Barrage Operating Strategy
Acknowledgements

Ngarrindjeri people are the descendants of the original inhabitants of the lands and waters of the River Murray, Lower Lakes, Coorong and adjacent areas. Ngarrindjeri have occupied, enjoyed, utilised and managed these traditional homelands since time immemorial.

The South Australian Government acknowledges that Ngarrindjeri are the Traditional Owners of the land and that according to their traditions, customs and spiritual beliefs its lands and waters remain their traditional country. The South Australian Government also acknowledges and respects the rights, interests and obligations of Ngarrindjeri to speak and care for their traditional country, lands and waters in accordance with their laws, customs, beliefs and traditions.
Figure 10. Cross section of Goolwa Barrage gates. 34
Figure 11. Cross section of Tauwitchere Barrage’s radial gate system. 35
Figure 12. South East Flows Restoration Project alignment map. 36

Tables

Table 1. Typical CLLMM barrage management actions considering water level and availability 10
Table 2. BMA category definition and examples. 12
Figure 5. Implementation phase. 18
Table 3 Reporting requirements for BMAs. 19
Table 4. Governance arrangements for each BMA category. 20
Table 5. Environmental water delivery requirements. 21
Table 6. Stakeholder engagement arrangements for BMAs. 23
Table 7. BMA consultation and engagement processes and agreements. 24
Table 8. Relevant legislation for water resource management in the Lower Lakes and Coorong. 26
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHD</td>
<td>Australian Height Datum</td>
</tr>
<tr>
<td>ANZECC</td>
<td>Australian and New Zealand Environment and Conservation Council</td>
</tr>
<tr>
<td>BMA</td>
<td>Barrage Management Actions</td>
</tr>
<tr>
<td>BOAG</td>
<td>Barrage Operations Advisory Group</td>
</tr>
<tr>
<td>BOS</td>
<td>Barrage Operating Strategy</td>
</tr>
<tr>
<td>BWEWS</td>
<td>Basin Wide Environmental Watering Strategy</td>
</tr>
<tr>
<td>BWLMP</td>
<td>Barrage and Water Level Management Policy</td>
</tr>
<tr>
<td>CAP</td>
<td>Community Advisory Panel</td>
</tr>
<tr>
<td>CEWH</td>
<td>Commonwealth Environmental Water Holder</td>
</tr>
<tr>
<td>CEWO</td>
<td>Commonwealth Environmental Water Office</td>
</tr>
<tr>
<td>CLLMM</td>
<td>Coorong, Lower Lakes and Murray Mouth</td>
</tr>
<tr>
<td>CMP</td>
<td>Condition Monitoring Plan</td>
</tr>
<tr>
<td>CPUE</td>
<td>Catch Per Unit Effort</td>
</tr>
<tr>
<td>Cth</td>
<td>Commonwealth</td>
</tr>
<tr>
<td>DAWR</td>
<td>Department of Agriculture and Water Resources (Commonwealth)</td>
</tr>
<tr>
<td>DEF</td>
<td>Drought Emergency Framework for Lake Alexandrina and Lake Albert</td>
</tr>
<tr>
<td>DEWNR</td>
<td>Department of Environment, Water and Natural Resources – amalgamation DENR and DFW in 2012</td>
</tr>
<tr>
<td>DMF</td>
<td>Decision Making Framework</td>
</tr>
<tr>
<td>DoEE</td>
<td>Department of Environment and Energy (Commonwealth)</td>
</tr>
<tr>
<td>EC</td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td>ECD</td>
<td>Ecological Character Description</td>
</tr>
<tr>
<td>EPA</td>
<td>Environment Protection Authority</td>
</tr>
<tr>
<td>EWMP</td>
<td>Environmental Watering Management Plan</td>
</tr>
<tr>
<td>EWR</td>
<td>Environmental Watering Requirements</td>
</tr>
<tr>
<td>GL</td>
<td>Gigalitre (1 GL = 1 billion litres)</td>
</tr>
<tr>
<td>km</td>
<td>Kilometres</td>
</tr>
<tr>
<td>KNYA</td>
<td>Kungun Ngarrindjeri Yunnan Agreement</td>
</tr>
<tr>
<td>LAC</td>
<td>Limits of Acceptable Change</td>
</tr>
<tr>
<td>LLCM</td>
<td>Lower Lakes, Coorong and Murray Mouth</td>
</tr>
<tr>
<td>LMRIA</td>
<td>Lower Murray Reclaimed Irrigation Area</td>
</tr>
<tr>
<td>LTEWP</td>
<td>Long Term Environmental Watering Plan</td>
</tr>
<tr>
<td>m</td>
<td>Metres</td>
</tr>
<tr>
<td>MDB</td>
<td>Murray-Darling Basin</td>
</tr>
<tr>
<td>MDBA</td>
<td>Murray-Darling Basin Authority</td>
</tr>
</tbody>
</table>
NRA Ngarrindjeri Regional Authority
NRM Natural Resource Management
PEA Priority Environmental Assets
PPT Parts per Thousand (eg g/L)
RMO River Murray Operations
RMP Ramsar Management Plan
RMW River Murray Waters
RMWAF River Murray Water Allocation Framework
SA Water South Australian Water Corporation
SA South Australia
SAG Scientific Advisory Group
SCBEWC Southern Connected Basin Environmental Water Committee
SEFR South East Flow Restoration
SOM Site Operating Manual
TLM The Living Murray
VLP Variable Lakes Project
1 Introduction

