calliste	mon rugulo	osus (<0.1%)								
Eucalyptus saligna	492	76.6	5.3	2.3	6.8	821	30	1.00	9.1	79.76	39.56	145.19	0.52	9.83	11.65	5.78	21.20
Eucalyptus viminalis ssp.	460	64.8	4.8	1.9	5.7	480	33	1.00	10.0	70.44	34.94	128.23	0.43	11.65	12.34	6.12	22.46
Eucalyptus viminalis ssp. cygnetensis	460	64.8	4.8	1.9	9.0	519	36	1.00	12.9	132.00	65.47	240.28	0.38	13.68	14.72	7.30	26.80
Eucalyptus viminalis ssp. cygnetensis	494	79.3	5.5	2.0	9.9	679	30	1.00	11.1	131.16	65.05	238.75	0.37	11.91	13.27	6.58	24.16
E. viminalis/camaldulensis, Al. verticillata, +8sp	440	76.4	5.3	1.8	10.9	331	60	0.92	7.5	63.95	31.72	116.41	0.49	5.56	5.87	2.91	10.69
E. viminalis ssp. cygnetensis (34.5%), E. camaldulensis var. (Leptospermum coriaceum (0.2%)	(21.0%), Al.	verticillata (17.9%), E. lei	ucoxylon ssp	o. (11.6%), E	. arenacea (8.1%), Ac. p	oycnantha (2	.8%), E. clao	docalyx (1.4%)	, E. porosa (1.	3%), E. diversif	olia ssp. div	ersifolia (0.9	9%), Ac. nota	bilis (0.3%)),
E. viminalis/leucoxylon, +8sp	445	62.6	4.7	1.8	19.0	1266	60	0.97	8.3	250.37	124.18	455.76	0.45	12.20	13.17	6.53	23.98
E. viminalis ssp. cygnetensis (41.4%), E. leucoxylon ssp. (19.	7%), E. aren	acea (9.6%)	, E. porosa (8.8%), E. odo	orata (8.1%)	, E. obliqua	(4.1%), Ac.	pycnantha (3.6%), Ac. r	etinodes (3.5%	6), E. diversifo	lia ssp. diversif	olia (0.8%),	E. incrassata	a (0.4%)		

[#]Moorlands Case Study site.

Table 48. Observed above-ground biomass and carbon sequestration from remnant vegetation sites in agricultural regions of South Australia.

REMNANT VEGETATION	SITE DETAIL FIELD SURVEY									STAN	DING BIO	MASS	ROO T	5	SEQUEST	RATION	1
NRM REGION SPECIES Proportion of site biomass by species	Rain [mm]	NCAT – Max. Dry Matter [t/ha]	NCAT Forest Prod. Index	Bios Equil [t C/ha/yr]	Estimated Age * [years]	Plant Density [trees/ha]	Observations	Proportion Trees	Height [m]	Dry Biomass [t/ha]	Carbon [t/ha]	CO ₂ e [t/ha]	Root/Shoot Ratio	Stem Volume MAI [m ³ /ha/yr]	Dry Biomass [t/ha/yr]	Carbon [t/ha/yr]	CO ₂ e [t/ha/yr]
Adelaide & Mt Lofty Ranges																	
Al. verticillata, E. leucoxylon, Ac. pycnantha, +4sp E. leucoxylon ssp. (71.9%), E. ovata var. (10.9%), Al. verticilla	650 ita (5.6%),	150.8 E. camaldulei	8.6 nsis var. can	2.9 naldulensis (82.0 4.3%), Callit	1141 ris gracilis (4	60 4.0%), Ac. p	0.87 bycnantha (2	7.8 .1%), Banks	364.39 sia marginata (180.74 (1.3%)	663.30	0.32	4.86	4.44	2.20	8.09
E. camaldulensis, +2sp E. camaldulensis var. camaldulensis (95.0%), Banksia marqir	727 nata (3.7%)	82.4 , Ac. melano:	5.6 xylon (1.3%)	3.0	34.0	928	60	0.97	11.2	190.05	94.27	345.96	0.43	5.23	5.59	2.77	10.18
E. camaldulensis, Ac. retinodes E. camaldulensis var. camaldulensis (99.7%), Ac. retinodes (843 0.3%)	108.0	6.7	3.6	28.0	1720	30	0.97	12.9	474.98	235.59	864.61	0.35	16.40	16.96	8.41	30.88
E. camaldulensis, Al. verticillata, +3sp E. camaldulensis var. camaldulensis (83.4%), Al. verticillata (595 13.1%), Ac	138.4 . pycnantha (8.1 2.0%), Callit	2.8 ris gracilis (i	99.0 1.3%), Banks	1117 sia marginat	60 a (0.2%)	0.88	8.7	510.79	253.35	929.81	0.20	6.25	5.16	2.56	9.39
E. camaldulensis/leucoxylon, +1sp E. camaldulensis var. (68.4%), E. leucoxylon ssp. (30.0%), Ca	615 Ilitris graci	81.1 lis (1.5%)	5.5	2.8	23.6	1991	60	1.00	9.1	319.89	158.67	582.30	0.39	12.45	13.55	6.72	24.66
E. camaldulensis/viminalis, Ac. retinodes E. camaldulensis var. (82.9%), Ac. retinodes (10.6%), E. vimir	843 nalis ssp. (6	108.0 5.6%)	6.7	3.6	12.9	741	30	1.00	13.4	191.78	95.12	349.10	0.33	14.08	14.89	7.39	27.11
E. camald./viminalis/leuco., Ac. pycnantha, +2sp E. viminalis ssp. viminalis (29.9%), E. leucoxylon ssp. (23.6%)	633), E. vimina	125.9 lis ssp. cygne	7.5 tensis (22.7	2.8 %), E. camal	146.0 dulensis vai	441 r. camaldule	59 nsis (12.3%	0.95), Ac. pycna	9.5 ntha (8.3%)	301.92 , Exocarpos cu	149.75 pressiformis (549.60 (3.2%)	0.25	2.36	2.07	1.03	3.76
E. fasciculosa/goniocalyx, Ac. pycnantha, +2sp E. goniocalyx ssp. goniocalyx (56.6%), E. camaldulensis var.	727 camaldule	88.8 nsis (28.2%),	5.9 E. fasciculo:	3.0 sa (10.8%), A	120.0 Ac. pycnantł	1002 na (2.9%), Al	60 . verticillata	0.93 a (1.4%)	7.6	528.88	262.33	962.74	0.22	5.19	4.41	2.19	8.02
E. incrassata, Ac. pycnantha E. incrassata (98.3%), Ac. pycnantha (1.7%)	442	103.7	6.5	2.0	30.0	346	36	0.92	5.5	22.88	11.35	41.66	0.63	0.65	0.76	0.38	1.39
Eucalyptus leucoxylon ssp.	458	112.2	6.9	2.1	101.0	80	36	1.00	12.9	69.08	34.26	125.74	0.23	0.73	0.68	0.34	1.24
E. leucoxylon/odorata, +2sp	456	111.7	6.9	2.1	120.0	172	36	0.78	7.9	117.65	58.35	214.16	0.21	1.09	0.98	0.49	1.78
E. leucoxylon ssp. (78.5%), E. odorata (21.0%), Ac. pycnanth	a (0.4%), A	.c. paradoxa (<0.1%)														
E. leucoxylon/ovata, Al. verticillata, +5sp Al. verticillata (34.9%), E. leucoxylon ssp. (34.5%), E. ovata v.	645 ar. (18.1%)	91.0 Ac. pycnant	6.0 ha (10.0%),	2.7 E. camaldule	35.0 ensis var. ca	1644 maldulensis	60 (0.8%), Ac	0.83 paradoxa (0	6.6).7%), Dodo	137.53 onaea viscosa	68.21 ssp. (0.7%), Ha	250.35 akea leucopter	0.47 ra ssp. leuco	3.58 ptera (0.2%)	3.93	1.95	7.15
E. leucoxylon/viminalis, Ac. pycnantha, +3sp E. leucoxylon ssp. (55.8%), E. viminalis ssp. (34.9%), Al. verti	623 cillata (8.29	142.6 %), Ac. pycna	8.2 ntha (1.0%)	2.6 Hakea rugo	95.0 osa (0.1%), F	292 Pinus radiata	60 a (<0.1%)	0.88	9.1	174.38	86.49	317.44	0.32	1.93	1.84	0.91	3.34
E. obliqua/camaldulensis, Cal. glaucophylla, +5sp E. obliqua (53.9%), E. viminalis ssp. viminalis (23.1%). E. cam	594 naldulensis	86.2 var. camaldu	5.8 Ilensis (19.4	2.5 %), Cal. glau	149.0 Icophylla (1	918 .6%), E. goni	60 ocalyx ssp.	0.92 goniocalvx	11.8 (1.5%), Exo	784.13 carpos cupres	388.93 siformis (0.4%	1427.37), Ac. paradox	0.22 a (0.2%), Do	6.11 donaea visco	5.26 osa ssp. (<0	2.61	9.58
E. odorata, S. artemisioides, +6sp E. odorata (52.9%), E. socialis ssp. (31.8%), Callitris gracilis (421 12.0%), Pit	61.9 tosporum an	4.6 gustifolium	1.9 (2.0%), Senr	88.0 na artemisic	1052 bides ssp. (0.	60 7%), Exoca	0.45	4.5 siformis (0.3	129.03 3%), Ac. notab	64.00 ilis (0.2%), Ole	234.88 earia decurrens	0.48	1.41	1.47	0.73	2.67

