Summary of Soil Analysis

Lower Lakes & Coorong Monitoring & Evaluation Project

per: Katherine Goss DENR
Date: 24 June 2012
Introduction

Soil sampling of revegetation sites has been conducted as part of the Lower Lakes and Coorong Monitoring and Evaluation Project. The site sampling and assessment has been carried out by Project Officer Regina Durbridge and Katherine Goss DENR and samples analysed for a full agricultural suite of tests at APAL Laboratory in Magill.

Revegetation plantings date from 2010 with further plantings in 2011 and this year with varied success. The establishment on some sites is described as excellent while on others the survival of plants is low.

It is anticipated that the results of soil analysis will reveal the soil limiting factors on each site and suggest possible amendment programs to improve the results.

Pro Ag Consulting has undertaken to provide in this report an interpretation of the laboratory analysis results, a summary of the most significant issues at each site and recommendations for amendment where needed.

Laboratory Analysis

The samples were tested for a comprehensive range of agricultural parameters including pH, conductivity, organic matter, nitrogen, phosphorus, sulphur, cations - calcium, magnesium, potassium sodium, trace elements - iron, manganese, copper , zinc and boron.

Samples were also given hand texturing classifications and a table supplied to estimate percentages of sand and clay present.

Individual graph reports have already been forwarded and the lab data sheets follow in this report.
Premium Soil Analysis

Account of: CLLMM
Agent: DEPARTMENT OF ENVIRONMENT & NATURAL RESOURCES
Date: 22 Jun 2012

<table>
<thead>
<tr>
<th>Farm:</th>
<th>Sample:</th>
<th>Lab No:</th>
<th>1 WMR 201 G063</th>
<th>2 WMR 201 G064</th>
<th>3 WMR 201 G065</th>
<th>4 WMR S & G066</th>
<th>5 WMR 201 G067</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ME/100g</td>
<td>pHw:</td>
<td>Organic Matter:</td>
<td>Total Nitrogen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td>kg/ha</td>
<td></td>
</tr>
<tr>
<td>NITROGEN:</td>
<td></td>
<td></td>
<td>kg/ha</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>NO3 (ppm)</td>
<td></td>
<td></td>
<td>138</td>
<td>36</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>NH3 (ppm)</td>
<td></td>
<td></td>
<td>31.88</td>
<td>9.40</td>
<td>1.50</td>
<td>4.19</td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td></td>
<td></td>
<td>9.65</td>
<td>0.90</td>
<td>0.90</td>
<td>6.60</td>
<td>1.20</td>
</tr>
<tr>
<td>SULPHUR:</td>
<td></td>
<td></td>
<td>kg/ha</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Desired</td>
<td></td>
<td></td>
<td>330</td>
<td>260</td>
<td>260</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>Found</td>
<td></td>
<td></td>
<td>317</td>
<td>263</td>
<td>252</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>Deficit</td>
<td></td>
<td></td>
<td>13</td>
<td>57</td>
<td>8</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Olsen (P):</td>
<td></td>
<td></td>
<td>ppm</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td></td>
<td></td>
<td>18</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P Recovery</td>
<td></td>
<td></td>
<td>60.00</td>
<td>100.00</td>
<td>100.00</td>
<td>96.00</td>
<td>100.00</td>
</tr>
<tr>
<td>CALCIUM:</td>
<td></td>
<td></td>
<td>kg/ha</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Desired</td>
<td></td>
<td></td>
<td>9,738</td>
<td>4,398</td>
<td>5,340</td>
<td>2,165</td>
<td></td>
</tr>
<tr>
<td>Found</td>
<td></td>
<td></td>
<td>1,764</td>
<td>1,363</td>
<td>401</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Deficit</td>
<td></td>
<td></td>
<td>1,129</td>
<td>1,034</td>
<td>95</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>MAGNESIUM:</td>
<td></td>
<td></td>
<td>kg/ha</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Desired</td>
<td></td>
<td></td>
<td>1,031</td>
<td>2,165</td>
<td>2,115</td>
<td>2,24</td>
<td></td>
</tr>
<tr>
<td>Found</td>
<td></td>
<td></td>
<td>1,224</td>
<td>1,036</td>
<td>188</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Deficit</td>
<td></td>
<td></td>
<td>1,224</td>
<td>1,036</td>
<td>188</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>POTASSIUM:</td>
<td></td>
<td></td>
<td>kg/ha</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desired</td>
<td></td>
<td></td>
<td>729</td>
<td>4,248</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Found</td>
<td></td>
<td></td>
<td>330</td>
<td>392</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficit</td>
<td></td>
<td></td>
<td>248</td>
<td>267</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SODIUM:</td>
<td></td>
<td></td>
<td>kg/ha</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4,492</td>
<td>637</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BASE SATURATION PERCENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Calcium (60 to 70%): | | | 30.65% | 46.26% | 54.84% | 50.67% | 47.27%
| Magnesium (10 to 20%): | | | 24.89% | 20.46% | 23.63% | 18.51% | 24.55%
| Potassium (2 to 5%): | | | 15.17% | 6.82% | 7.25% | 7.29% | 6.38%
| Sodium (0.5 to 3%): | | | 27.29% | 18.86% | 3.48% | 4.83% | 4.60%
| Other Bases (Variable): | | | 2.00% | 4.60% | 4.80% | 5.20% | 5.20%
| EXCHANGEABLE HYDROGEN (10 to 15%): | | | 0.00% | 3.00% | 6.00% | 13.50% | 12.00%
| Salinity 1:5 EC: | dS/m | ppm | 5.33 | 0.05 | 0.04 | 0.07 | 0.02 |
| Chlorides (ppm) | ppm | ppm | 23.11 | 0.65 | 0.42 | 0.33 | 0.13 |
| Boron (ppm) | ppm | ppm | 5.00 | 2.99 | 185.11 | 159.37 | 232.02 |
| Iron (ppm) | ppm | ppm | 6.06 | 10.12 | 13.20 | 12.49 | 4.98 |
| Manganese (ppm) | ppm | ppm | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
| Copper (ppm) | ppm | ppm | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Zinc (ppm) | ppm | ppm | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Cobalt (ppm) | ppm | ppm | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Molybdenum (ppm) | ppm | ppm | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Aluminum % | ppm | ppm | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Total Magnesium
Total Zinc
Premium Soil Analysis

APAL Laboratory Pty Ltd

Account of: CLMML

Agent: DEPARTMENT OF ENVIRONMENT & NATURAL RESOURCES
Date: 22 Jun 2012

<table>
<thead>
<tr>
<th>Farm:</th>
<th>Sample:</th>
<th>Lab No:</th>
<th>6 TGL 5 & G068</th>
<th>7 TGL 2011 G069</th>
<th>8 BNS 201 G070</th>
<th>9 BNS 201 G071</th>
<th>10 BNS 20 G072</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Exchange Capacity ME/100g</td>
<td>9.45</td>
<td>4.62</td>
<td>5.29</td>
<td>2.76</td>
<td>1.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pHw:</td>
<td>7.40</td>
<td>6.60</td>
<td>6.20</td>
<td>6.20</td>
<td>6.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Matter:</td>
<td>2.10</td>
<td>1.30</td>
<td>2.10</td>
<td>1.40</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NITROGEN:

<table>
<thead>
<tr>
<th>NO3 (ppm)</th>
<th>NH3 (ppm)</th>
<th>Total Nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/ha</td>
<td>64</td>
<td>46</td>
</tr>
</tbody>
</table>

SULPHUR:

| ppm | 13.5 | 9 | 12 | 7.5 | 10.5 |

PHOSPHORUS (Bray2):

<table>
<thead>
<tr>
<th>kg/ha</th>
<th>Desired</th>
<th>Found</th>
<th>Deficit</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td>431</td>
<td>366</td>
<td>260</td>
</tr>
</tbody>
</table>

Olsen (P):

<table>
<thead>
<tr>
<th>Total Phosphorus P Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>ppm</td>
</tr>
</tbody>
</table>

CALCIUM:

<table>
<thead>
<tr>
<th>kg/ha</th>
<th>Desired</th>
<th>Found</th>
<th>Deficit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,887</td>
<td>2,936</td>
<td>1,244</td>
<td>1,258</td>
</tr>
</tbody>
</table>

MAGNESIUM:

<table>
<thead>
<tr>
<th>kg/ha</th>
<th>Desired</th>
<th>Found</th>
<th>Deficit</th>
</tr>
</thead>
<tbody>
<tr>
<td>306</td>
<td>436</td>
<td>224</td>
<td>238</td>
</tr>
</tbody>
</table>

POTASSIUM:

<table>
<thead>
<tr>
<th>kg/ha</th>
<th>Desired</th>
<th>Found</th>
<th>Deficit</th>
</tr>
</thead>
<tbody>
<tr>
<td>345</td>
<td>704</td>
<td>273</td>
<td>315</td>
</tr>
</tbody>
</table>

SODIUM:

| kg/ha | 79 | 48 | 93 | 35 | 30 |

BASE SATURATION PERCENT

<table>
<thead>
<tr>
<th>Calcium (60 to 70%)</th>
<th>69.00%</th>
<th>60.54%</th>
<th>58.55%</th>
<th>60.87%</th>
<th>56.40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium (10 to 20%)</td>
<td>16.89%</td>
<td>18.89%</td>
<td>17.21%</td>
<td>16.67%</td>
<td>17.98%</td>
</tr>
<tr>
<td>Potassium (2 to 5%)</td>
<td>8.48%</td>
<td>7.88%</td>
<td>3.64%</td>
<td>2.80%</td>
<td>3.02%</td>
</tr>
<tr>
<td>Sodium (0.5 to 3%)</td>
<td>1.62%</td>
<td>2.00%</td>
<td>3.39%</td>
<td>2.47%</td>
<td>3.90%</td>
</tr>
<tr>
<td>Other Bases (Variable)</td>
<td>4.00%</td>
<td>4.80%</td>
<td>5.20%</td>
<td>5.20%</td>
<td>5.20%</td>
</tr>
</tbody>
</table>

EXCHANGEABLE HYDROGEN (10 to 15%):

<table>
<thead>
<tr>
<th>Salinity 1:5 EC:</th>
<th>dS/m</th>
<th>0.13</th>
<th>0.06</th>
<th>0.05</th>
<th>0.03</th>
<th>0.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorides (ppm)</td>
<td>ppm</td>
<td>0.63</td>
<td>0.32</td>
<td>0.30</td>
<td>0.16</td>
<td>0.11</td>
</tr>
<tr>
<td>Boron (ppm)</td>
<td>ppm</td>
<td>120.10</td>
<td>138.41</td>
<td>138.28</td>
<td>134.32</td>
<td>135.99</td>
</tr>
<tr>
<td>Iron (ppm)</td>
<td>ppm</td>
<td>25.31</td>
<td>10.93</td>
<td>26.14</td>
<td>21.03</td>
<td>18.29</td>
</tr>
<tr>
<td>Manganese (ppm)</td>
<td>ppm</td>
<td>0.10</td>
<td>0.10</td>
<td>0.13</td>
<td>0.13</td>
<td>0.20</td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>ppm</td>
<td>2.45</td>
<td>3.46</td>
<td>2.52</td>
<td>1.60</td>
<td>1.90</td>
</tr>
<tr>
<td>Zinc (ppm)</td>
<td>ppm</td>
<td>0.10</td>
<td>0.10</td>
<td>0.13</td>
<td>0.13</td>
<td>0.20</td>
</tr>
<tr>
<td>Cobalt (ppm)</td>
<td>ppm</td>
<td>2.45</td>
<td>3.46</td>
<td>2.52</td>
<td>1.60</td>
<td>1.90</td>
</tr>
<tr>
<td>Molybdenum (ppm)</td>
<td>ppm</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Aluminium %</td>
<td>ppm</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Magnesium</td>
<td>ppm</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Zinc</td>
<td>ppm</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Premium Soil Analysis

Agent: DEPARTMENT OF ENVIRONMENT & NATURAL RESOURCES
Date: 22 Jun 2012

Farm:
Sample:
Lab No: 11 BNS 20
12 BNS 5 &
G073

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>11 BNS 20 G073</th>
<th>12 BNS 5 & G074</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Exchange Capacity</td>
<td>ME/100g</td>
<td>3.54</td>
<td>29.97</td>
</tr>
<tr>
<td>pHw:</td>
<td>%</td>
<td>5.90</td>
<td>9.10</td>
</tr>
<tr>
<td>Organic Matter:</td>
<td>%</td>
<td>1.30</td>
<td>2.40</td>
</tr>
<tr>
<td>NITROGEN:</td>
<td>kg/ha</td>
<td>46</td>
<td>71</td>
</tr>
<tr>
<td>NO3 (ppm)</td>
<td>ppm</td>
<td>260</td>
<td>300</td>
</tr>
<tr>
<td>NH3 (ppm)</td>
<td>ppm</td>
<td>244</td>
<td>49</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>ppm</td>
<td>16</td>
<td>251</td>
</tr>
<tr>
<td>SULPHUR:</td>
<td>ppm</td>
<td>15</td>
<td>97.5</td>
</tr>
<tr>
<td>PHOSPHORUS(Bray2):</td>
<td>kg/ha</td>
<td>260</td>
<td>300</td>
</tr>
<tr>
<td>Desired</td>
<td>kg/ha</td>
<td>244</td>
<td>49</td>
</tr>
<tr>
<td>Found</td>
<td>kg/ha</td>
<td>16</td>
<td>251</td>
</tr>
<tr>
<td>Deficit</td>
<td>ppm</td>
<td>15</td>
<td>39</td>
</tr>
<tr>
<td>Olsen (P)</td>
<td>ppm</td>
<td>100</td>
<td>52</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>ppm</td>
<td>955</td>
<td>9,155</td>
</tr>
<tr>
<td>P Recovery</td>
<td>%</td>
<td>815</td>
<td>6,986</td>
</tr>
<tr>
<td>CALCIUM:</td>
<td>kg/ha</td>
<td>955</td>
<td>9,155</td>
</tr>
<tr>
<td>Desired</td>
<td>kg/ha</td>
<td>815</td>
<td>6,986</td>
</tr>
<tr>
<td>Found</td>
<td>kg/ha</td>
<td>140</td>
<td>2,169</td>
</tr>
<tr>
<td>Deficit</td>
<td>ppm</td>
<td>160</td>
<td>1,392</td>
</tr>
<tr>
<td>MAGNESIUM:</td>
<td>kg/ha</td>
<td>224</td>
<td>969</td>
</tr>
<tr>
<td>Desired</td>
<td>kg/ha</td>
<td>169</td>
<td>1,392</td>
</tr>
<tr>
<td>Found</td>
<td>kg/ha</td>
<td>55</td>
<td>2,169</td>
</tr>
<tr>
<td>Deficit</td>
<td>ppm</td>
<td>74</td>
<td>52</td>
</tr>
<tr>
<td>POTASSIUM:</td>
<td>kg/ha</td>
<td>225</td>
<td>725</td>
</tr>
<tr>
<td>Desired</td>
<td>kg/ha</td>
<td>151</td>
<td>997</td>
</tr>
<tr>
<td>Found</td>
<td>kg/ha</td>
<td>75</td>
<td>2,169</td>
</tr>
<tr>
<td>Deficit</td>
<td>ppm</td>
<td>55</td>
<td>3,886</td>
</tr>
<tr>
<td>SODIUM:</td>
<td>kg/ha</td>
<td>55</td>
<td>3,886</td>
</tr>
<tr>
<td>BASE SATURATION PERCENT</td>
<td></td>
<td>51.06%</td>
<td>51.79%</td>
</tr>
<tr>
<td>Calcium (60 to 70%):</td>
<td></td>
<td>17.50%</td>
<td>17.01%</td>
</tr>
<tr>
<td>Magnesium (10 to 20%):</td>
<td></td>
<td>4.83%</td>
<td>3.79%</td>
</tr>
<tr>
<td>Potassium (2 to 5%):</td>
<td></td>
<td>2.99%</td>
<td>25.11%</td>
</tr>
<tr>
<td>Sodium (0.5 to 3%):</td>
<td></td>
<td>5.60%</td>
<td>2.30%</td>
</tr>
<tr>
<td>Other Bases (Variable):</td>
<td></td>
<td>18.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>EXCHANGEABLE HYDROGEN (10 to 15%):</td>
<td></td>
<td>0.05</td>
<td>1.27</td>
</tr>
<tr>
<td>Salinity 1:5 EC:</td>
<td>dS/m</td>
<td>0.05</td>
<td>1.27</td>
</tr>
<tr>
<td>Chlorides (ppm)</td>
<td>ppm</td>
<td>196.94</td>
<td>5.00</td>
</tr>
<tr>
<td>Boron (ppm)</td>
<td>ppm</td>
<td>32.54</td>
<td>4.49</td>
</tr>
<tr>
<td>Iron (ppm)</td>
<td>ppm</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>Manganese (ppm)</td>
<td>ppm</td>
<td>1.70</td>
<td>1.00</td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>ppm</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>Zinc (ppm)</td>
<td>ppm</td>
<td>1.70</td>
<td>1.00</td>
</tr>
<tr>
<td>Cobalt (ppm)</td>
<td>ppm</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>Molybdenum (ppm)</td>
<td>ppm</td>
<td>1.70</td>
<td>1.00</td>
</tr>
<tr>
<td>Aluminium %</td>
<td>ppm</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>Total Magnesium</td>
<td>ppm</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>Total Zinc</td>
<td>ppm</td>
<td>1.70</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Control ID: 130
RunID: 12