Water level management, and associated barrage management, in the Coorong, Lower Lakes and Murray Mouth (CLLMM) region is highly complex and often influenced by a range of competing interests and factors such as local weather conditions, which may result in trade-offs or the potential for sub-optimal delivery of water. With the increased return of environmental water to the Murray-Darling Basin through the Basin Plan and The Living Murray program, the volume provided to South Australia for environmental use has also increased. This water provides multiple environmental and socio-economic benefits to South Australia, but also increases the complexity of decision making processes with respect to Coorong and Lower Lakes water management. To ensure management decisions are transparent, robust and evidence based, the Barrage Operating Strategy (BOS) has been developed to inform and optimise barrage management actions undertaken by the Department of Environment, Water and Natural Resources (DEWNR) and SA Water.

2 Background

There are a number of strategies and processes that guide both barrage management actions and operations; however, prior to the Barrage and Water Level Management Policy (BWLMP) and BOS, South Australia did not have an endorsed policy or strategy for integrated water level and barrage management. Greater documentation of the operations and management of the Lower Lakes is required to ensure water management is adaptive, outcome driven and provides optimal ecological benefits to the region. Through the Variable Lakes Project (VLP), DEWNR documented an adaptive, evidence-based, decision making process to formalise water management of the CLLMM region, including management of water levels through barrage manipulation.

The BWLMP, produced and implemented through the VLP, provides the principles and critical operating limits for the practical management of water levels and the barrages. It also provides a mechanism for prioritising multiple, and at times competing, objectives that may be achieved through barrage management actions. The BOS informs barrage operations to support the BWLMP and outlines the governance arrangements, consultation processes, drivers and legislative considerations involved in the decision making process. A decision making framework (DMF) for structured and accountable decision making processes is also detailed within the BOS.

Both the BWLMP and BOS are supported by a Literature Review and Considerations Report that forms part of the documented information generated by the VLP. Both these documents can be referred to for further background and historical site management information.
3 Objectives

The objective of the BOS is to support the principles and implementation of the BWLMP. These principles are:

1. Support legislative objectives
2. Maximise environmental benefits
3. Utilise a risk-based approach
4. Apply the precautionary principle
5. Culturally and socially responsible management
6. Responsive and adaptive management
7. Evidence based and transparent decision making
8. Management for consumptive use

The BOS supports the relevant legislative objectives (as documented in the Considerations Report) including those under the Water Act 2007 and the Murray-Darling Basin Agreement. The processes outlined in the BOS apply to all barrage management actions and lake levels. The BOS aims to manage the Lower Lakes' water levels in a variable manner within an ideal operating range under normal conditions.

3.1 Variable Lake Water Levels

The preferred water level operating regime for the Lower Lakes, as defined by the BWLMP, under normal conditions is seasonally variable and ranges between +0.5 m AHD and +0.85 m AHD annually, while allowing for continued barrage releases. The operating water level range and variability will be dependent on the flow available in the River Murray system. This operating regime is for the benefit of ecological (eg fringing vegetation, fishway connectivity, temporal and spatial estuarine conditions and water quality), social (eg cultural heritage) and economic outcomes (eg irrigation). Lowering water levels to the minimum recommended height should only be implemented if expected flows are likely to reinstate water levels. Consideration of these factors must be made before intentionally reducing water levels to the minimum proposed operating level. Operating below the minimum operating level should be avoided unless scientific evidence can be provided to support such an action to achieve an objective (eg for fringing vegetation, wetting and drying cycles or acid sulfate soil cycling) and necessary risk assessments and mitigation options are undertaken. It is important to consider this as a water level operating range, hence water levels may rarely achieve the upper and lower limits of the range.