REMNANT VEGETATION		SITE D	DETAIL			FIE		/EY		STAN	DING BIO	MASS	ROO T	:	SEQUEST	RATION	I
NRM REGION SPECIES Proportion of site biomass by species	Rain [mm]	NCAT – Max. Dry Matter [t/ha]	NCAT Forest Prod. Index	Bios Equil [t C/ha/yr]	Estimated Age * [years]	Plant Density [trees/ha]	Observations	Proportion Trees	Height [m]	Dry Biomass [t/ha]	Carbon [t/ha]	CO ₂ e [t/ha]	Root/Shoot Ratio	Stem Volume MAI Im ³ /ha/vr]	Dry Biomass [t/ha/yr]	Carbon [t/ha/yr]	CO ₂ e [t/ha/yr]
E. odorata/leucoxylon E. odorata (92.3%), E. leucoxylon ssp. (7.7%)	506	70.2	5.1	2.3	168.0	61	30	1.00	11.6	119.14	59.09	216.87	0.27	0.80	0.71	0.35	1.29
E. odorata/leucoxylon E. odorata (62.9%), E. leucoxylon ssp. (37.1%)	512	109.0	6.8	2.3	97.0	65	36	1.00	12.0	59.16	29.34	107.69	0.30	0.65	0.61	0.30	1.11
Eucalyptus viminalis ssp.	624	93.1	6.1	2.8	67.0	365	20	1.00	11.8	258.60	128.27	470.74	0.26	4.04	3.86	1.91	7.03
Northern & Yorke																	
E. brachycalyx/oleosa, +5sp	383	51.8	4.3	1.8	31.0	1186	36	0.31	4.7	75.24	37.32	136.96	0.70	2.10	2.43	1.20	4.42
E. brachycalyx (45.3%), Mel. lanceolata (21.5%), E. oleosa s	sp. (18.3%)	E. gracilis (1	0.8%), Mel. a	acuminata s	sp. acumina	ata (2.3%), S	antalum ac	uminatum (1	L.5%), Beye	ria lechenaulti	i (0.3%)						
E. gracilis/brachycalyx, +1sp E. brachycalyx (61.3%), E. gracilis (37.7%), Exocarpos aphyl	334 Ilus (1.0%)	41.4	3.8	1.4	45.0	224	36	0.97	7.1	39.98	19.83	/2.//	0.45	0.80	0.89	0.44	1.62
E. gracilis/oleosa, +4sp	351	40.6	3.8	1.7	80.0	215	36	0.92	7.2	59.93	29.72	109.09	0.30	0.74	0.75	0.37	1.36
E. gracilis (74.9%), E. oleosa ssp. (23.3%), Mel. lanceolata (?	1.4%), Ac. sj	o. (0.3%), Pitt	osporum an	igustifolium	(0.1%), San	talum acum	inatum (<0	0.1%)									
E. incrassata/socialis E. incrassata (85.6%), E. socialis ssp. (14.4%)	335	95.3	6.2	1.6	35.0	431	36	1.00	5.7	36.94	18.32	67.25	0.60	0.90	1.06	0.52	1.92
E. incrassata/socialis, +3sp E. incrassata (53.5%), E. socialis ssp. (27.4%), E. oleosa ssp.	333 (8.7%), Me	45.5 . lanceolata (4.0 (6.5%), Mel.	1.6 acuminata s	57.0 sp. acumina	81 ata (3.9%)	36	0.83	4.7	11.96	5.93	21.77	0.44	0.19	0.21	0.10	0.38
E. incrassata/socialis, Callitris verrucosa Callitris verrucosa (46.8%), E. incrassata (32.0%), E. socialis	391 ssp. (21.2%	49.8	4.2	1.8	46.0	292	36	0.83	5.6	43.56	21.60	79.29	0.49	0.85	0.95	0.47	1.72
E incrassata/socialis/dumosa, +4sp	452	, 563	45	19	38.0	787	36	0.83	6.0	79 36	39 36	144 46	0.67	1 89	2 09	1 04	3 80
E. incrassata (41.2%), E. leptophylla (18.1%), E. dumosa (15	5.3%), E. soc	ialis ssp. (13.	6%), E. calyc	ogona ssp.	(5.9%), Mel.	uncinata (5	.7%), E. gra	cilis (0.2%)									
Eucalyptus leucoxylon ssp.	473	105.5	6.6	1.9	120.0	51	30	1.00	10.7	53.46	26.51	97.31	0.35	0.48	0.45	0.22	0.81
E. leucoxylon, +1sp	495	116.5	7.1	2.2	225.0	93	30	1.00	15.4	292.06	144.86	531.64	0.22	1.55	1.30	0.64	2.36
E. leucoxylon ssp. pruinosa (59.0%), E. leucoxylon ssp. (40.	8%), Olea e	uropaea ssp.	(0.2%)														
E. leucoxylon, Ac. paradoxa/pycn., +1sp	573	72.4	5.1	2.5	160.0	880	60	0.35	4.7	226.91	112.55	413.04	0.31	1.57	1.42	0.70	2.58
E. leucoxylon ssp. pruinosa (98.4%), Ac. paradoxa (0.9%), A	Ac. pycnantl	na (0.7%), Al.	verticillata ((0.1%)													
Eucalyptus odorata	487	118.4	7.2	2.2	105.0	45	36	1.00	11.6	44.22	21.93	80.49	0.25	0.45	0.42	0.21	0.77
Eucalyptus odorata	522	114.6	7.0	2.4	159.0	35	30	1.00	10.0	50.76	25.18	92.40	0.25	0.35	0.32	0.16	0.58
E. odorata/leucoxylon	430	106.0	6.6	2.0	153.0	37	30	1.00	10.9	59.90	29.71	109.04	0.30	0.43	0.39	0.19	0.71
E. odorata (92.1%), E. leucoxylon ssp. pruinosa (7.9%)																	
E. socialis/incrassata, +3sp E. socialis ssp. (56.7%), E. incrassata (27.8%), Mel. lanceola	337 ta (9.7%), E.	45.8 brachycalyx	4.0 (3.1%), Mel.	1.6 acuminata	41.0 ssp. acumin	349 ata (2.7%)	36	0.56	4.4	34.58	17.15	62.95	0.60	0.74	0.84	0.42	1.54

REMNANT VEGETATION		SITE D	DETAIL			FIE		/EY		STAN	DING BIO	MASS	ROO T	5	EQUEST	RATION	a
NRM REGION SPECIES Proportion of site biomass by species	Rain [mm]	NCAT – Max. Dry Matter [t/ha]	NCAT Forest Prod. Index	Bios Equil [t C/ha/yr]	Estimated Age * [years]	Plant Density [trees/ha]	Observations	Proportion Trees	Height [m]	Dry Biomass [t/ha]	Carbon [t/ha]	CO ₂ e [t/ha]	Root/Shoot Ratio	Stem Volume MAI [m³/ha/yr]	Dry Biomass [t/ha/yr]	Carbon [t/ha/yr]	CO ₂ e [t/ha/yr]
SA Murray-Darling Basin																	
Callitris gracilis	399	74.0	5.2	1.5	36.0	1273	36	1.00	9.9	238.29	118.19	433.76	0.33	6.01	6.62	3.28	12.05
[#] E. brachycalyx/porosa, Callitris gracilis, +4sp	345	49.3	4.1	1.6	81.0	256	60	0.98	8.6	82.21	40.77	149.64	0.43	0.99	1.01	0.50	1.85
E. brachycalyx (58.5%), Callitris gracilis (22.3%), E. porosa (9	.4%), E. inc	rassata (4.7%	6), E. socialis	ssp. (4.1%),	Mel. armilla	aris ssp. (0.5	5%), Mel. ac	uminata ssp	. acuminata	a (0.4%)							
E. diversifolia/incrassata, +1sp	455	67.0	4.9	1.9	24.0	1788	60	0.98	4.4	64.11	31.80	116.70	1.00	2.10	2.67	1.32	4.86
E. diversifolia ssp. diversifolia (84.3%), E. incrassata (15.5%),	Ac. pycnar	ntha (0.2%)															
E. goniocalyx/leucoxylon, +5sp	473	70.3	5.0	2.2	75.0	1818	60	0.88	6.5	205.11	101.74	373.37	0.53	2.53	2.73	1.36	4.98
E. leucoxylon ssp. pruinosa (65.3%), E. goniocalyx ssp. gonio	ocalyx (27.8	3%), E. odora	ta (5.0%), A	c. pycnantha	a (1.2%), Exc	ocarpos cup	ressiformis	(0.4%), Xant	thorrhoea c	luadrangulata	(0.4%), Bursa	ria spinosa ssp	o. spinosa (<	0.1%)			
South East																	
E. fasciculosa/baxteri, +1sp	582	92.6	6.0	2.4	40.0	842	60	0.98	8.1	154.19	76.48	280.67	0.44	3.58	3.85	1.91	7.02
E. fasciculosa (65.6%), E. baxteri (34.2%), Banksia ornata (0.2	2%)																

*based on diameters of largest tress (top 17% of sampled plants). [#]Moorlands Case Study site.