PASM/DENR Lower Lakes & Coorong Monitoring & Evaluation Project
Page 5
Premium Soil Analysis

Account of: CLLMM
Agent: DEPARTMENT OF ENVIRONMENT & NATURAL RESOURCES
Date: 22 Jun 2012

Farm:
- **Sample:**
- **Lab No:**

Total Exchange Capacity
- **ME/100g**
- **pHw:**
- **Organic Matter:**%

NITROGEN:
- **NO3 (ppm):**
- **NH3 (ppm):**
- **Total Nitrogen:**

SULPHUR:
- **ppm**

PHOSPHORUS(Bray2):
- **kg/ha:**
 - Desired
 - Found
 - Deficit

Olsen (P):
- **ppm**
- **Total Phosphorus:**
- **P Recovery:**%

CALCIUM:
- **kg/ha:**
 - Desired
 - Found
 - Deficit

MAGNESIUM:
- **kg/ha:**
 - Desired
 - Found
 - Deficit

POTASSIUM:
- **kg/ha:**
 - Desired
 - Found
 - Deficit

SODIUM:
- **kg/ha**

BASE SATURATION PERCENT
- **Calcium (60 to 70%):**%
- **Magnesium (10 to 20%):**%
- **Potassium (2 to 5%):**%
- **Sodium (0.5 to 3%):**%
- **Other Bases (Variable):**%

EXCHANGEABLE HYDROGEN (10 to 15%):
- **Salinity 1:5 EC:**
- **Chlorides (ppm):**
- **Boron (ppm):**
- **Iron (ppm):**
- **Manganese (ppm):**
- **Copper (ppm):**
- **Zinc (ppm):**
- **Cobalt (ppm):**
- **Molybdenum (ppm):**
- **Aluminium %:**

Total Magnesium
- **ppm**

Total Zinc
- **ppm**

Control ID: 292 **RunID:** 16
Page 1 of 2

PASM/DENR Lower Lakes & Coorong Monitoring & Evaluation Project
Page 6
Premium Soil Analysis

Account of: CLLMM
Agent: DEPARTMENT OF ENVIRONMENT & NATURAL RESOURCES
Date: 22 Jun 2012

<table>
<thead>
<tr>
<th>Farm: Sample: Lab No:</th>
<th>18 WKN 20 M035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Exchange Capacity</td>
<td></td>
</tr>
<tr>
<td>ME/100g</td>
<td>3.76 5.40 1.90</td>
</tr>
<tr>
<td>pHw:</td>
<td></td>
</tr>
<tr>
<td>Organic Matter:</td>
<td>% 60</td>
</tr>
<tr>
<td>NITROGEN:</td>
<td></td>
</tr>
<tr>
<td>NO3 (ppm)</td>
<td>ppm</td>
</tr>
<tr>
<td>NH3 (ppm)</td>
<td>ppm</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td></td>
</tr>
<tr>
<td>SULPHUR:</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td>4.5</td>
</tr>
<tr>
<td>PHOSPHORUS (Bray2):</td>
<td></td>
</tr>
<tr>
<td>Desired kg/ha</td>
<td>260 179 81</td>
</tr>
<tr>
<td>Found kg/ha</td>
<td></td>
</tr>
<tr>
<td>Deficit kg/ha</td>
<td></td>
</tr>
<tr>
<td>Olsen (P):</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td>9</td>
</tr>
<tr>
<td>P Recovery %</td>
<td>96.60</td>
</tr>
<tr>
<td>CALCIUM:</td>
<td></td>
</tr>
<tr>
<td>Desired kg/ha</td>
<td>1,014 774 240</td>
</tr>
<tr>
<td>Found kg/ha</td>
<td></td>
</tr>
<tr>
<td>Deficit kg/ha</td>
<td></td>
</tr>
<tr>
<td>MAGNESIUM:</td>
<td></td>
</tr>
<tr>
<td>Desired kg/ha</td>
<td>224 110 114</td>
</tr>
<tr>
<td>Found kg/ha</td>
<td></td>
</tr>
<tr>
<td>Deficit kg/ha</td>
<td></td>
</tr>
<tr>
<td>POTASSIUM:</td>
<td></td>
</tr>
<tr>
<td>Desired kg/ha</td>
<td>239 63 176</td>
</tr>
<tr>
<td>Found kg/ha</td>
<td></td>
</tr>
<tr>
<td>Deficit kg/ha</td>
<td></td>
</tr>
<tr>
<td>SODIUM:</td>
<td></td>
</tr>
<tr>
<td>kg/ha</td>
<td>40</td>
</tr>
</tbody>
</table>

BASE SATURATION PERCENT
- Calcium (60 to 70%): 45.67%
- Magnesium (10 to 20%): 10.73%
- Potassium (2 to 5%): 1.92%
- Sodium (0.5 to 3%): 2.07%
- Other Bases (Variable): 6.60%

EXCHANGEABLE HYDROGEN (10 to 15%)
- Salinity 1:5 EC: ds/m 0.03
- Chlorides (ppm): ppm 0.10
- Boron (ppm): ppm 1.29
- Iron (ppm): ppm 0.10
- Manganese (ppm): ppm 20.10
- Copper (ppm): ppm 0.11
- Zinc (ppm): ppm 1.07
- Cobalt (ppm): ppm
- Molybdenum (ppm): ppm
- Aluminium % ppm
- **Total Magnesium** ppm
- **Total Zinc** ppm
Premium Soil Analysis

Account of: DEPT FOR ENVIRONMENT & NA
Agent: APAL
Date: 22 Jun 2012

<table>
<thead>
<tr>
<th>Farm:</th>
<th>19 DIX 2019 V006</th>
<th>26 AV02 V007</th>
<th>21 AV02 V008</th>
<th>22 NRR20 V009</th>
<th>23 NRR20 V010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab No:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Exchange Capacity</th>
<th>ME/100g</th>
<th>8.82</th>
<th>3.05</th>
<th>2.72</th>
<th>11.64</th>
<th>11.85</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHw:</td>
<td>5.50</td>
<td>5.60</td>
<td>5.90</td>
<td>7.10</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>Organic Matter:</td>
<td></td>
<td>1.70</td>
<td>0.71</td>
<td>0.72</td>
<td>2.10</td>
<td>1.80</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>kg/ha</td>
<td>55</td>
<td>28</td>
<td>28</td>
<td>64</td>
<td>57</td>
</tr>
<tr>
<td>SULPHUR:</td>
<td>ppm</td>
<td>13.5</td>
<td>9</td>
<td>10.5</td>
<td>13.5</td>
<td>12</td>
</tr>
<tr>
<td>PHOSPHORUS(Bray2):</td>
<td>kg/ha</td>
<td>Desired</td>
<td>Found</td>
<td>260</td>
<td>260</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deficit</td>
<td>260</td>
<td>260</td>
<td>270</td>
</tr>
<tr>
<td>Olsen (P):</td>
<td>ppm</td>
<td>18</td>
<td>6</td>
<td>7</td>
<td>26</td>
<td>33</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>ppm</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>P Recovery</td>
<td>%</td>
<td>100.00</td>
<td>100</td>
<td>100</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>CALCIUM:</td>
<td>kg/ha</td>
<td>Desired</td>
<td>Found</td>
<td>2,695</td>
<td>2,622</td>
<td>733</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deficit</td>
<td>2,658</td>
<td>2,642</td>
<td>509</td>
</tr>
<tr>
<td>MAGNESIUM:</td>
<td>kg/ha</td>
<td>Desired</td>
<td>Found</td>
<td>285</td>
<td>224</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deficit</td>
<td>363</td>
<td>127</td>
<td>85</td>
</tr>
<tr>
<td>POTASSIUM:</td>
<td>kg/ha</td>
<td>Desired</td>
<td>Found</td>
<td>381</td>
<td>193</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deficit</td>
<td>381</td>
<td>66</td>
<td>278</td>
</tr>
<tr>
<td>SODIUM:</td>
<td>kg/ha</td>
<td>84</td>
<td>35</td>
<td>62</td>
<td>66</td>
<td>78</td>
</tr>
</tbody>
</table>