Variable water levels within the preferred operating range will support habitats for threatened fish and maintain and enhance aquatic vegetation (Muller, 2010). Under a variable water level operating regime, fringing aquatic vegetation will experience wetting and drying cycles that drive beneficial ecological outcomes. The variable water levels will provide ecological cues for fish migration and habitat for the southern bell frog and small-bodied fish. The water level range also ensures that:

- most fishways are able to be operated year-round
- connectivity between the Lower Lakes and the Coorong is maintained
- freshwater can be delivered to the Coorong via barrage releases
- salt loads are exported from the Murray-Darling Basin to the Southern Ocean.
3.2 Barrage Management Action Options and Priorities

In seeking to meet multiple and often competing objectives, Barrage Management Actions (BMAs) options must be prioritised. Undertaking BMAs requires the assessment and consideration of multiple trade-offs. Such trade-offs include the management of water levels in the Lower Lakes versus releases through the barrages. Any decision to manage water levels and barrage releases must consider the requirements of the Murray-Darling Basin Plan, the Murray-Darling Basin Ministerial Council’s Drought Emergency Management Framework for Lake Alexandrina and Lake Albert (DEF) (noting the BWLMP and BOS do not seek to override the DEF but to complement it), and BWLMP and BOS objectives.

Decisions relating to water level management and barrage releases must also consider any specific obligations placed on the delivery of environmental water, including any special arrangements as determined by environmental water holders such as the Commonwealth Environmental Water Holder (CEWH). DEWNR agrees to an annual CLLMM Watering Schedule, which is prescriptive on the use and management of Commonwealth Environmental Water.

Generally, when water levels are at or below +0.4 m AHD, the barrages will be closed. As more water is made available, and lake water levels increase, the operating priorities for managing water levels and enabling barrage releases are:

1. ensure water levels can be maintained above 0.0 m AHD 100% of the time, and above +0.4 m AHD 95% of the time, as per the Murray-Darling Basin Plan
2. increase lake water levels to create sufficient driving head to enable the barrages to be opened as soon as possible, subject to local tide and weather conditions
3. open fishways to reinstate connectivity and enable fish passage. The order in which each barrage is opened will be discussed with SARDI fish scientists and DEWNR Environmental Operations staff
4. open additional bays to establish attractant flows for fish migration. SARDI fish scientists will advise on the appropriate order and timing
5. open additional bays to achieve other ecological objectives.

Table 1 provides an outline of the operational actions to be undertaken as water availability improves. Under some flow conditions (eg large unregulated flows) the ability to actively manage barrage releases may be limited. As water levels in the Coorong increase, due to freshwater inflow, the differential head may decrease and therefore restrict additional barrage releases, this is particularly relevant when receiving unregulated flows.
Table 1. Typical CLLMM barrage management actions considering water level and availability

<table>
<thead>
<tr>
<th>Increasing water level</th>
<th>Increasing water availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water levels less than 0.5 m AHD and low water availability</td>
<td>Maintain water levels to ensure level does not drop below 0.0 m AHD (Basin Plan).</td>
</tr>
<tr>
<td>Water levels from 0.5 m AHD up to 0.7 m AHD</td>
<td>Assess and model water availability Prioritise releases at the fishways</td>
</tr>
</tbody>
</table>
| **Water levels from 0.7 m AHD up to 0.85 m AHD** | Assess small-scale priority actions under watering Schedule and Environmental Watering Plan/Proposal. These may include:
- Ensure continuous fishway releases with attractant flow to provide passage for diadromous fish
- Extending the duration of lake surcharge (ie 0.8 – 0.85 m AHD) until the end of December, for threatened fish and frog breeding outcomes in Lower Lakes fringing wetlands | Assess medium-scale priority actions under watering Schedule and Environmental Watering Plan/Proposal. These may include:
- Winter high-flow barrage releases to encourage upstream lamprey migration
- Late spring/early summer barrage releases from the Pelican Point end of Tauwitchere Barrage. This will increase Coorong South Lagoon water levels and reduce Coorong South Lagoon salinity, which are required for *Rupphia tuberosa* outcomes | Assess large-scale operational actions that could be undertaken (subject to water availability). These may include:
- Scouring opportunities at the Murray Mouth (particularly if dredging)
- Optimise barrage releases to improve North and South Coorong Lagoon salinity levels. This will promote and maintain habitat and recruitment for estuarine fish species populations
- Water level cycling to increase the export of salt from Lake Albert |
4 Drought Emergency Framework