APPENDIX E - SA SOIL MAPPING CLASSES USED IN SPATIAL MODELLING

 Table 49. Summary of soil classes and nominal assigned values used in developing models of carbon sequestration.

Soil Texture	Clay Content				
Class	Range	Nom. Value			
Sand	< 5%	3%			
Loamy sand	5 - 10%	8%			
Sandy loam	10 -20%	15%			
Loam	20 - 30%	25%			
Clay loam	30 - 35%	33%			
Clay	> 35%	45%			
Inherent Fertility	Clay Content	Clay Index			
Class	Range	Nom. Value			
High to very high	> 35%	100			
Moderate	20 - 35%	80			
Moderately low	5 -20%	60			
Low	1 - 5%	40			
Very low	< 1%	13			
Waterholding Capacity	Rootzone A	WHC (mm)			
Class	Range	Nom. Value			
High	> 100	110			
Moderate	70 - 100	85			
Moderately low	40 - 70	55			
Low	20 - 40	30			
Very low	< 20	10			
Depth	Depth to Rock o	or Hardpan (cm)			
Class	Range	Nom. Value			
Deep	> 150	200			
Moderately Deep	100 - 150	125			
Medium	50 - 100	75			
Moderately Shallow	25 - 50	38			
Shallow	10 - 25	18			
Very Shallow	< 10	5			
Dryland agriculture	Hardy perr	renial crops			
Class	Range	Nom. Value			
Very deep	> 100	110			
Deen	80 - 100	90			
Moderately deep	60 - 80	70			
Medium	50 - 60	55			
Medium to shallow	40 - 50	45			
Moderately shallow	30 - 40	35			
Shallow	20 - 30	25			
Very Shallow	< 20	10			

Introduction

The Carbon Farming Initiative (CFI) is a carbon mitigation and sequestration scheme designed to allow farmers and land managers to earn carbon credits by storing carbon or reducing greenhouse gas emissions from their enterprises. These credits can then be sold to people and businesses wishing to offset their emissions. Under the scheme projects that remove carbon dioxide from the atmosphere by sequestering carbon in living biomass are eligible. To enable the take up of this category within the scheme The Department of the Environment (DOTE) and the Department of Agriculture (DOA) are working with industry to develop methods that can be used to assess and predict the carbon sequestered by reforestation.

At present, the Reforestation Modelling Tool (RMT) is the dominant methodology approved by the Domestic Offsets Integrity Committee (DOIC) to predict carbon sequestration by reforestation activities under the CFI scheme. Because the RMT is a simplified version of the National Carbon Accounting Toolbox (NCAT) it has been built on much the same data and contains many of the same limitations found in its predecessor (Hobbs *et al.* 2010). To help alleviate these problems both CSIRO and DEWNR have undertaken projects to improve the carbon assessment methods within revegetation sites and recalibrate FullCAM models for revegetation activities (Paul *et al.* 2012).

In a collaborative effort to improve on-ground carbon assessments, recalibrate the FullCAM model and improve RMT predictions of carbon sequestration from revegetation DEWNR and CSIRO combined resources and expertise to intensively examine several sites in the southern Murray-Darling Basin region of South Australia. DEWNR carried out extensive pre-sampling measurement work on two sites destined for destructive sampling as well as two other nearby sites (a windbreak and a patch of remnant scrub) that would later be used for comparisons. CSIRO used this presampling data to select plots for destructive sampling within the two main blocks. Then a combined team from DEWNR and CSIRO carried out the above-ground destructive sampling and root excavation work at both sites, with subsamples taken away and processed by

CSIRO to establish wood densities and moisture content.

The Moorlands sites are the only South Australian sites included in CSIRO's program of intensive sampling designed to improve the underlying data available to the FullCAM model. As such, the Moorlands sites provided an opportunity to compare results from the DEWNR simple measurement approach, based on generic allometrics and described in earlier sections, with the intensive CSIRO approach and the default estimates obtained from the RMT and NCAT at the time. Data collected by both DEWNR and CSIRO has been made available to DOTE and should help to improve the outputs of FullCAM based models such as the RMT and NCAT.

Location

Four sites (2 block plantings, 1 windbreak & 1 patch of remnant vegetation) were chosen in the vicinity of Moorlands (~48km SE of Murray Bridge, SA; Lat/Long 35.3332°S 139.6352°E). All sites are in close proximity to each other (<3.5km apart) and situated in similar positions in the landscape. The area receives an average of 365mm of rain a year, with more rain usually expected from May to October than in the warmer months. Typically the landscape in the area is fairly flat with large open areas suitable for cultivation interspersed with occasional very low sand dunes.

Soils vary across the area but are generally well drained. The dunes are deep sand over sandy clay loam or clay while the interdune areas are sandy clay loams over clay sometimes with calcrete structures forming 60 to 75cm from the surface. These soils are fairly low in fertility with acidic surface sands that become alkaline at depth. Owing to their sandy nature there is little organic matter present in these soils, even in the surface soil. Soil pits exposed at each of the two block sites using an excavator revealed little obstruction to root penetration other than a slight strengthening at depth. More detailed soil descriptions and analysis of the soil at the two block sites have been included in Appendix F - Improving National Carbon Accounting Models: Moorlands Case Study.

Block 1991 is a 2.8ha site located along a dune crest that was chosen for destructive sampling. A soil pit dug at this site revealed that an erosion event had deposited about 50 cm of loose water repellent sand

over the top of the existing dune sand. The site was planted in 1991 with a mixture of Eucalypt Mallee species and is very open with a low plant density of 220 plants/ha. Block1991 has little understory other than a few perennial herbs and grasses, and little in the way of litter to protect the soil surface (Figure 34).

Block 1996 is a 2ha site located along a smaller dune crest that was also chosen for destructive sampling. A soil pit at this site revealed relatively undisturbed, loose, water repellent, sandy loam soil. The site was planted in 1996 with a mixture of tree and shrub species and is also fairly open with a low plant density of 290 plants/ha. Block1996 has an understory of planted shrub species along with a few perennial herbs and grasses. Again there was little in the way of litter covering the soil surface (Figure 35). The Windbreak 1996 site is less than a hectare located along an almost flat dune. The site was not chosen for destructive sampling but had the same mixture of tree and shrub species that were planted at Block 1996 in the same year. The soil is also similar to Block1996 but the site has a slightly higher plant density of 320 plants/ha. Windbreak 1996 has a similar understory to Block1996 and little in the way of litter (Figure 36).

No destructive sampling was carried out at the Remnant site. The remnant is a 40 hectare patch of indigenous vegetation that covers a wide sandy rise. The site contained a mixture of tree and shrub species on soil similar to Block1996. This natural patch of vegetation has a plant density of 250plants/ha, a sparse understory of shrubs, perennial herbs, grasses and a sparse thin layer of litter (Figure 37).

Figure 34. Block1991: Multi-species Eucalypt Mallee plantings.

Figure 35. Block1996: Multi-species Environmental plantings.

Figure 36. Windbreak 1996: Multi-species Environmental plantings.

Figure 37. Remnant vegetation at Moorlands.

Assessments of Carbon in Plants

Calibration of FullCAM and Reforestation Modelling Tool

As part of CSIRO's larger program to improve the reliability of the Reforestation Modelling Tool (RMT) for DOTE (Paul *et al.* 2012), and in collaboration with DEWNR staff, two sites were selected at Moorlands to provide calibration data for Environmental Plantings and Mallee models used FullCAM and RMT. The targeted plantings had management regimes consistent with their local district and were successfully established within CSIRO's desired time frame of 7 to 22 years of age. Block 1991 and Block 1996 underwent detailed measurements, plot-based destructive sampling and root zone excavations. An additional site (Windbreak 1996) was also measured in this manner but without destructive sampling or excavations.