BASE SATURATION PERCENT

- **Calcium (60 to 70%):** 41.75% 46.77% 41.57% 64.27% 78.03%
- **Magnesium (10 to 20%):** 15.08% 15.32% 18.76% 21.73% 13.38%
- **Potassium (2 to 5%):** 4.92% 2.47% 11.65% 8.60% 3.71%
- **Sodium (0.5 to 3%):** 1.85% 2.24% 4.42% 1.10% 1.27%
- **Other Bases (Variable):** 6.40% 6.20% 5.60% 4.30% 3.60%

EXCHANGEABLE HYDROGEN (10 to 15%)

- **Salinity 1:5 EC:** 0.08 0.03 0.05 0.15 0.11
- **Chlorides (ppm)** 0.31 0.13 0.18 0.99 0.84
- **Boron (ppm)** 200.58 136.29 133.61 126.16 125.27
- **Iron (ppm)** 49.57 27.94 27.05 51.72 44.25
- **Manganese (ppm)** 0.20 0.13 0.18 0.18 0.10
- **Copper (ppm)** 3.69 1.32 1.80 57.18 5.44
- **Zinc (ppm)**
- **Cobalt (ppm)**
- **Molybdenum (ppm)**
- **Aluminium %**
- **Total Magnesium** ppm
- **Total Zinc** ppm

Control ID: 485 **RunID:** 22

PASM/DENR Lower Lakes & Coorong Monitoring & Evaluation Project
Page 8
Account of: DEPT FOR ENVIRONMENT & NA
Agent: APAL
Date: 22 Jun 2012

<table>
<thead>
<tr>
<th>Farm:</th>
<th>Sample:</th>
<th>24 NRA 20 V011</th>
<th>25 BWB 20 V012</th>
<th>26 MCK 20 V013</th>
<th>27 MCK 20 V014</th>
<th>28 HAL 201 V015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab No:</td>
<td>Total Exchange Capacity ME/100g</td>
<td>22.84</td>
<td>40.34</td>
<td>6.36</td>
<td>7.40</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td>pHw:</td>
<td>8.30</td>
<td>8.10</td>
<td>6.10</td>
<td>6.10</td>
<td>6.50</td>
</tr>
<tr>
<td></td>
<td>Organic Matter: %</td>
<td>3.90</td>
<td>2.70</td>
<td>1.70</td>
<td>2.20</td>
<td>0.13</td>
</tr>
<tr>
<td>ANIONS</td>
<td>NITROGEN: kg/ha</td>
<td>89</td>
<td>78</td>
<td>55</td>
<td>66</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SULPHUR: ppm</td>
<td>15</td>
<td>88.5</td>
<td>13.5</td>
<td>21</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>PHOSPHORUS(Bray2): kg/ha Desired Found</td>
<td>280</td>
<td>976</td>
<td>260</td>
<td>260</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Deficit ppm ppm %</td>
<td>40</td>
<td>51</td>
<td>19</td>
<td>19</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Olsen (P) : Total Phosphorus P Recovery ppm ppm %</td>
<td>88.00</td>
<td>92.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>CALCIUM: Desired Found</td>
<td>6.975</td>
<td>5.293</td>
<td>2.317</td>
<td>2.217</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kg/ha: Deficit</td>
<td>5,293</td>
<td>6,373</td>
<td>1,280</td>
<td>1,280</td>
<td></td>
</tr>
<tr>
<td></td>
<td>435</td>
<td>435</td>
<td>435</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAGNESIUM: Desired Found</td>
<td>739</td>
<td>1,744</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kg/ha: Deficit</td>
<td>1,744</td>
<td>1,744</td>
<td>1,744</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POTASSIUM: Desired Found</td>
<td>648</td>
<td>1,213</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kg/ha: Deficit</td>
<td>1,213</td>
<td>1,213</td>
<td>1,213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SODIUM:</td>
<td>kg/ha</td>
<td>1,331</td>
<td>4,585</td>
<td>134</td>
<td>324</td>
<td>55</td>
</tr>
<tr>
<td>EXCHANGEABLE CATIONS</td>
<td>Calcium (60 to 70%):</td>
<td>51.50%</td>
<td>36.20%</td>
<td>44.67%</td>
<td>38.99%</td>
<td>46.42%</td>
</tr>
<tr>
<td></td>
<td>Magnesium (10 to 20%):</td>
<td>28.06%</td>
<td>32.11%</td>
<td>24.98%</td>
<td>28.81%</td>
<td>27.46%</td>
</tr>
<tr>
<td></td>
<td>Potassium (2 to 5%):</td>
<td>6.05%</td>
<td>6.38%</td>
<td>7.57%</td>
<td>5.02%</td>
<td>6.17%</td>
</tr>
<tr>
<td></td>
<td>Sodium (0.5 to 3%):</td>
<td>11.29%</td>
<td>22.03%</td>
<td>4.09%</td>
<td>8.47%</td>
<td>7.55%</td>
</tr>
<tr>
<td></td>
<td>Other Bases (Variable):</td>
<td>3.10%</td>
<td>3.30%</td>
<td>5.20%</td>
<td>5.20%</td>
<td>4.90%</td>
</tr>
<tr>
<td></td>
<td>EXCHANGEABLE HYDROGEN (10 to 15%):</td>
<td>0.00%</td>
<td>0.00%</td>
<td>13.50%</td>
<td>13.50%</td>
<td>7.50%</td>
</tr>
<tr>
<td>BASE SATURATION PERCENT</td>
<td>Salinity 1:5 EC: ds/m</td>
<td>0.46</td>
<td>1.28</td>
<td>0.09</td>
<td>0.17</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Chlorides (ppm) ppm</td>
<td>3.07</td>
<td>3.30</td>
<td>0.36</td>
<td>0.74</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>Boron (ppm) ppm</td>
<td>66.55</td>
<td>47.56</td>
<td>391.14</td>
<td>245.49</td>
<td>273.45</td>
</tr>
<tr>
<td></td>
<td>Iron (ppm) ppm</td>
<td>83.41</td>
<td>69.24</td>
<td>33.58</td>
<td>38.69</td>
<td>14.90</td>
</tr>
<tr>
<td></td>
<td>Manganese (ppm) ppm</td>
<td>0.10</td>
<td>0.10</td>
<td>0.21</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Copper (ppm) ppm</td>
<td>6.05</td>
<td>1.57</td>
<td>2.47</td>
<td>2.46</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>Zinc (ppm) ppm</td>
<td>6.05</td>
<td>1.57</td>
<td>2.47</td>
<td>2.46</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>Cobalt (ppm) ppm</td>
<td>6.05</td>
<td>1.57</td>
<td>2.47</td>
<td>2.46</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>Molybdenum (ppm) ppm</td>
<td>6.05</td>
<td>1.57</td>
<td>2.47</td>
<td>2.46</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>Aluminium % ppm</td>
<td>6.05</td>
<td>1.57</td>
<td>2.47</td>
<td>2.46</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>Total Magnesium ppm</td>
<td>6.05</td>
<td>1.57</td>
<td>2.47</td>
<td>2.46</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>Total Zinc ppm</td>
<td>6.05</td>
<td>1.57</td>
<td>2.47</td>
<td>2.46</td>
<td>1.21</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Total Exchange Capacity ME/100g</td>
<td>5.58</td>
<td>6.23</td>
<td>4.62</td>
<td>15.78</td>
<td>5.73</td>
<td></td>
</tr>
<tr>
<td>pHw</td>
<td>5.70</td>
<td>5.60</td>
<td>5.80</td>
<td>8.40</td>
<td>6.70</td>
<td></td>
</tr>
<tr>
<td>Organic Matter</td>
<td>0.80</td>
<td>1.10</td>
<td>1.00</td>
<td>1.90</td>
<td>1.70</td>
<td></td>
</tr>
</tbody>
</table>