The purpose of the Drought Emergency Framework for Lake Alexandrina and Lake Albert (DEF), approved by the Murray-Darling Basin Ministerial Council in June 2014, is to guide decision making processes for the management of the Lower Lakes during extreme drought. Fundamental to this framework is the development of an early warning indicator, which will be triggered when water levels are predicted to fall below +0.4 m AHD. When this trigger is reached, a Murray-Darling Basin inter-jurisdictional High Level Steering Committee will be formed to provide sufficient lead-time to enable a well-considered management approach (MDBA, 2014a).

The underlying management objectives and principles for the DEF include:

1. avoid irreversible damage through acidification of the Lower Lakes system
2. consider the ecological risks of acid sulfate soil management options and, as far as possible, avoid options that compromise mid to long-term options
3. consider the impacts of salinity, not only acidity
4. recognise that as water levels decrease, the acid risks increase and so do the costs of management actions
5. prevention of acid sulfate soil (avoiding exposure) is preferable to treatment or neutralisation.

The DEF has a decision support tool to facilitate a timely response to a future drawdown event. This includes two phases: a planning phase (lake levels +0.4 m to 0.0 m AHD) and an emergency actions phase (lake levels 0.0 m AHD to -2.7 m AHD) that incorporates four levels delineating likely impacts and potential management actions (MDBA, 2014a). Under the BOS, +0.5 m AHD is the preferred minimum water level for the Lower Lakes under most circumstances. At water levels less than +0.5 m AHD, the DEF must be considered in unison with the BOS and BWLMP.
5 Barrage Management Actions

Barrage Management Actions (BMAs) represent decisions taken by DEWNR to meet the objectives of the BWLMP. BMAs aim to ensure the CLLMM water levels and barrage releases are sufficient to maintain the ecological character of the Coorong and Lakes Alexandrina and Albert Ramsar Wetland, and ensure lake levels are sufficient to allow for delivery of water for Critical Human Water Needs and consumptive entitlement holders in the Lower Murray.

BMAs are determined by a Decision Making Framework (DMF) described in Section 6. The DMF is applied to each BMA. There are a large number of possible BMAs, which range from short term, simple actions involving a few barrage gates to long-term, complex actions involving multiple barrages. BMAs are categorised as minor, moderate or major, as identified in Table 2.

Table 2. BMA category definition and examples.

<table>
<thead>
<tr>
<th>BMA Category</th>
<th>Event type</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor</td>
<td>Daily – regular events</td>
<td>Fishway management, Attractant flows</td>
</tr>
<tr>
<td>Moderate</td>
<td>Monthly – targeted events</td>
<td>Murray Mouth scouring, Large fish migration release event, Lake water level cycling event</td>
</tr>
<tr>
<td>Major</td>
<td>Yearly – high flow or low/no flow periods</td>
<td>Unregulated flow event, Major release event, Large scale lake water level cycling, Extremely limited water availability</td>
</tr>
</tbody>
</table>

Implementation of BMAs is described in Section 6 with associated consultation processes described in Section 8 of this document. Reporting requirements for BMAs are described in Section 6.7.
6 Decision Making Framework

The Decision Making Framework (DMF) is a critical component of the BOS. The DMF is a management tool that facilitates transparent, efficient and adaptive decision making for all BMAs. The DMF is applied to achieve the relevant social, economic, cultural and environmental objectives for the CLLMM region. The DMF is a top-down process involving the consideration of issues relevant to BMAs. The DMF has 7 key phases that together constitute a method for control and adaptive management of barrage operations. The 7 phases are shown in Figure 1 and each phase consists of a number of steps. Between a couple of the phases there are ‘check points’ designed to allow decision makers to reassess the BMA and determine if the action should proceed, based on the best information available.

![Diagram of Decision Making Framework]

Figure 1. Key phases in Decision Making Framework.
6.1 Operating scenario

The first phase in the DMF determines the operating scenario within which the proposed BMA will be undertaken. Forecast operating scenarios are routinely used by the MDBA and DEWNR to plan for River and barrage operations (see Considerations Report). For the BOS there are three possible operating scenarios that could apply:

1. low flow (less than Entitlement Flow) including environmental water (if available)
2. entitlement flow (1 850 GL) including environmental water
3. unregulated flow.