Precision Sampling Method

DEWNR staff carried out the initial whole of site measurements for Block 1991, Block 1996 and Windbreak 1996 along similar lines to CSIRO's Precision Sampling Methodology (PSM, Paul *et al.* 2011). The PSM called for a broad, non-destructive inventory of all plants (trees and shrubs) across the chosen sites. At all three sites the spatial location and basal stem diameters of every individual was recorded. From this survey a data base of individual diameters was established that represented a proxy for biomass across each site. An estimate of the basal area (BA) of the full planting could then be calculated.

The second stage of the process was to select a smaller subset of 4 plots within each site (i.e. Block 1991, Block 1996) for destructive sampling that had a plantation basal area within each plot that matched as closely as possible the basal area of the entire site. The size class distribution of stems was calculated for each site along with the plant density rate (plants/ha). A standard spatial GIS Shape-file was produced containing each tree's location along with their accompanying basal area calculation. These calculations were then entered into CSIRO's customised PSM software to optimize the location of the sampling plots so that each plot was representative of the whole site. The software selects sub-sets of plots randomly and repeatedly tests them until a sampling plan is found where the average plant spacing and basal area statistics are in agreement. This process was repeated several times to generate a number of sets of equivalently fitting solutions that were then checked for spatial representativeness (Paul *et al.* 2012). One of the best fit solutions was chosen at random for destructive harvest at each site.

The main advantage of the PSM approach was that it provided confidence that the estimated biomass obtained during the direct harvest of the 4 sample plots was representative of the site as a whole. A disadvantage of this method was that it required nondestructive measurements to be taken of every individual plant at each site to provide the broad scale baseline data on spatial variability of biomass across each site (Paul *et al.* 2012).

Destructive Sampling

Four 25x25m plots were marked out at each site (i.e. Block 1991, Block 1996). All living and dead individuals in each plot were harvested at 10 cm above ground level and weighed whole to obtain direct measures of above-ground fresh-weight biomass (Figure 38). Within the sample plots dead trees and shrubs were gathered together and bulk-weighed (Figure 39).

For the sampled plants, the following measurements were taken at the time of harvest:

- Total fresh mass
- Height
- Stem diameters at 10, 30, 50 and 130 cm height (Figure 38).

Sub-samples of stemwood and branches/leaves were taken, weighed and oven-dried at 70°C until a stable dry weight was reached to determine the moisture content of sub-samples. For analysis, the quadratic mean of individual diameter measurements were calculated to yield a single stem equivalent diameter.

A combined 128 living trees were destructively sampled at Block 1991 and Block 1996. Fifty mallee trees were destructively sampled from Block 1991, representing 10 of the 14 species present and 78 trees and shrubs were sampled from Block 1996 accounting 16 of the 29 species on site (Table 51).

Figure 38. DEWNR and CSIRO staff undertaking measurements to determine allometric relationships between stem diameter and carbon content at Moorlands.

Figure 39. CSIRO weighing equipment used at the Moorlands revegetation sites to measure the green biomass of destructively sampled eucalypt mallees, trees and shrubs.

Block 1991 Species	All Plants at Site	Above- ground Samples	Below- ground Samples
Eucalyptus socialis	90	8	4
Eucalyptus incrassata	82	10	5
Eucalyptus leptophylla	68	8	2
Eucalyptus cyanophylla	57	3	1
Eucalyptus porosa	51	2	
Eucalyptus calycogona	45	7	1
Eucalyptus phenax ssp.	42	7	
Eucalyptus dumosa	39	1	1
Eucalyptus oleosa ssp.	29	1	
Eucalyptus gracilis	26	3	2
Eucalyptus brachycalyx	8		
Eucalyptus leucoxylon	1		
Myoporum platycarpum	1		
Callitris gracilis	1		
Total records	540	50	16
No. of species	14	10	7

Table 50.	Summary of	species record	ed in Block	plantings w	ithin the Moo	orlands Case Study.

Block 1996 Species	All Plants at Site	Above- ground Samples	Below- ground Samples
Eucalyptus porosa	191	31	11
Allocasuarina verticillata	59	7	1
Dodonaea bursariifolia	51	4	2
Melaleuca lanceolata	35	5	3
Senna artemisioides	32	2	
Melaleuca uncinata	27	2	

Block 1996 Species	All Plants at Site	Above- ground Samples	Below- ground Samples
Eucalyptus socialis ssp.	27	2	
Acacia calamifolia	26	6	1
Melaleuca armillaris	25	5	2
Eucalyptus leucoxylon	24	4	2
Eucalyptus leptophylla	17	3	1
Chamaecytisus palmensis	8		
Acacia pycnantha	7		
Callitris gracilis	7	1	
Eucalyptus fasciculosa	7	3	2
Melaleuca halmaturorum	6	1	
Acacia spinescens	5		
Eucalyptus diversifolia	4	1	
Hakea francisiana	4		
Callitris glaucophylla	4		
Eucalyptus cylindrocarpa	3		
Westringia fruticosa	2		
Eucalyptus calycogona	2		
Pittosporum angustifolium	2		
Eucalyptus incrassata	2		
Eucalyptus cladocalyx	1		
Eucalyptus oleosa ssp.	1	1	
Eucalyptus phenax ssp.	1		
Acacia trineura	1		
Total records	581	78	25
No. of species	29	16	9

		Heigh	nt (m)
Moorlands Species	Count	Min.	Max.
Acacia calamifolia	6	1.3	2.15
Allocasuarina verticillata	7	2.2	5.2
Callitris gracilis	1	2.0	2.0
Dodonaea bursariifolia	4	0.5	2.2
Eucalyptus calycogona	6	4.9	7.5
Eucalyptus cyanophylla	4	2.2	5
Eucalyptus diversifolia	1	0.5	0.5
Eucalyptus dumosa	1	2.1	2.1
Eucalyptus fasciculosa	3	1.9	3.9
Eucalyptus gracilis	4	5.0	9.3
Eucalyptus incrassata	11	1.8	5.1
Eucalyptus leptophylla	11	2.2	5.1
Eucalyptus leucoxylon	4	3.2	7.0
Eucalyptus oleosa ssp.	2	1.2	3.3
Eucalyptus phenax ssp.	5	1.8	4.8
Eucalyptus porosa	33	1.2	9.7
Eucalyptus socialis ssp.	10	3.4	7.8
Melaleuca armillaris ssp.	5	2.5	3.1
Melaleuca halmaturorum	1	2.1	2.1
Melaleuca lanceolata	5	2.0	3.3
Melaleuca uncinata	2	2.3	2.3
Senna artemisioides ssp.	2	1.8	2.0
Summary	128	0.5	9.7

Table 51.Destructively sampled plants from the
Moorlands Case Study.

Root Sampling

At both Block 1991 and Block 1996 portions within each harvested plot were then excavated to extract the roots and obtain a below-ground measure of biomass (Figure 40). The standard CSIRO method was to simply excavate a 10x10m plot within each of the larger plots harvested to assess aboveground biomass at each site. At Moorlands a different approach was taken and the area to be excavated was centred on individually selected plants within each harvested plot. The area to be excavated around each plant was defined as half the row width and half the distance to the next plants along the row. Thus the total area excavated varied depending on plant density, spacing and species mix, with 5 to 6 plants from each plot included in each excavated area leading to a larger total area being excavated. Using a large excavator, all roots were extracted from within boundaries of each subplot to a depth where the significant vertical roots ended. Working section by section, the excavator removed bucketful's of the loose sandy soil one at a time, spilling them onto the ground so all the coarse roots could be picked out by hand. Sub-samples of roots were taken and oven-dried for 10 days at 70°C to determine the dry weight to fresh weight ratios (Figure 41).

Figure 40. DEWNR and CSIRO researchers excavating the root zones of plants at Moorlands to develop a better understanding of the carbon stored in below-ground structures.

Figure 41. Excavated and sorted roots from a destructive sampling plot at Moorlands ready for weighing and subsampling. Subsamples were oven dried and reweighed to determine moisture content.

Site Specific Allometrics

At both sites, allometrics were derived for each key species and applied to the inventory of stem diameters. Root-to-shoot ratios were calculated for each site and the allometrics used to estimate the above and below-ground biomass components. The two destructively sampled sites had direct whole plot measures of above and below-ground biomass providing a test of any estimates based on the application of allometrics. More detailed descriptions of the methods used for direct and indirect sampling of biomass, and the development of site specific allometrics by CSIRO, are described in Paul *et al.* (2011) and Paul *et al.* (2012).

DEWNR Detailed Survey

To allow for the application of the allometric equations previously developed and described in earlier sections of this report (i.e. Allometric Models of Above-ground Biomass) the initial site survey included an extensive suite of measurements not usually carried out as part of CSIRO's PSM approach. To meet DEWNR's requirements at Block1991, Block1996 and Windbreak 1996 a more detailed set of plant measurements were made in addition to the spatial location and basal stem diameters required for CSIRO's initial PSM survey. This extra information included species, height, crown width, form, foliage density, distance to neighbouring plants, count of all stems and stem circumferences (>25mm diameter) at 2 heights. Observation heights for stem counts and circumferences were 0.5m and 1.3m for trees and mallees, and typically 0.1m for lower shrubs with only shrub stem counts made at 1.3m (if applicable).