NITROGEN: kg/ha	35	43	42	60	55
NO3 (ppm)					
NH3 (ppm)					
Total Nitrogen					

| SULPHUR: ppm | 22.5 | 21 | 16.5 | 19.5 | 21 |

PHOSPHORUS (Bray 2): kg/ha Desired	260	260	260	270	260
Found	130	195	154	16	236
Deficit	66	42	72	290	24

| Olsen (P): ppm | 2 | 3 | 2 | 7 | 13 |
| ppm Recovery | 96.00 | 100.00 | 96.00 | 4.00 | 96.00 |

CALCIUM: kg/ha Desired	1,505	1,679	1,246	4,819	1,545
Found	1,061	657	224	1,210	335
Deficit	444	422	98		

MAGNESIUM: kg/ha Desired	224	224	224	510	224
Found	273	299	260	374	55
Deficit	224	15			

POTASSIUM: kg/ha Desired	305	314	273	524	313
Found	251	242	172	148	304
Deficit	54	72	101	376	9

| SODIUM: kg/ha | 137 | 281 | 78 | 65 | 69 |

BASE SATURATION PERCENT	42.22%	36.47%	49.10%	86.46%	46.92%
Calcium (60 to 70%):	17.93%	17.17%	16.59%	8.68%	35.50%
Magnesium (10 to 20%):	5.11%	4.42%	4.23%	1.06%	6.04%
Potassium (2 to 5%):	4.74%	8.73%	3.28%	0.80%	2.34%
Sodium (0.5 to 3%):	6.00%	6.20%	5.80%	3.00%	4.70%
Other Bases (Variable):	24.00%	27.00%	21.00%	0.00%	4.50%

EXCHANGEABLE HYDROGEN (10 to 15%):	0.08	0.12	0.05	0.12	0.08
Salinity 1:5 EC: dS/m ppm					
Chlorides (ppm)	0.53	0.52	0.43	0.93	0.69
Boron (ppm)	301.16	462.47	161.84	5.00	190.40
Iron (ppm)	21.07	27.22	33.50	4.09	41.68
Manganese (ppm)	0.20	0.23	0.25	0.10	0.10
Copper (ppm)	0.00	0.00	1.00	1.00	4.36
Zinc (ppm)					
Cobalt (ppm)					
Molybdenum (ppm)					
Aluminium %					

| Total Magnesium ppm | | | | | |
| Total Zinc ppm | | | | | |
Premium Soil Analysis

Agent: APAL
Date: 24 May 2012

Farm: Sample: Lab No:

<table>
<thead>
<tr>
<th></th>
<th>34 LDB 201</th>
<th>35 LDB 201</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2008</td>
<td>2009</td>
</tr>
<tr>
<td>Total Exchange Capacity</td>
<td>1.36</td>
<td>5.62</td>
</tr>
<tr>
<td>pHw</td>
<td>6.70</td>
<td>6.80</td>
</tr>
<tr>
<td>Organic Matter:</td>
<td>0.17</td>
<td>1.90</td>
</tr>
</tbody>
</table>

NITROGEN:

<table>
<thead>
<tr>
<th></th>
<th>kg/ha</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO3 (ppm)</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>NH3 (ppm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

SULPHUR:

<table>
<thead>
<tr>
<th></th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25.5</td>
</tr>
</tbody>
</table>

PHOSPHORUS (Bray2):

<table>
<thead>
<tr>
<th></th>
<th>Desired</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>260</td>
<td>236</td>
</tr>
<tr>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>260</td>
<td>350</td>
</tr>
<tr>
<td>P Deficit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>P Recovery</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

CALCIUM:

<table>
<thead>
<tr>
<th></th>
<th>Desired</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>367</td>
<td>87</td>
</tr>
<tr>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,514</td>
<td>1,255</td>
</tr>
<tr>
<td>P Deficit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>Total Calcium</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>ppm %</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

MAGNESIUM:

<table>
<thead>
<tr>
<th></th>
<th>Desired</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>224</td>
<td>118</td>
</tr>
<tr>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>224</td>
<td>477</td>
</tr>
<tr>
<td>P Deficit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Total Magnesium</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td>ppm %</td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

POTASSIUM:

<table>
<thead>
<tr>
<th></th>
<th>Desired</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95</td>
<td>110</td>
</tr>
<tr>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>307</td>
<td>406</td>
</tr>
<tr>
<td>P Deficit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ppm %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SODIUM:

<table>
<thead>
<tr>
<th></th>
<th>kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>53</td>
</tr>
</tbody>
</table>

BASE SATURATION PERCENT

- Calcium (60 to 70%): 45.63% 49.64%
- Magnesium (10 to 20%): 28.41% 31.13%
- Potassium (2 to 5%): 9.24% 8.84%
- Sodium (0.5 to 3%): 7.52% 2.80%
- Other Bases (Variable): 4.70% 4.60%
- EXCHANGEABLE HYDROGEN (10 to 15%):

<table>
<thead>
<tr>
<th></th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity 1.5 EC:</td>
<td>0.06</td>
</tr>
<tr>
<td>Chlorides (ppm)</td>
<td>0.12</td>
</tr>
<tr>
<td>Boron (ppm)</td>
<td>0.40</td>
</tr>
<tr>
<td>ppm</td>
<td>0.91</td>
</tr>
<tr>
<td>Iron (ppm)</td>
<td>324.25</td>
</tr>
<tr>
<td>Manganese (ppm)</td>
<td>6.60</td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>0.10</td>
</tr>
<tr>
<td>Zinc (ppm)</td>
<td>1.00</td>
</tr>
<tr>
<td>Cobalt (ppm)</td>
<td>112.40</td>
</tr>
<tr>
<td>Molybdenum (ppm)</td>
<td>22.21</td>
</tr>
<tr>
<td>Aluminium %</td>
<td>3.12</td>
</tr>
<tr>
<td>ppm</td>
<td></td>
</tr>
</tbody>
</table>

Control ID: 563 RunID: 26
Premium Soil Analysis

Account of: DEPT FOR ENVIRONMENT & NA
Agent: APAL
Date: 15 Jun 2012

<table>
<thead>
<tr>
<th></th>
<th>36 HTR F1R F010</th>
<th>37 NRA 20 F011</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NITROGEN:</td>
<td></td>
</tr>
<tr>
<td>NO3 (ppm)</td>
<td></td>
</tr>
<tr>
<td>NH3 (ppm)</td>
<td></td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td></td>
</tr>
<tr>
<td>SULPHUR:</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>PHOSPHORUS(Bray2):</td>
<td>260</td>
<td></td>
<td></td>
<td></td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>kg/ha</td>
<td></td>
</tr>
<tr>
<td>Olsen (P):</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>CALCIUM:</td>
<td></td>
</tr>
<tr>
<td>kg/ha</td>
<td></td>
</tr>
<tr>
<td>MAGNESIUM:</td>
<td></td>
</tr>
<tr>
<td>kg/ha</td>
<td></td>
</tr>
<tr>
<td>POTASSIUM:</td>
<td></td>
</tr>
<tr>
<td>kg/ha</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>BASE SATURATION PERCENT</td>
<td></td>
</tr>
<tr>
<td>Calcium (60 to 70%):</td>
<td>51.80%</td>
<td></td>
<td></td>
<td></td>
<td>55.45%</td>
<td></td>
</tr>
<tr>
<td>Magnesium (10 to 20%):</td>
<td>10.55%</td>
<td></td>
<td></td>
<td></td>
<td>15.50%</td>
<td></td>
</tr>
<tr>
<td>Potassium (2 to 5%):</td>
<td>2.07%</td>
<td></td>
<td></td>
<td></td>
<td>6.54%</td>
<td></td>
</tr>
<tr>
<td>Sodium (0.5 to 3%):</td>
<td>2.38%</td>
<td></td>
<td></td>
<td></td>
<td>2.11%</td>
<td></td>
</tr>
<tr>
<td>Other Bases (Variable):</td>
<td>6.20%</td>
<td></td>
<td></td>
<td></td>
<td>5.40%</td>
<td></td>
</tr>
</tbody>
</table>

EXCHANGEABLE HYDROGEN (10 to 15%):

<p>| | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity 1:5 EC:</td>
<td></td>
</tr>
<tr>
<td>dS/m</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Chlorides (ppm):</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Iron (ppm):</td>
<td>148.29</td>
<td></td>
<td></td>
<td></td>
<td>218.19</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td>9.49</td>
<td></td>
<td></td>
<td></td>
<td>7.62</td>
<td></td>
</tr>
<tr>
<td>Manganese (ppm):</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>Copper (ppm):</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Zinc (ppm):</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Cobalt (ppm):</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Molybdenum (ppm):</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Total Magnesium</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td></td>
</tr>
<tr>
<td>Total Zinc</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td></td>
</tr>
</tbody>
</table>
Summary of analysis

There are some general patterns that have emerged in the laboratory results.