Identifying the operating scenario requires a preliminary assessment of the River Murray system’s status i.e the Lower Lakes, Coorong and Basin-wide current and forecast status. The assessment process is described in Figure 2 and includes current flow to South Australia, the volume held in the MDBA controlled storages, Lower Lakes water levels as well as forecast system conditions (including the MDBA forecast scenarios). This phase also identifies opportunities to use environmental water and flows from the South East (Section 9.6). The delivery of additional water may assist to achieve objectives that are not possible with the current and/or forecast flows in the system. Modelling of current and future conditions at this phase may help to determine the operating scenario. Consultation with Commonwealth Environmental Water Office (CEWO) will determine the likelihood of the delivery of environmental water. An important step within this phase is consideration of lessons learnt, which arise from the review process shown in Figure 6 and considered in Section 6.7.

Figure 2. Operating scenario phase.
6.2 Determine objective(s)

Once the operating scenario and expected flow regime (from South Australian border to the Lower Lakes) have been defined, the next phase in the DMF involves determining the objective(s) to be targeted by the BMA. The objective(s) may be derived from a range of legislated and non-legislated instruments, including the Basin Plan, the Basin-wide environmental watering strategy, TLM LLCMM Long Term Watering Plan (LTWP), South Australian Long Term Watering Plan, and the Ramsar Management Plan. When water availability is constrained (eg during low flow or drought scenarios) the achievable objective(s) will be constrained. When South Australia’s water availability increases, such as through South Australia receiving unregulated flow, additional objectives can be achieved. Note that where environmental water is available, it must be used for environmental outcomes.

6.3 Objective(s) feasibility

Once the objective(s) have been selected, their feasibility or suitability is assessed within the context of the operating scenario. Within this phase there are a number of steps that are detailed in Figure 3.

![Figure 3. Objective(s) feasibility phase.](image)

6.3.1 Prioritisation principles

Where more than one objective is considered possible, given the operating scenario and water availability, then the first step in the objective feasibility analysis is to prioritise the objectives based on the principles and prioritisation criteria in the BWLMP. These will be considered along with the principles under the Basin Plan’s Division 1 – Principles to be applied to determine priorities s8.53 to s8.59.
6.3.2 Resource assessment

This step describes the metrics of the available water and represents the current status of the water resources expected to be managed by barrage operations. Where the operating scenario determination step involves a Basin-wide assessment, the resource assessment is specific to the available water for a BMA. This includes the volume, duration and timing of water delivery, regardless of the source and type of water.

6.3.3 Considerations

This step assesses considerations for the proposed operating scenario or flow regime to achieve desired objective(s). Some physical considerations, such as climatic conditions, have a temporal influence on the efficacy of a BMA and must be assessed on a case-by-case basis. Operational considerations are discussed in more detail in Section 9.

6.3.4 Trade-offs

Where more than one objective is considered for a BMA, there are likely to be trade-offs or complementary outcomes. An example of a complementary outcome is when barrage releases are undertaken for salinity targets in the Coorong estuary, whilst also improving Coorong water levels for Ruppia. An example of a trade-off is when water levels are surcharged (i.e. barrage releases are reduced) to wet riparian vegetation surrounding the lakes in preference to barrage releases for fish migration and attractant flow. More examples of known trade-offs are detailed in the Consideration Report. Determining potential trade-offs and the priority of particular objectives is undertaken through consultation with interested parties including groups detailed in Table 4. The following prioritisation principles assist in determining priority objectives during this step:

1. Critical need and water demand: The need for a particular hydrological regime for a targeted objective should be informed by the condition of the environmental asset to be targeted and its consumptive demands.

2. Water resource availability: This includes the current and future availability of River Murray water resources informed by the MDBA’s projections of South Australia’s Entitlement Flow and other sources of water such as Additional Dilution Flow, environmental water and unregulated flow.

3. Operational feasibility: Operators will seek to achieve the highest priority objectives possible for the given water resource availability and BMA operating conditions.

4. Lessons learned: Prioritisation will consider the outcomes of previous BMAs through a transparent review process.

6.4 Targeted objective(s)

After consideration of the Objective Feasibility phase, appropriate objective(s) can be selected and advanced and the most appropriate BMA strategy to achieve the targeted objective(s) can be determined.
6.5 Strategy determination

Figure 4 describes the various steps within the BMA strategy determination phase that are needed to achieve the targeted objective(s).