DEWNR Rapid Surveys

Over the last six years DEWNR have developed a rapid survey method to accurately estimate above-ground biomass by non-destructively measuring a representative sub-sample of plants at a site. The method for mixed species sites involves 6 transects per site containing 10 plants per transect; 60 plants per site. Each transect is placed within a uniformly stratified grid segment that divides up the entire site into six equally sized parts. The transects are placed along continuous rows of plants avoiding edge rows and the end of rows. At each transect, individual species (>2m high) are recorded and plant measurements taken including; height, crown width, form (tree/mallee/shrub), distance to neighbouring plants, stem count and circumference at two lower section heights (basal and intermediate: 0.5m and 1.3m, for trees and mallees, and at 0.1m for shrubs), and visual ranking of foliage density using reference photographs (8 classes). Foliage density classes are expressed as a percentage of maximum density (i.e. very dense 100%, dense 86%, moderately dense 71%, moderate 57%, moderately sparse 43%, sparse 29%, very sparse 14%, no leaves 0%). More detailed descriptions of nondestructive site assessment methods are described in section 4. Carbon Sequestration in Revegetation and Remnants.

At Moorlands only the Remnant site was surveyed using this method. As previously described the Block 1991, Block 1996 and Windbreak 1996 sites had every plant at each site measured intensively. This enabled a comparison of the DEWNR rapid survey method to the whole population of plants on these sites. To accomplish this the pre-measured sites were divided into six roughly equal parts, the edge plants excluded, and a random number generator used to select the starting point for a ten plant transect much like the normal DEWNR rapid survey method described earlier. Starting points were chosen using a random number generator to select transects that would not exceed the end of the blocks. For Block 1991 and Block 1996 this process was repeated nine times. Due to the small size of Windbreak 1996 the process was only carried out three times but this included almost all the internal plants at that site. Once the selections were made the allometrics described earlier were applied to estimate the above -ground biomass components. The results could then be compared within each site and with those generated by other modelling and destructive sampling.

DOTE CFI Reforestation Modelling Tool and NCAT FullCAM Model

Using the latest Carbon Farming Initiative Reforestation Modelling Tool (CFI RMT; available May 17th, 2012) the latitude, longitude and hectares planted for each of the three sites was fed into the planting window of the model. This information was initially taken directly from Paul *et al.* (2012) so the figures would be directly comparable. The planting date was then entered into the management window and 'mixed species environmental planting' and 'nonharvested regime, planting density: low (<=800 stems/ha)' selected. The results window was then activated to examine the models predictions. Following

the exact methodology used in Hobbs *et al.* (2010) predictions from the 2005 NCAT version of FullCAM for each of the Moorlands sites was generated for comparison with the later models.

Comparisons of Carbon Assessment Methods

Assessment of above-ground biomass

On Block 1991 the CSIRO intensive sampling approach estimated 16.9 tonnes of total plant carbon per hectare (comprising of 9.9 tC/ha above ground and 7.1 tC/ha below ground) giving the site a carbon accumulation rate of 0.49 tC/ha/yr (Table 52). The CSIRO site specific and generic allometric model calculations were comparable with the destructively-sampled aboveground carbon, with -1% and +7% differences respectively. The estimates produced by the DEWNR allometric model (based on stemwood volume) produced a -16% difference in above-ground carbon when applied to the same plots as the CSIRO models. When applied to the entire site the DEWNR allometric model produced a -9% difference from the observed above-ground plot based figure. The DEWNR allometric model was also used to provide an estimate of above-ground carbon for nine simulations of the standard DEWNR sampling method producing an average result of -18% with a range between 9.3 and 6.3 tC/ha.

The data from Block 1996 was analysed in the same way as Block 1991 (Table 52). The CSIRO intensive sampling observed 14.1 tC/ha at (comprising of 8.5 tC/ha above ground and 5.6 tC/ha below ground) with a carbon accumulation rate of 0.94 tC/ha/yr. The CSIRO site specific allometric model calculated the closest biomass estimate to the observed aboveground carbon store of -2% difference, their generic model estimated a difference of +15%. When applied to the same plots the DEWNR allometric model produced a difference of +4% to the observed aboveground carbon store and, when applied to all trees on the site a difference of +6% was estimated. The DEWNR allometric model was again used to provide an estimate of above-ground carbon for the nine simulations of the standard DEWNR sampling method and produced an average result of +1% with a range between 4.7 and 3.7 tC/ha.

The narrow Windbreak 1996 site was not destructively sampled but the site was extensively measured with a full suite of data recorded for every significant plant at the site. The DEWNR allometric model was applied to the entire planting and also used to provide an estimate of above-ground carbon for three simulations of the standard DEWNR sampling method (see Table 52). There was a -7% difference between the aboveground estimates produced and the range of the three simulation estimates were between 11.4 and 11.5 tC/ha.

The RMT and NCAT models were applied, in the default mode, to the destructively sampled sites, Windbreak 1996 and a patch of Remnant vegetation growing in similar conditions nearby (see Table 52). Little difference can be observed between the individual site estimates these models produce. Both the RMT and NCAT produced above-ground plant biomass estimates reasonably close to that observed by destructive sampling at Block 1991 and Block 1996 but consistently underestimate both sites when below-ground elements are considered. When applied to the Remnant and Windbreak 1996 and compared to the estimates produced by the DEWNR allometric model the RMT and NCAT models grossly underestimate the biomass present on those sites.

Assessment of below-ground biomass

At Block1991 sixteen of the destructively sampled individuals were also excavated so their below-ground elements could be sampled. The selected plants included 7 of the 14 species present producing a below-ground biomass estimate of 7.1 tC/ha. Due to the higher plant density (plants/ha) and more diverse species planted at Block 1996, 25 individuals were sampled that accounted for 9 of the 25 species present at the site. The below-ground biomass at Block 1996 was estimated to be 5.6 tC/ha.

There was little difference between the plot total root to shoot (RS) ratio across sites (average = 0.69). However, it was found that RS ratio is influenced by the size and maturity of the individual plants. Regression models (Figure 7) show that below-ground (root) biomass is more reliably predicted using regressions with plant volume (height x crown area; R^2 =0.88), above-ground biomass (R^2 =0.83) or stemwood volume (R^2 =0.83). Basal area is significantly correlated to root biomass (r2=0.68) but is a less reliable predictor.

			CSIRC) plots		DEWN R Rapid Survey	All Plants on Site	DC Mode time sur	DTE els at e of vey	DC Mode 100 y)TE els at years
	; ars)	Destructive Sampling	CSIRO Generic Allometric Model	CSIRO Species Specific Allometric Model	DEWNR Generic Allometric Model	DEWNR Generic Allometric Model	DEWNR Generic Allometric Model	NCAT	CFI RMT	NCAT	CFI RMT
Biomass Type by Site	Age (ye			(tonnes	of elem	ental ca	rbon pei	hectare	e, tC/ha)	1	
Whole Plant Biomass											
Block 1991 (Mallee)	21	16.9	15.0	14.3	13.8	13.6	15.0	13.7	13.3	27.0	26.1
Block 1996 (Mixed)	16	14.1	14.1	12.5	13.5	12.8	13.5	10.6	10.9	27.1	26.0
Windbreak 1996 (Mixed)	16					32.9	34.0	10.6	10.4	26.8	26.2
Remnant	~81*					58.5		25.1	24.6	26.0	27.7
Above-ground Plant Bi	<u>omass (</u>	stems, k	ranches	s, twigs &	& leaves	<u>;)</u>					
Block 1991 (Mallee)	21	9.9	10.6	9.8	8.3	8.1	9.0	10.4	10.1	20.9	19.8
Block 1996 (Mixed)	16	8.5	9.8	8.3	8.8	8.6	9.0	8.0	8.2	21.0	19.6
Windbreak 1996 (Mixed)	16					21.5	23.2	8.0	7.9	20.7	19.7
Remnant	~81*					40.8		19.4	19.0	20.2	21.4
Below-ground Plant Big	omass (roots)									
Block 1991 (Mallee)	21	7.1	4.4	4.4	5.6	5.5	6.0	3.3	3.2	6.1	6.3
Block 1996 (Mixed)	16	5.6	4.2	4.2	4.7	4.1	4.5	2.6	2.7	6.1	6.4
Windbreak 1996 (Mixed)	16					11.4	10.8	2.6	2.6	6.1	6.5
Remnant	~81*					17.7		5.7	5.6	5.9	6.3

 Table 52. Comparisons of plot and site carbon estimates using different assessment techniques in the Moorlands Case Study.