TEC
The samples are mainly light sandy soils with low total exchange capacity (TEC). They are likely to be well drained but will have limited nutrient and water holding capacity. This will mean that moisture will be a critical factor in the initial establishment of vegetation. The capacity of these soils to hold water and nutrients could be increased by adding organic matter or other commercially available products like Hydrocell and TerraCottem. There are some sites with loam and clay textured soil in addition to the sands.

pH
Samples vary from moderately acidic through neutral to some strongly alkaline sites associated with saline conditions. The acidic soils could be improved easily by broadcasting lime or dolomite - gypsum is also indicated on some sites. There is no easy way to reduce the pH of the alkaline sites so it will be important to plant species that will tolerate the high pH and saline conditions.

Organic matter
All sites have low organic matter which is probably due to their sandy texture and lack of healthy surface covering plants with good root systems. The only sample with adequate soil organic matter is Watkins 16 where there are mature trees. It may be possible to add and incorporate organic matter like compost before planting to improve plant establishment.

Nitrogen
Because soil organic matter is low, there is very little nitrogen that is available from mineralization.

Sulphur
Sulphur is generally low on all the sandy sites because it leaches readily down the profile with rainfall. The exceptions are those few sites with heavier soils and poor drainage, often also associated with salinity issues.

Phosphorus
Phosphorus levels are generally low except in some sites with higher TEC that may have had applications of fertilizer. The low P may not be a problem depending on the species being planted. However, although
some Australian native species are sensitive to phosphorus, many will respond to applications.

Cations (Ca, Mg, K & Na)
Calcium is generally low across most of the sites. *Magnesium* is high on some sites and with the low calcium, may be tightening these soils up so lime would be beneficial. Both calcium and magnesium are low in a couple of areas so dolomite would be a better option there. *Potassium* is low in about half the sites and could be added in a fertilizer program or as organic matter – compost is able to supply good amounts of available potassium. *Sodium* is elevated on seven of the sites some of which are saline but others aren’t. High exchangeable sodium or sodic soils tend to have poor structure because they are dispersive however if they are also saline the dispersion can be reduced. Adding lime, dolomite or gypsum where appropriate on these sodic soils can displace sodium with calcium and allow the sodium to leach.

Conductivity (salinity)
Only four sites are saline including lakes edge and poorly drained sites. It may be difficult to reduce the salinity unless the drainage can be improved.

Boron
Most sites have low boron because it will leach out of sandy soils. There are some sites however where boron is high enough to affect boron sensitive plants. These sites are the poorly drained, saline and sodic ones and plants that will tolerate salinity will usually tolerate elevated boron as well.

Trace Elements
Iron levels are generally good, particularly in the acidic soils, but manganese, copper and zinc are deficient in most samples. Trace elements could be added as part of a fertilizer mix before planting or added to planting holes in products like TerraCottem.

Amendment programs
The main issues identified in the analysis of soil samples are:

- Low nutrient and water holding capacity
- Low fertility of both major and trace elements
- Low calcium and high magnesium
- High exchangeable sodium, salinity and boron
I will therefore recommend:

- application of lime, dolomite or gypsum where appropriate.
- application of fertiliser and trace elements
- addition of organic matter as compost

Some other options to consider are:

Liquid calcium products – these materials may be useful in the saline and sodic sites and can be sprayed onto the soil surface before rainfall to saturate the soil with a highly available calcium source that helps to displace and leach sodium. Some examples are N-Cal, Aqua-Cal and Biologi-Cal.

Organic Matter – incorporating composted green organics has been found to be most successful in mine site revegetation. The Jeffries Group produces green organics compost in Adelaide from domestic green bin collection and it is in ready supply. Jeffries also have an B-Double truck with a blower that can lay down the compost as a surface mat. The truck also has a seed attachment that can incorporate any seeds you select into the compost as it is laid down. I believe that this method has great potential as it would protect and bind the soil surface together until it rained. After rain, the compost will help retain moisture and provide nutrients for germination. Over time it will also improve the underlying soil.

Compost could also be spread 20-25mm deep before planting and then incorporated along the planting lines or smaller amounts incorporated into just the planting hole soils.

There are also less bulky organic matter options like brown coal humates which could be used.

Water holding materials – I recommend trialing a product called Hydrocell which is a foam like material that provides water holding capacity, prevents compaction and can retain an oxygen supply to roots in water logged conditions. It will break down over 5 years and doesn’t leave any long term residues. eg spread Hydrocell 20mm deep along the planting lines and then make one pass with a rotary hoe to incorporate it into the top 100mm of soil.

TerraCottem is another commonly used material used at planting to provide nutrients and water holding capacity which could be included in trials. In revegetation projects it has been added to tubestock planting holes at the rate of 25g/tree.
Biological stimulants – these materials supply a food source to promote the establishment of beneficial soil organisms of all types and are generally a blend of molasses, kelp extracts, fish emulsions, humic and fulvic acids etc. Increased soil life will aid plant establishment and resilience and improve soil structure. Examples are Quad Shot and Neutrog Go Go Juice.

Fertilisers – custom blends to meet the identified requirements can be made up in Adelaide – contact Pro Ag for details.

Individual sites

The following is interpretation of results from individual sites and recommendations for amendment.

1)–(5) WESTMINSTER

This site was planted in 2010 and 3 samples were collected for analysis ranging from the saline lake edge and the sandy edge where there has been good establishment, to the sand dune where establishment has been poor. A sample was also taken from an adjacent paddock and another from a mature stand of trees for comparison.

1. Trees have established successfully on the saline edge and because it will probably be difficult to remove the source of the salinity, no amendment is recommended.

2. The sandy edge has established well but would benefit from the addition of lime and fertilizer.
 - Lime – broadcast 12kg/100m² lime
 - Broadcast the following fertilizer and trace elements per 100m²:
 - MAP 1.5kg
 - Manganese Sulphate 1kg
 - Zinc Sulphate 250g
 - Copper Sulphate 150g

3 & 4) The adjacent paddock and mature trees are similar soils to the sandy edge but with lower sodium. I assume that they will not be revegetated and have been include for comparison.
(5) The sand dune had poor establishment because of very low water and nutrient holding capacity. Fertility is also poor with low major and trace elements. When replanting I recommend trying the following to improve establishment.

Lime – broadcast 5kg/100m² lime

Organic material – spread Organic compost 25mm deep over the planting area. Incorporate into the top 100-150mm of soil with 1.5kg/100m² of Sulphate of Ammonia.

Broadcast the following fertilizer and trace elements per 100m²:

- MAP 1.5kg
- Sulphate of Potash 1.5kg
- Manganese Sulphate 1kg
- Zinc Sulphate 250g
- Copper Sulphate 150g
- Boron 150g

Additional options to trial:

- Hydrocell – spread Hydrocell 20mm deep along the planting lines and then make one pass with a rotary hoe to incorporate it into the top 100mm of soil.

- Nutrients – add 25g Terra Cottam to each tube-stock planting hole and increase the rate proportionally for larger trees and shrubs.

(6) & (7) COUNCIL TRIANGLE

Two samples were collected from this site. The first from an area of existing vegetation established more than five years ago and the second from a 2011 revegetation site. The soils are similar in many respects but organic matter has built marginally in the mature tree block and the soil has higher exchange capacity.

There is no indication of the health or success of the 2011 planting, however although the soil is light and sandy other indicators are reasonable. Sulphur and calcium are low so gypsum is recommended. Phosphorus and potassium are well supplied but trace elements manganese, copper and zinc need attention.