6.5.1 Operational options

To achieve a targeted objective(s), there may be multiple operational actions that could be undertaken eg different barrage release timings, barrage splits or pulses vs steady flows. Each potential operational action will be considered as to whether, or not, the action is viable. This phase may also require modelling to determine the viability or effectiveness of a proposed action.

6.5.2 Risk assessment

Each BMA will have a level of risk associated with it. Reviewing and undertaking a risk assessment (where applicable) will limit the potential options, or alternatively, determine the mitigation option required to undertake the action. Risk is determined in accordance with the AS/NZS ISO 31000:2009 Risk Management – Principles and guidelines. A summary of the risk matrix and identified potential risks is provided in the Considerations Report (see Table 10 of Considerations Report).
6.5.3 Propose action

Given consideration of the operational options, constraints and any necessary assessment of risk, the appropriate BMA may be formulated and approved consistent with the governance arrangements outlined in Section 7. The form of the proposal will vary depending on the category of BMA to be undertaken (eg moderate BMAs may require an event management plan).

6.5.4 Consultation

The proposed BMA, BMA proposal and the targeted objective(s), may require consultation with relevant stakeholders (eg environmental water holders) or area experts such as the CLLMM Scientific Advisory Group (SAG) and Community Advisory Panel (CAP). The consultation process will provide stakeholders with an opportunity to provide feedback. The proposed BMA may be refined and re-proposed to relevant stakeholders based on their comments.

6.5.5 Refine and endorse

Once the BMA strategy is determined and the consultation process has been undertaken, it will be refined and endorsed by the appropriate stakeholder(s). The appropriate endorsee for each BMA category of operation is detailed in Section 7 and Table 4.

6.6 Implementation

The implementation phase ensures that proposed and endorsed BMAs are undertaken and, where appropriate, monitored to evaluate their success (Figure 5). The type and scale of monitoring is dependent on the scale of the BMA. Minor actions will likely only require basic operational monitoring of telemetered water quality stations and barrage data, whereas a moderate or major action may require more detailed monitoring and evaluation, including intervention monitoring. Monitoring is important for the adaptive management of BMAs and where possible will be coordinated with ongoing monitoring programs such as those undertaken as part of The Living Murray condition and intervention monitoring projects.

6.7 Review

This step involves reviewing the implemented BMA and any associated monitoring information (Figure 6) and evaluating its effectiveness and success. This process will include documenting internal discussions and the BMA. This step will also facilitate continuous improvement of the DMF, BWLMP and the BOS.
Figure 6. Review phase.

The reporting and evaluation process will differ based on the scale of the BMA. The current reporting requirements for BMAs are illustrated in Table 3. Some event based reporting of minor BMAs may occur via email from operators to key stakeholders.

Table 3 Reporting requirements for BMAs.

<table>
<thead>
<tr>
<th>BMA Category</th>
<th>Reporting requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor</td>
<td>• weekly SA River Murray Flow Reports</td>
</tr>
<tr>
<td>Moderate</td>
<td>• weekly SA River Murray Flow Reports</td>
</tr>
<tr>
<td></td>
<td>• monthly CEWO reports</td>
</tr>
<tr>
<td></td>
<td>• Parliamentary Briefing Notes (PBNs)</td>
</tr>
<tr>
<td></td>
<td>• Annual reporting</td>
</tr>
<tr>
<td>Major</td>
<td>• weekly SA River Murray Flow Reports</td>
</tr>
<tr>
<td></td>
<td>• monthly CEWO reports</td>
</tr>
<tr>
<td></td>
<td>• Parliamentary Briefing Notes (PBNs)</td>
</tr>
<tr>
<td></td>
<td>• Annual reporting</td>
</tr>
</tbody>
</table>

6.7.1 Lessons learnt

Lessons learnt is a critical step in the adaptive management and continuous improvement cycle of BMAs. Lessons learnt will be documented on an as-needs-basis in the reporting requirements for BMAs, including in monthly environmental water use reports. In addition to documenting lessons learnt, they will be considered at the beginning of the DMF process. Monitoring and reporting also assists in the development and documentation of BMAs and their outcomes. Future operations will take into account the lessons learnt, particularly given the dynamic nature of operating in the CLLMM region.
7 Governance for Implementation

7.1 Barrage Operations

DEWNR is responsible for the development and management of BMAs for the Lower Lakes and Coorong, with input from stakeholders (including environmental water holders and interest groups). Under appointment by the Minister for Water and the River Murray, SA Water is responsible for the physical operation of River Murray Assets. These assets include weirs, locks and barrages as well as other regulating structures. River Murray Assets are controlled through the Joint Venture between South Australia and the Commonwealth (through the MDBA). Governance arrangements include engagement with other agencies, such as SA Water, MDBA and Commonwealth Environmental Water Office (CEWO).