* Age estimated using basal diameters of ten largest trees in sample

Assessments of Soil Carbon

Soil samples were also collected to assess soil carbon at the same sites chosen for above and below-ground biomass assessment. The above-ground vegetation had been removed at the time of soil carbon sampling but the root zones had yet to be excavated. Each site contained 4 plots and five tree stumps were chosen from each plot to have soil samples taken next to them. Generally the chosen five stumps were divided into two lines to simplify access for the vehicle and trailer carrying the coring equipment, (1 line of 3 stumps and 1 line of 2 stumps). At each stump a core was taken approximately 1m from the stump for the "under-tree" sample and approximately 2.5m from the stump for the "mid-row" sample ("mid-row"). Due to the soil horizons present four depths were sampled from each core (i.e. 0-10cm, 10-30cm, 30-50cm, 50-70cm). Soil bulk density samples were taken in each plot to standardise soil carbon calculations. Soil samples collected within each plot were bulked for chemical analysis. A cropped paddock adjacent to each site was also sampled at the same depths following National Soil Carbon Research Programme (Sanderman *et al*, 2011) protocols and a separate descriptive core was taken at each plot (Schapel, 2012).

Some weak differences in soil organic carbon stocks (t/ha) were detected between the Block 1996 and Block 1991 sites (Table 53). But no significant differences

were found between plots, sample position (crop, under-tree or mid-row) or the two sampled sites when the full range of recordings was tested (Figure 42). On average the mid-rows at each site contained slightly less soil carbon than the averages for under-tree or crop and the cropped area held the most soil carbon. Organic carbon also decreased significantly with the depth of sample but this was true across all sample points. This pattern was also true of soil density with a significant increase after the first ten centimetres but no significant differences between the locations sampled (Schapel, 2012).

The NCAT model displays a soil carbon component and as it was applied in the default mode to the sites to provide estimates of carbon sequestered in the vegetation and estimates of the soil carbon sequestered in the top 30cm (Table 53). Little difference can be observed between the NCAT estimates produced for individual sites of the same age and the level of carbon stored in the soil consistently declines with the age of the revegetation in the plot after an initial short term increase. The NCAT soil carbon estimates for both Block 1991 and Block 1996 were more than double that observed by direct sampling.

Table 53. Observed and predicted soil organic
carbon stocks in the 0-30cm soil profile
at cropland, revegetation and remnant
vegetation sites at Moorlands.

Site	Observed	DOTE NCAT Model
	(tC/ha)	(tC/ha)
Cropland	18.4	-
Block 1991 (Mallee)	15.9	37.6
Block 1996 (Mixed)	18.2	40.1
Windbreak 1996	-	40.1
Remnant	-	26.5

Colours represent soil depths (cm). Average carbon stock is shown over the bars (from Schapel 2012).

Figure 42. Comparisons between soil organic carbon stock in cropland and revegetation (mid-row, under tree) at Moorlands.

Discussion

The Moorlands Case Study provided a rare opportunity to compare a variety of vegetation carbon assessment methodologies ranging from intensive measurements and sampling (e.g. Precision Sampling Methods & Destructive Plot Sampling) to intermediate intensity measurements (e.g. Rapid Surveys & Generic Allometrics) and the application of generic models (e.g. DOTE National Carbon Accounting Toolbox, Reforestation Modelling Tool). With decreasing effort carbon assessment methods become cheaper and perhaps less reliable. DEWNR Rapid Surveys and Generic Allometrics methods have always been intended to be a compromise between cost and accuracy so that reasonable carbon assessments could be made in lower to medium rainfall areas of the state, and in landscapes that are spatially variable. In lower productivity landscapes of mallees, shrublands and open woodlands the cost of the carbon assessment methodology should not exceed the value of the carbon sequestrated by revegetation.

While accurate, the time and resources required to assess carbon sequestered using the CSIRO precision sampling methods (Paul et al. 2012) at Moorlands (e.g. Block 1991 + Block 1996) would grossly exceed the carbon trading return of these medium-sized plantings. At Moorlands the highly intensive sampling method utilized a large labour crew for on-ground surveys and sampling (estimated >400 person hours), plus the expense of hiring an excavator and driver, bulk weighing equipment, extensive laboratory, analysis and reporting time. While the detailed surveys and destructive methods used by CSIRO and DEWNR in the Moorlands study were not intended to be a routine measurement protocol for carbon accounting purposes there are other approved or proposed CFI methodologies that include substantial destructive sampling (e.g. "Reforestation and Afforestation Methodology", CO₂ Australia). The destructive nature of these approaches are inherently problematic (especially in smaller plantings) as it requires a portion of the carbon crop to be sacrificed from the stock held by the landowner (i.e. decreasing asset values). While sampling within larger plantations may have minimal impact as they represent a smaller proportion of carbon estate, smaller plantings have the potential to be greatly reduced in value.

In contrast to destructive sampling, the measurement of a statistically representative number of individuals

located by randomly or stratified selections, and the application of appropriate allometric equations to estimate carbon stocks, can often be completed within a few hours. The optimal survey design and number of samples is dependent on the inherent spatial and species variability of each site being assessed. The DEWNR generic allometric model utilises data collected from samples harvested across the state to robustly predict carbon stores from a set of simple measurements in situations where harvesting may not be a viable option. While none of the above methods can be declared the perfect "truth", the DEWNR generic allometrics for above-ground biomass were on average within 7% (range 4% to 16%) of destructive samples within the CSIRO plots. The reduction in accuracy using non-destructive techniques is supplanted by several financial and asset management advantages in carbon accounting.

Table 52 clearly demonstrates that the small increases in precision using "site specific allometrics" by destructively sampling at every site does not justify the additional cost to attain this data. The current CSIRO and DEWNR generic allometrics methods provide reliable and cost-effective estimates of carbon stored in individual plants across a range of species. The discrepancies between CSIRO and DEWNR site estimates of biomass using generic models are small and may be partially attributed to slight differences in the definition of the area occupied by surveyed plants from different edge buffer calculations (i.e. half-row width versus standard 5m buffer). While the differences are minor in this example, they do demonstrate the implications of different interpretations of area occupied by the vegetation. For example, if the plot area is calculated at 30x30m rather than 25x25m the resulting 30% decrease in plant density per unit of area will substantially reduce the assessed biomass on site when expressed on per hectare basis.

Table 52 also demonstrate the discrepancies that can be produced by measuring different groups of trees within a site. The DEWNR Generic Model was applied to the trees within the plots, a 60 plant sample selection and every plant in Block 1991 and 1996, because the trees chosen and the area they occupied differed the results also varied. In particular, it can be seen that the carbon estimate of above-ground biomass for "All Plants on Site" is generally larger than the DEWNR estimates for CSIRO plots and Rapid Surveys taken from the interior of the sites (i.e. no edge rows). This result may be partially influenced by

the inclusion of plants on the outside edges of these narrow blocks that are generally larger due to the extra resources available from the surrounding paddock.

A study by Mokany et al. (2006) encouraged the use of vegetation-specific root: shoot ratios (RS ratio), suggesting there was a negative relationship between RS ratio and mean annual rainfall and mean annual temperature. It's also been suggested that some species will require unique allometrics, particularly those with resprouting root organs (like lignotubers) that are likely to increase in biomass at a much greater rate compared with above-ground biomass (Low & Lamont 1990). Given the strong relationship between above-ground and below-ground biomass at Block 1991 and Block 1996 ($R^2 = 0.83$), it is evident that the allometric model formulated to estimate the tonnage of carbon stored in the root material would be robust for both. The estimate of the below-ground carbon store was similar from both the site specific and generic models and generally under-estimated what was observed (Table 52). However, further research is required to explore how applicable this relationship might be across a variety of planting types, species mixes and different environments.

By any method, the extraction of roots is a laborious and expensive process that lacks absolute precision (Mokany et al. 2006). Deliberately large plots were excavated, centred on individual plants. While some roots exceeded the excavated space around each tree, the influence of the lost biomass is likely to be negligible with 68% of each tree's roots contained within a 2m radius (Macinnis-Ng et al. 2010). The method also capitalised on the friable nature of the sand, allowing the majority of the coarse and fine root material to be easily separated from the soil. The plot scale RS ratio was found to be 0.69 based on all the plants excavated at Block 1991 and 1996. While the RS ratio varied a great deal between plants it was collectively higher than those suggested in similar studies (Mokany et al. 2006 and Snowdon et al. 2000) possibly due to the large number of mallees with underground lignotubers in Moorlands samples (Figure 43).

For a landowner the least expensive method of obtaining a carbon sequestration estimate is from an established growth model or tool (e.g. National Carbon Accounting Toolbox - NCAT or Reforestation Modelling Tool - RMT). Cost savings are obvious when landholders are not burdened by the expense of having to measure or sample vegetation on site. Both NCAT and RMT are based on 3PG and FullCAM models and are available online. The simplicity of these tools allows landowner to input basic data to generate a carbon sequestration estimate. It has been previously noted these model predicts have tendency to underpredict carbon accumulation in mixed environmental plantings in South Australia (Hobbs *et al.* 2010).