(6) In the established area broadcast 10kg/100m² gypsum if this is possible.
(7) In the 2011 planting area:

Gypsum – broadcast 10kg/100m² gypsum

Broadcast the fertilizer & trace elements per 100m²:
- Organic Base (manure/humates) 10kg
- Manganese Sulphate 1kg
- Zinc Sulphate 250g
- Copper Sulphate 150g
- Boron 150g

(8) - (12) BURNS

Four samples were collected from the Burns site where revegetation results from 2011 plantings have been poor. On both the top bank above the lake and an adjacent sandy paddock the establishment has been poor but better on the hill slope site. All samples have very low nutrient and water holding capacity (low TEC and organic matter). Sulphur, phosphorus, potassium and trace elements are all low. Site (10) will be planted this year and the soil is similar to the other areas so some extra preparation may be needed to ensure success.

A further sample (12) was taken from an area the landholder has previously revegetated five years or more ago. The soil here is very different being heavier, strongly alkaline and both saline and sodic. High sulphur and boron indicate poor drainage.

(8), (9) & (11) 2011 plantings

Gypsum – broadcast 5kg/100m² gypsum

Broadcast the fertilizer & trace elements per 100m²:
- Organic Base (manure/humates) 10kg
- MAP 1.5kg
- Sulphate of Potash 1.5kg
- Manganese Sulphate 1kg
- Zinc Sulphate 250g
- Copper Sulphate 150g
- Boron 150g

(10) Proposed 2012 planting

Gypsum – broadcast 5kg/100m² gypsum

Organic material – spread Organic compost 25mm deep over the planting area. Incorporate into the top 100-150mm of soil with 1.5kg/100m² of Sulphate of Ammonia.
Broadcast the fertilizer & trace elements per 100m²:
- Organic Base (manure/humates) 10kg
- MAP 1.5kg
- Sulphate of Potash 1.5kg
- Manganese Sulphate 1kg
- Zinc Sulphate 250g
- Copper Sulphate 150g
- Boron 150g

Additional options to trial:
- Hydrocell – spread Hydrocell 20mm deep along the planting lines and then make one pass with a rotary hoe to incorporate it into the top 100mm of soil.
- Nutrients – add 25g Terra Cottem to each tube-stock planting hole and increase the rate proportionally for larger trees and shrubs.

(12) Landholder planting – no action recommended if tolerant species are well established. Measures to reduce source of salinity would be beneficial.

(13)-(15) SHAW

Three samples were collected at this site, from the 2010 revegetation site and from under adjacent mature trees and paddock to give baseline data. The soils were hard and compacted in places.

All soils are very similar and although sandy have reasonable exchange capacity and some organic matter. They are acidic with very low calcium and because magnesium is high, this is making the soil tight and compact. You will note that the soil is hardest where magnesium is highest – lime is recommended. Sulphur, phosphorus and trace elements are needed.

(13)-(15) treat all Shaw sites the same way.

Lime – broadcast 25kg/100m² lime

Broadcast the fertilizer & trace elements per 100m²:
- Organic Base (manure/humates) 10kg
- MAP 1.5kg
- Sulphate of Potash 1.5kg
- Manganese Sulphate 1kg
- Zinc Sulphate 250g
- Copper Sulphate 150g
- Boron 150g
(16)-(18) WATKINS

Three samples were taken at the Watkins site from the 2011 planting, from the proposed site for 2012 planting and adjacent mature trees. There is no indication given of the success of the 2011 plantings.

The 2012 site (17) is sandy but has reasonable exchange capacity and some organic matter. It is acidic with very low calcium and magnesium so dolomite (mag lime) is recommended here. Sulphur, phosphorus, potassium and trace elements are needed.

(18) 2011 site

Dolomite – broadcast 10kg/100m² dolomite

Broadcast the fertilizer & trace elements per 100m²:

- Organic Base (manure/humates) 10kg
- MAP 1.5kg
- Sulphate of Potash 1.5kg
- Manganese Sulphate 1kg
- Zinc Sulphate 250g
- Copper Sulphate 150g
- Boron 150g

(17) 2012 apply dolomite and fertilizer as above and also try:

- Organic material – spread Organic compost 25mm deep over the planting area. Incorporate into the top 100-150mm of soil with 1.5kg/100m² of Sulphate of Ammonia.

- Hydrocell – spread Hydrocell 20mm deep along the planting lines and then make one pass with a rotary hoe to incorporate it into the top 100mm of soil.

- Nutrients – add 25g Terra Cottem to each tube-stock planting hole and increase the rate proportionally for larger trees and shrubs.

(19) DIX

This site was planted in 2010 and revegetation is poor. The testing shows that the soil is a sandy loam with reasonable nutrient holding capacity even though organic matter is low. Nutrient levels are not ideal but are not likely to be limiting. The main issue is very low calcium and elevated magnesium which may be tightening the soil up at this site so lime is recommended.
Lime – broadcast 30kg/100m² lime

(20) & (21) AUSTRALIAN OLIVE

Both samples were taken from the 2011 revegetation site and no indication was given about how successful establishment has been. The samples have similar test results which show that they are light sandy soils with low nutrient and water holding capacity and very low organic matter. Phosphorus, sulphur, potassium and trace elements are all low.

(20)-(21) treat both Australian Olive sites the same way.

Gypsum – broadcast 10kg/100m² gypsum

Broadcast the fertilizer & trace elements per 100m²:

- Organic Base (manure/humates) 10kg
- MAP 1.5kg
- Sulphate of Potash 1.5kg
- Manganese Sulphate 1kg
- Zinc Sulphate 250g
- Copper Sulphate 150g
- Boron 150g

(22) & (23) NARRUNG WETLAND

Two samples were tested from the 2011 revegetation site and from the proposed 2012 area. The 2011 plantings have been very successful with great establishment. These samples are similar sandy loams with good nutrient holding capacity and good levels of phosphorus and potassium and most trace elements. The 2011 planting area (22) has lower calcium and higher magnesium than ideal and gypsum could be beneficial, however because establishment has been so successful it is probably not necessary.

The proposed 2012 area (23) has ideal calcium:magnesium balance so establishment without any amendment would be expected to produce similar results to 2011. However it may be beneficial to trial some TerraCottem in the planting holes.

(22) – 2011 area – no amendment required

(23) – 2012 area. Nutrients – add 25g Terra Cottem to each tube-stock planting hole and increase the rate proportionally for larger trees and shrubs.
(24) & (37) NURRA NURRA

Two samples were taken from 2011 plantings from the flat and on the hillside and survival and establishment have been excellent in both areas.

The flat area (24) is heavy clay loam soil and has elevated salts, exchangeable sodium and boron with low calcium and high magnesium. The fact that establishment has been so good on this site shows that soil moisture is the most important factor in achieving successful revegetation. Amendment may be considered unnecessary however an application of gypsum would be beneficial.

Gypsum – broadcast 40kg/100m2 gypsum

The hill area (37) is very light sandy soil with very low organic matter and deficiencies of sulphur and trace elements so the fact that establishment has been good is inconsistent with other similar areas which have had problems. It may be due to an unknown factor like a thunderstorm providing moisture at a critical stage.

If the trees are well established and growing well, amendment will not be necessary, however if you want to improve growth try the following:

Gypsum – broadcast 5kg/100m2 gypsum

Broadcast the fertilizer & trace elements per 100m2:

- Organic Base (manure/humates): 10kg
- Sulphate of Potash: 1.5kg
- Manganese Sulphate: 1kg
- Zinc Sulphate: 250g
- Copper Sulphate: 150g
- Boron: 150g

(25) BROWNS BEACH

This is another 2011 planting into heavier saline and sodic soil where establishment has been good.

This area (25) has a heavy clay loam soil and elevated salts, exchangeable sodium and boron with very low calcium and high magnesium. The fact that establishment has been so good on this site shows that soil moisture is the most important factor in achieving successful revegetation. Amendment may be considered unnecessary
however and application of lime and gypsum combined would be beneficial.

Lime – broadcast 30kg/100m² lime
Gypsum – broadcast 30kg/100m² gypsum

(26) & (27) MCKINLAY

These areas were planted in 2010 and although vegetation established successfully, it was subsequently destroyed by fire. In area (26) there are no surviving plants but there are some in area (27).