Predicted carbon sequestration estimates using NCAT and RMT for Block 1991 and Block 1996 are presented in Table 52 and demonstrate the tendency of these tools to underestimate site carbon, particularly the below-ground component. Windbreak 1996 is an example of the tendency of these tools to underestimate site carbon. As the name suggests Windbreak 1996 is a narrow planting that has slightly better soil, a slightly higher plant density and an almost identical species mix to Block 1996. Both 1996 sites were planted in the same season within a kilometre of each other. Despite their similarities Windbreak 1996 has produced more than double the amount of biomass of Block 1996 a fact which not reflected in NCAT or RMT predictions.

Figure 43. An example of a large mallee root (lignotuber) of a 21 year old eucalypt mallee at a revegetation site at Moorlands.

The NCAT and RMT produce almost identical figures for both 1996 sites which highlight some of the problems Hobbs (et al. 2010) previously found with the NCAT FullCAM model predictions. Differences in plant density could not be adjusted readily in the default FullCAM model and the default estimates of site maximum dry biomass were found to be unreliable. This second problem is perhaps best demonstrated by the estimates returned for a remnant site in similar environmental conditions close to the other Moorlands sites. At this location the two FullCAM based models return estimates close to the ceiling value set by the maximum dry biomass figure within the models function however, this ceiling value is less than half the measured biomass at the remnant site (Table 52). In this case the maximum dry biomass figure is obviously set too low. Hobbs (et al. 2010) previously found that attempts to force the maximum value beyond the given NCAT maximum dry biomass figure only resulted in future predictions returning to the set ceiling value over time.

Table 54 displays the outputs from the NCAT and RMT models for Block 1991 under different planting regimes and time scales. In this case, the above-ground biomass estimates are reasonably close to that

observed by destructive sampling at year 21 after planting. Based on the same FullCAM model as the older NCAT structure the RMT delivers similar estimates to its predecessor from a much simplified entry interface. While this makes it easier to use it removes the user's ability to make modifications that might enhance the models accuracy. It is also interesting to note the default multipliers used in the RMT outputs for *Eucalyptus globulus* and *Pinus radiata* produce extremely high carbon estimates, well beyond what the maximum dry biomass cap allows without a multiplier at this location (as indicated by the NCAT outputs).

Hobbs (*et al.* 2010) found that 'on average, NCAT significantly under-predicts dry matter production in the region' from the default outputs (~27% of observed production). Because of the high degree of scatter between NCAT predicted biomass production and the observed values found across the Southern Murray-Darling Basin it is risky to use a generic multiplier to correct this under prediction. Predictions for Block 1991 for instance would be significantly over estimated if a multiplier of 4 was applied as suggested by other data collected from across the region.

Planting Type	Model Plant Density Class	Age (years)	CSIRO Plot Observed Above- ground Biomass (tC/ha)	NCAT FullCAM Model Above- ground Biomass	NCAT FullCAM Model Total Plant Biomass (tC/ha)	CFI RMT Model Total Plant Biomass (tC/ha)
Mixed	Low			10.40	13.68	13.28
Species	Normal			10.46	13.78	13.52
Environmenta	High	21	9.86	15.92	20.73	13.78
i Plantings	Direct					12.55
	Regeneration			9.93	13.06	
	Low			20.88	26.96	26.11
	Normal			21.00	27.13	26.05
	High	100		21.10	27.28	26.02
	Direct					25.96
	Regeneration			20.82	26.86	
Eucalyptus	Low	21		9.42	11.78	111.49*
globulus	Low	100		20.55	25.47	218.40*
Pinus radiata	Low	21		6.99	8.27	74.74*
	Low	100		19.76	23.34	216.48*

 Table 54. Comparison of observed carbon stock and predicted carbon stock using DOTE NCAT and CFI RMT models and revegetation options at the Moorlands Block 1991 site.

*RMT uses a default "site maximum above-ground biomass" multiplier of 8.5 for Eucalyptus globulus and 9.8 for Pinus radiata.

Total site carbon is a combination of the carbon data from plantings, soil and ground debris (litter) and as such perpetuates any inaccuracies that exist in the component data used to create it. This is probably best exemplified in the difference between the measured soil carbon figures and those given by the NCAT default run (Table 53). A discrepancy of this magnitude easily masks any small inaccuracies that might be found in the calculation of plant carbon figures in Table 54. Without further investigation it is difficult to say why the NCAT soil carbon figures are double those measured at the site for the same depth of soil but using such modelled figures can easily lead to an overestimation of total site carbon.

At present, the DOTE'S NCAT and RMT models (including FullCAM, 3PG and FPI components) are poorly calibrated for environmental plantings, especially in low to medium rainfall regions of Australia. While some recent studies are partially addressing this issue (Paul *et al.* 2011, 2012), the NCAT and RMT models will continue to be insensitive to plant densities, have inappropriate soil fertility modifiers in lower to medium rainfall regions, and produce results that are often contrary to field measurement in South Australia (Hobbs *et al.* 2010). While information from sites like Moorlands will add to and improve these models over time, at present they are unreliable for estimating carbon sequestration from revegetation in South Australia.

Conclusions

The Carbon Farming Initiative requires an approach that accurately and efficiently measures carbon in environmental plantings for an economically viable carbon sequestration and trading industry. The most accurate methods that include extensive surveys and destructive sampling are costly and inappropriate in smaller plantings where the destructive sampling method substantially diminishes the carbon crop. The cost of carrying out destructive sampling at small sites can easily exceed the value of the carbon they sequester. The Moorlands case study also illustrates the inherent inaccuracies of currently available or CFIapproved models and tools. RMT tends to under predict carbon sequestration rates in a similar fashion to its NCAT predecessor. Caution still needs to be exercised when relying on forecasts of potential carbon sequestration from the RMT or other predictive models, especially in low to medium rainfall regions where background data is limited. Such models predictions may need to be adjusted based on limited and cost-effective survey data.

Current information clearly demonstrates a high degree of variation in carbon sequestration rates from plantations and revegetation activities in low to medium rainfall regions resulting from a variety of species, management practices and environmental factors (Hobbs et al. 2010). The Moorlands case study has demonstrated the robustness of generic allometric models to estimate carbon stocks in revegetation. The accuracy of these generic allometric models has increased substantially in recent years as more destructive data for lower rainfall species has been accumulated and analysed (e.g. this study, Paul et al. 2012). Measurement protocols must be highly attuned to spatial variation in productivity within revegetation sites and appropriate sampling designs and minimum sample sizes identified to ensure the representativeness of measurements taken (Paul et al. 2012).

Supplementary Data – Soil Reports

Moorlands 1991: Deep siliceous sand

General Description:

Deep, disturbed, sporadically bleached sandy soil

Subgroup soil:	H2–H3
Landform:	Disturbed linear dune
Substrate:	Siliceous sand.
Vegetation:	Woody native revegetation site (revegetated in 1991).

Type Site:	Site No:	MM167		1:50,000 sheet:	6827–3 (Moorlands)
	Hundred: Sherlock		Easting:	0375 868	(WGS84)
	Section:	-		Northing: 6088 629	(WGS84)
	Sampling date:	13/12/2011		Annual rainfall:	365 mm

The site is in on a duneslope. The site and surrounding area have been subjected to considerable wind erosion activity since clearing and settlement, with the described site overlain by 54 cm of deposited sand.

Soil Description:

Depth (cm)	Description
Overlying sand:	
0–13	Loose, water repellent, dark brown, loamy sand with single grain structure.
13–32	Light yellowish brown, loamy sand with single grain structure.
32–54	as above.
Buried soil:	
54–60	Dark brown, loamy sand with massive structure
60–75	Yellowish brown and orange brown, clayey sand with sporadic bleaching and massive structure.
75–102	as above
102–140	Dark brown, clayey sand with sporadic bleaching and massive structure.
140–170	Strong brown, clayey sand with sporadic bleaching and massive structure.
Classification:	Basic, Arenic, Yellow-Orthic Tenosol; medium, nor gravelly, sandy / sandy, deep.