The soils are sandy loams with reasonable nutrient holding capacity and good levels of sulphur, phosphorus and potassium so re-establishing vegetation should be as successful as the first time. The soil could be improved by liming to increase calcium and adding trace elements. Because major elements are good, the trace elements could be added to the planting holes.

(26) & (27) both areas:

Lime – broadcast 20kg/100m² lime

| Nutrients – add 25g Terra Cottem to each tube-stock planting hole and increase the rate proportionally for larger trees and shrubs. |

(28) HALL

There has been poor establishment on this site planted in 2011 because this appears to be almost pure sand with very low TEC and organic matter which limits its capacity to hold nutrients and water.

Nutrient levels are also low but if any replanting is to be successful the most important amendments will be those that increase water holding capacity.

Broadcast the fertilizer & trace elements per 100m²:

Organic Base (manure/humates)	10kg
MAP	1.5kg
Sulphate of Potash	1.5kg
Manganese Sulphate	1kg
Zinc Sulphate	250g
Copper Sulphate	150g
Boron	150g
Organic material – spread Organic compost 25mm deep over the planting area. Incorporate into the top 100-150mm of soil with 1.5kg/100m2 of Sulphate of Ammonia.

Also consider trialling:

Hydrocell – spread Hydrocell 20mm deep along the planting lines and then make one pass with a rotary hoe to incorporate it into the top 100mm of soil.

Nutrients – add 25g Terra Cottem to each tube-stock planting hole and increase the rate proportionally for larger trees and shrubs.

(29)-(31) BLAKE

Three samples were collected at this site from the 2011 planting area, adjacent remnant vegetation and the proposed 2012 planting area. Establishment of the 2011 plantings has been excellent and because the results from the 2012 site are similar the same results can be expected this year.

Both samples are sandy and would benefit from an application of lime and fertilizer and you could trial compost, Hydrocel and TerraCottem in the 2012 plantings to improve conditions but you may be happy enough with the present results from the site.

If you decide that amendment will be worthwhile:

(29) 2011 plantings

Lime – broadcast 30kg/100m2 lime

Broadcast the fertilizer & trace elements per 100m2:

- Organic Base (manure/humates) 10kg
- MAP 1.5kg
- Sulphate of Potash 1.5kg
- Manganese Sulphate 1kg
- Zinc Sulphate 250g
- Copper Sulphate 150g
- Boron 150g

(31) 2012 plantings

Apply lime and fertilizer as above and also trial:
Organic material – spread *Organic compost 25mm deep* over the planting area. Incorporate into the top 100-150mm of soil with 1.5kg/100m² of Sulphate of Ammonia.

Hydrocell – spread Hydrocell 20mm deep along the planting lines and then make one pass with a rotary hoe to incorporate it into the top 100mm of soil.

Nutrients – add 25g Terra Cottem to each tube-stock planting hole and increase the rate proportionally for larger trees and shrubs.

(32) GRIFFIN

The establishment of 2011 plantings on this site has been excellent. Although alkaline this is a good loam soil with good drainage but adequate nutrient and water holding capacity. No lime or gypsum is needed but phosphorus, potassium and trace elements are low and could be added.

If amendment is considered to be worthwhile:

Broadcast the fertilizer & trace elements per 100m²:

- Organic Base (manure/humates) 10kg
- MAP 1.5kg
- Sulphate of Potash 1.5kg
- Manganese Sulphate 1kg
- Zinc Sulphate 250g
- Copper Sulphate 150g
- Boron 150

(33) FEIBIG

This site was planted in 2011 and establishment has been poor. Although the exchange capacity and organic matter are higher than in other sites, calcium is very low and magnesium is very high and this may be having an impact on water holding capacity. Major nutrients and trace elements are also lower than desired but still higher than many other sites. Lime is recommended with fertilizer and trace elements if practical.

(33) 2011 plantings

Lime – broadcast 10kg/100m² lime
Broadcast the fertilizer & trace elements per 100m²:

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Base (manure/humates)</td>
<td>10kg</td>
</tr>
<tr>
<td>MAP</td>
<td>1.5kg</td>
</tr>
<tr>
<td>Manganese Sulphate</td>
<td>1kg</td>
</tr>
<tr>
<td>Zinc Sulphate</td>
<td>250g</td>
</tr>
<tr>
<td>Copper Sulphate</td>
<td>150g</td>
</tr>
<tr>
<td>Boron</td>
<td>150g</td>
</tr>
</tbody>
</table>

(34) & (35) LOVEDAY BAY

Two sites were sampled and both areas have had an excellent establishment of plants. Although (34) is lighter, these areas have ideal pH, good sulphur, phosphorus and potassium. Trace elements are low but obviously not limiting the establishment. Calcium is low and magnesium is high so an application of lime may be beneficial.

(34) & (35) 2011 plantings

Lime – broadcast 20kg/100m² lime

(36) HAYTER

The soil at this site is light acidic sand with low organic matter. Calcium and magnesium are both low so an application of dolomite would be beneficial. Phosphorus levels are good but sulphur, potassium and trace elements are needed.

This site is designated for fire and sugar trials. I am not sure what the requirements are for these trials but if the intention is to revegetate this area, I recommend the following:

Lime – broadcast 30kg/100m² lime

Broadcast the fertilizer & trace elements per 100m²:

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Base (manure/humates)</td>
<td>10kg</td>
</tr>
<tr>
<td>Sulphate of Potash</td>
<td>1.5kg</td>
</tr>
<tr>
<td>Manganese Sulphate</td>
<td>1kg</td>
</tr>
<tr>
<td>Zinc Sulphate</td>
<td>250g</td>
</tr>
<tr>
<td>Copper Sulphate</td>
<td>150g</td>
</tr>
<tr>
<td>Boron</td>
<td>150g</td>
</tr>
</tbody>
</table>

Apply lime and fertilizer as above and also trial:
Organic material – spread *Organic compost 25mm deep* over the planting area. Incorporate into the top 100-150mm of soil with 1.5kg/100m² of Sulphate of Ammonia.

Hydrocell – spread Hydrocell 20mm deep along the planting lines and then make one pass with a rotary hoe to incorporate it into the top 100mm of soil.

Nutrients – add 25g Terra Cottem to each tube-stock planting hole and increase the rate proportionally for larger trees and shrubs.
I am available to discuss the analysis results and program of amendment recommended for these sites, so please contact me if you have any queries.

Phil Barnett
Soil Consultant
phil@proagsoil.com.au
0417 925824

Disclaimer

The conclusions and recommendations included in this report are limited by the data available at the time of preparation. Soil is a continuum that may vary considerably between sampling and observation points and it is not possible to see, describe or measure everything that may exist below the soil surface. In practice sampling, soil survey techniques and laboratory analysis of samples will not always identify every characteristic of a soil or area assessed. Pro Ag has had no control over the sampling methodology employed or the areas sampled at these sites.
1. Sand and clay percentages based on texture

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Sand %</th>
<th>Clay %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
<td>88-100</td>
<td>0-9</td>
</tr>
<tr>
<td>Loamy Sand</td>
<td>65-92</td>
<td>0-11</td>
</tr>
<tr>
<td>Sandy Loam</td>
<td>70-80</td>
<td>10-20</td>
</tr>
<tr>
<td>Loam</td>
<td>50-64</td>
<td>12-26</td>
</tr>
<tr>
<td>Silty Loam</td>
<td>0-75</td>
<td>0-27</td>
</tr>
<tr>
<td>Sandy Clay Loam</td>
<td>64-82</td>
<td>18-30</td>
</tr>
<tr>
<td>Clay Loam</td>
<td>37-68</td>
<td>22-39</td>
</tr>
<tr>
<td>Silty Clay Loam</td>
<td>0-487</td>
<td>28-40</td>
</tr>
<tr>
<td>Sandy Clay</td>
<td>51-72</td>
<td>28-49</td>
</tr>
<tr>
<td>Light Clay</td>
<td>31-62</td>
<td>31-45</td>
</tr>
<tr>
<td>Silty Clay</td>
<td>0-34</td>
<td>41-75</td>
</tr>
<tr>
<td>Medium Clay</td>
<td>21-52</td>
<td>46-55</td>
</tr>
<tr>
<td>Heavy Clay</td>
<td>0-44</td>
<td>56-100</td>
</tr>
</tbody>
</table>

Figures in green indicate average figure of Sand% or Clay% range