Summary of Properties

Drainage:	Drainage is excessive (rapid).							
Fertility:	Inherent fertility is very low (as the sandy soil has limited capacity to retain and provide nutrients). This is evidenced by very low cation exchange capacity (which is approximated by the sum of cations). There is also little organic matter (which provides natural fertility), even in the surface soil, owing to disturbance and erosion, and the soil's low clay content. Maintenance and improvement of surface soil organic matter, residues and vegetative cover is extremely important for maintenance of fertility as well as protection against erosion.							
pH:	Surface soil pH is acidic; pH increases with depth to slightly alkaline levels.							
Rooting depth:	Root growth was observed to the base of the pit, with roots becoming few below 140 cm.							
Barriers to Root Growth								
Physical: There are no physical limitations to root growth to the base of the pit.								
Chemical:	Low fertility may limit root growth (e.g. low to very low phosphorus, sulfur and boron levels). Zinc and even manganese levels below the surface soil may also limit root growth with depth.							
Water holding capacity:	Estimate for perennial vegetation to 140 cm = 90 mm (moderate) [(0.13x100)+(0.41x60)+(0.06x90)+(0.8x60)].							
Seedling emergence:	Good.							
Workability:	Good.							
Erosion Potential								
Water:	Low.							
Wind:	Extreme – highly fragile. Permanent vegetation cover is essential to protect soil against erosion.							
Laboratory Data								

Laboratory Data

Depth cm	pH H₂O	pH CaC1 ₂	CO₃ %	EC 1:5	ECe dS/m	Org.C %	Avail. P	Avail. K	Cl mg/kg	SO ₄ Boron Trace Elements _S mg/kg mg/kg (DTPA)				Sum cations	n Exchangeable ns Cations cmol(+)			le)/kg	Est. ESP		
				dS/m			mg/kg	mg/kg		mg/kg		Cu	Fe	Mn	Zn	cmol (+)/kg	Ca	Mg	Na	к	
Paddock	6.3	5.5	0	0.027	-	0.65	13	111	7.1	6.4	0.33	0.27	40.5	1.83	0.92	2.1	1.45	0.39	0.04	0.22	1.9
0-13	6.1	5.3	0	0.018	-	0.58	13	108	4.4	2.9	0.17	0.32	13.8	1.54	0.92	1.9	1.33	0.36	0.03	0.20	1.6
13–32	6.8	5.8	0	0.022	-	0.14	4	64	6.6	2.2	0.15	0.22	17.4	0.32	0.04	1.3	0.78	0.31	0.07	0.15	5.3
32–54	7.2	6.7	0	0.021	-	0.07	<2	85	4.9	2.2	0.15	0.64	8.30	0.56	0.33	1.5	0.92	0.32	0.07	0.18	4.7
54–60	7.5	6.5	0	0.052	-	0.25	<2	114	23.6	3.4	0.36	0.16	8.33	1.46	0.05	3.2	2.24	0.46	0.23	0.25	7.2
60-75	7.5	6.8	0	0.052	-	0.18	<2	86	32.1	5.9	0.29	0.23	8.77	0.28	0.06	2.9	2.06	0.37	0.25	0.19	8.7
75–102	7.0	6.5	0	0.064	-	0.06	<2	65	58.5	5.9	0.18	0.15	5.84	0.17	0.10	2.3	1.58	0.38	0.18	0.16	7.8
102-140	7.6	6.9	0	0.033	-	< 0.05	<2	47	19.0	4.0	0.23	0.20	5.44	0.28	0.13	3.1	2.17	0.67	0.12	0.12	3.9
140-170	7.7	6.8	0	0.038	-	<0.05	<2	54	16.1	3.1	0.23	0.31	3.21	0.25	0.45	3.1	2.03	0.84	0.09	0.14	2.9

Note: Paddock sample bulked from 20 cores (0–10 cm) taken around the pit.

Sum of cations approximates the CEC (cation exchange capacity), a measure of the soil's capacity to store and release major nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC, in this case estimated by the sum of cations.

Moorlands 1996:

Bleached sand over sandy clay loam

General Description:

Bleached sandy topsoil over light sandy clay loam subsoil with fine carbonate at depth

Subgroup soil:	G2					
Landform:	Linear dune					4
Substrate:	Sandy loam		Alexander			1 AL
Vegetation:	Woody native rev site (revegetated	vegetation in 1996)				
Type Site:	Site No:	MM168	the st the second	דיזאייייייייייייייייייייייייייייייייייי	υσει-ο (ινισσιατιαο)	
	Hundred: Sherloo	k	Easting:	0376 00)4 _(WGS84)	
	Section:	-		Northing: 6089 16	51 _(WGS84)	
	Sampling date:	13/12/2011		Annual rainfall:	365 mm	

The site is in on a dunecrest. The site and surrounding area have been subjected to considerable wind erosion activity since clearing and settlement.

Soil Description:

Depth (cm)	Description
0–11	Loose, water repellent, dark brown, loamy sand with single grain structure.
11–25	Bleached loamy sand with single grain structure.
25–62	Light yellowish brown and strong brown, heavy sandy loam with sporadic bleaching and massive structure.
62–88	Light yellowish brown and strong brown, light sandy clay loam with sporadic bleaching, massive structure and >50% hard carbonate fragments (>60 mm diameter).
88–125	Very highly calcareous, light yellowish brown, light sandy clay loam with massive structure and 10–20% hard carbonate fragments (>60 mm diameter).
125–175	Very highly calcareous, light yellowish brown, heavy sandy loam with massive structure and 2– 10% hard carbonate fragments (>60 mm diameter).
Classification:	Bleached, Supracalcic, Yellow Kandosol; medium, non- gravelly, sandy / clay loamy, deep.

Summary of Properties

Drainage:	The soil profile is well drained.								
Fertility:	Inherent fertility is low, especially in the sandy topsoil where cation exchange capacity (which approximated by the sum of cations) is very low. Capacity to retain nutrients increases with increasing soil texture and cation exchange capacity below 25 cm, and especially below 62 cm. However, phosphorus levels are extremely low below the surface soil. Organic matter levels a low owing to sandy texture and the disturbed nature of the site. Maintenance and improvement of surface soil organic matter, residues and vegetative cover is extremely important for maintenance of fertility as well as protection against erosion.								
pH:	Soil pH is acidic in the surface soil, neutral in the subsurface layer and alkaline in the subsoil.								
Rooting depth:	Root growth was observed to the base of the pit, with most roots in the top 25 cm.								
Barriers to Root Growth									
Physical: A minor physical limitation to root growth occurs at around 62 cm where the subsoil increases									
Chemical:	Low fertility may limit root growth (e.g. very low phosphorus levels). Low zinc levels may also limit root growth. Surface organic carbon level is low.								
Water holding capacity:	Estimate for perennial vegetation to 170 cm = 95 mm (moderate) [(0.11x100)+(0.14x80)+(1.45x100x0.5)].								
Seedling emergence:	Good.								
Workability:	Good.								
Erosion Potential									
Water:	Low.								
Wind:	High. Residue retention and maintenance of surface cover are crucial for protection against erosion.								

Laboratory Data

Depth cm	pH H₂O	pH CaC1₂	CO₃ %	EC 1:5 dS/m	ECe dS/m	Org.C %	Avail. P mg/kg	Avail. K mg/kg	Cl mg/kg	SO₄ -S mg/kg	Boron mg/kg	Tr n Cu	ace El ng/kg Fe	emen (DTP# Mn	ts A) Zn	Sum cations cmol	E: Cati	xchan ons ci	mol(+	le)/kg	Est. ESP
																(+)/kg	Ca	IVIG	INd	ĸ	
Paddock	6.1	5.2	0	0.045	-	0.82	9	127	7.8	6.2	0.31	0.45	28.6	3.10	0.24	3.6	2.78	0.56	0.04	0.25	1.1
0-11	6.3	5.4	0	0.085	-	0.80	12	137	13.4	8.7	0.28	0.62	28.1	3.64	0.41	3.6	2.70	0.55	0.04	0.27	1.1
11–25	7.0	6.3	0	0.087	-	0.26	<2	120	8.0	5.1	0.32	0.42	13.2	1.13	0.08	3.4	2.32	0.71	0.05	0.28	1.5
25–62	8.9	7.9	0.45	0.129	-	0.08	<2	195	24.7	6.5	0.86	0.28	9.73	0.34	0.14	8.2	6.31	1.23	0.19	0.50	2.3
62–88	9.0	8.1	4.51	0.138	-	0.14	<2	184	30.9	3.3	1.45	0.35	7.80	0.42	0.26	13.1	9.23	3.15	0.25	0.47	1,9
88–125	9.1	8.3	7.51	0.137	-	0.15	2	260	19.1	3.1	3.90	0.54	7.79	0.28	0.25	13.7	7.59	4.89	0.58	0.67	4.2
125-175	9.1	8.3	4.29	0.205	-	0.07	<2	324	10.9	2.5	5.96	0.24	7.31	0.25	0.10	11.8	5.43	4.04	1.54	0.81	13.0

Note: Paddock sample bulked from 20 cores (0–10 cm) taken around the pit.

Sum of cations approximates the CEC (cation exchange capacity), a measure of the soil's capacity to store and release major nutrient elements.

ESP (exchangeable sodium percentage) is derived by dividing the exchangeable sodium value by the CEC, in this case estimated by the sum of cations.

Carbon Sequestration from Revegetation : South Australian Agricultural Regions | 125

AL BANK BA

VK

Government of South Australia

Department of Environment, Water and Natural Resources