Governance arrangements for BMAs are shown in Table 4, which includes stakeholders and decision makers. Responsibility for endorsement or approval of BMAs varies depending on the complexity of the action(s) being undertaken. An ‘X’ in Table 4 indicates the position responsible for endorsing or approving decisions depending on the BMA category. In executing the delegated authority for moderate and major BMAs, the Director River Murray Operations must have regard for water, environment and infrastructure. Moderate and major BMAs also require advice to be provided to the Group Executive Director Water, DEWNR Chief Executive and to the Office of the South Australian Minister/s responsible for the environment and water. Additional consultation processes are detailed in Section 8.

Table 4. Governance arrangements for each BMA category.

<table>
<thead>
<tr>
<th>Position</th>
<th>Agency</th>
<th>BMA category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minor</td>
</tr>
<tr>
<td>Chief Executive, DEWNR</td>
<td>DEWNR</td>
<td></td>
</tr>
<tr>
<td>Group Executive Director, Water Group</td>
<td>DEWNR</td>
<td></td>
</tr>
<tr>
<td>Director, River Murray Operations</td>
<td>DEWNR</td>
<td></td>
</tr>
<tr>
<td>Manager, Environmental Water</td>
<td>DEWNR</td>
<td></td>
</tr>
<tr>
<td>Assets General Manager</td>
<td>MDBA</td>
<td></td>
</tr>
<tr>
<td>Senior Manager, River Murray Operations</td>
<td>SA Water</td>
<td>X</td>
</tr>
<tr>
<td>Manager, Water Resource Operations</td>
<td>DEWNR</td>
<td></td>
</tr>
<tr>
<td>Coordinator, Lower River Murray</td>
<td>SA Water</td>
<td></td>
</tr>
<tr>
<td>Coordinator, River Murray Operations</td>
<td>SA Water</td>
<td></td>
</tr>
</tbody>
</table>

X = Position accountable for BMA approval or endorsement.

* = notification for moderate flow actions while dredging at the Murray Mouth.
7.2 Environmental water use

There are multiple sources of environmental water that could be made available to achieve environmental outcomes in the CLLMM. The holders of environmental water each undertake their own decision-making processes concerning the site, volume, timing and delivery of environmental water. The delivery of environmental water to the Lower Lakes and Coorong site has a number of requirements at both a Basin and state level. These are summarised in Table 5.

Table 5. Environmental water delivery requirements.

<table>
<thead>
<tr>
<th>Environmental Water source</th>
<th>Delegate</th>
<th>Delivery Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Living Murray (TLM)</td>
<td>Joint governments (Commonwealth, New South Wales, South Australian and Victorian governments) through the Southern Connected Basin Environmental Water Committee (SCBEWC)</td>
<td>State government agencies develop environmental water proposals prior to the start of the water year. These are prepared for a range of climatic scenarios. For each site outline objectives, water requirements, risks and alignment with the Basin-wide environmental watering strategy and the Basin annual environmental watering priorities. The proposals are collated by the MDBA, with coordination opportunities identified and an assessment of water availability (supply) to meet identified demands. An operational scenarios document is produced for consideration by SCBEWC. SCBEWC then reviews and approves a commitment of the available water to the agreed watering actions. These are periodically reviewed and where necessary revised throughout the year. With respect to unregulated flows, upstream states should not access water that is destined for high priority objectives to be met in SA where proposed and approved by SCBEWC.</td>
</tr>
<tr>
<td>River Murray Increased Flows (RMIF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commonwealth environmental water holdings</td>
<td>CEWH</td>
<td>The CEWO develops Portfolio Management Plans at the start of each water year, which identify broad environmental demands within a catchment and the how the water portfolio can be managed in response to these demands. These plans are developed based on input from state government agencies, river operators, local communities, scientists and past learnings. The CEWH commits volumes of Commonwealth environmental water to specific activities, based on an assessment against five criteria (http://www.environment.gov.au/water/cewo/publications/criteria-assessing-options-cew-use). These decisions are then given effect by watering schedules, which are agreed with the relevant state agency and outline targeted objectives, the possible volumes available, delivery timing, operations/management and reporting requirements. The water supplied by the CEWH and provided to South Australia will be utilised for the activities documented and agreed to under these schedules.</td>
</tr>
<tr>
<td>Victorian environmental water (return flows)</td>
<td>The Victorian Environmental Water Holder (VEWH)</td>
<td>The VEWH makes decisions on the use of their water for outcomes within Victoria. Under certain circumstances, ‘return flows’ from these actions are made available for use in South Australia. Where return flows are available, these are transferred onto the South Australian Minister’s licence and use of this water is determined by DEWNR.</td>
</tr>
</tbody>
</table>
DEWNR provides updates to environmental water holders through multiple mechanisms, including:

- quarterly plans for barrage operations over the next three months
- fortnightly updates through Barrage Operations Advisory Group
- monthly reports including the volume of environmental water used for barrage releases, outcomes and lessons learnt
- annual reporting processes for environmental water holders and as identified in the Basin Plan.
8 Consultation Processes

Table 6 identifies the engagement arrangements with stakeholders associated with BMAs. The level of engagement will vary depending on the scale and complexity of the BMA. For minor BMAs, engagement with stakeholders may only require the provision of basic information such as an advisory email or more in-depth consultation when environmental water is used. For moderate or major BMAs, the level of engagement may increase to include consultation, where feedback on the BMA is sought, or active involvement in decision making, where stakeholder concerns are reflected and feedback is provided on how stakeholder input influenced the BMA. Communication in these instances will typically be face-to-face with the outcome/agreement confirmed in writing. Consultation will be undertaken to align with scheduled meetings and feedback documented as required.

Table 6. Stakeholder engagement arrangements for BMAs.

<table>
<thead>
<tr>
<th>Name</th>
<th>BMA Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minor</td>
</tr>
<tr>
<td>Scientific Advisory Group (SAG)</td>
<td>✓*</td>
</tr>
<tr>
<td>CLLMM Community Advisory Panel (CAP)</td>
<td>✓*</td>
</tr>
<tr>
<td>Southern Fishermen’s Association</td>
<td>✓*</td>
</tr>
<tr>
<td>Boating and Tourism Group</td>
<td>✓*</td>
</tr>
<tr>
<td>NRA</td>
<td></td>
</tr>
<tr>
<td>Barrage Operations Advisory Group (BOAG)</td>
<td>✓*</td>
</tr>
<tr>
<td>PIRSA Fisheries</td>
<td>✓*</td>
</tr>
<tr>
<td>MDBA</td>
<td>✓*</td>
</tr>
<tr>
<td>Environmental Water Holders¹</td>
<td>✓*</td>
</tr>
</tbody>
</table>

*As required.
¹ to be consulted when environmental water is used

There are a number of additional plans and agreements that have their own consultation processes to influence or provide guidance for BOS, such as in the Kungun Ngarrindjeri Yunnan Agreement (KNYA). Under the KNYA the South Australian Government has agreed to a number of acknowledgements and conditions that must be adhered to, and considered, during the decision process. Through the KNYA, the Ngarrindjeri are acknowledged as the Traditional Owners of the lands and waters (in accordance with the Ngarrindjeri and Others Native Title Claim/ Federal Court Action No. SG 6027/98). Under the KNYA, support is provided by DEWNR and other organisations to the Ngarrindjeri Regional Authority (NRA) to increase communication and knowledge sharing with the South Australian Government (detailed under Section 5: Consultation of the KNYA). The additional plans and agreements that are relevant to the BOS engagement are detailed in Table 7.
<table>
<thead>
<tr>
<th>Document</th>
<th>Consultation Requirements</th>
<th>Appropriate Representatives</th>
</tr>
</thead>
</table>
| Kungun Ngarrindjeri Yunnan Agreement | Section 5 of the KNYA stipulates consultation requirements that include:
• subject matters
• timing
• reporting. | Ngarrindjeri Regional Authority (NRA) |
| Basin Plan 2012 | Consultation requirements are provided in a number of sections within the Plan including for:
• s8.15 Preparation of a Basin-wide environmental watering strategy
• s8.20 Preparation of long-term watering plans
• s8.35(b) and 8.39 Principles to be applied in environmental watering
• s8.29 Preparation of Basin annual environmental watering priorities
• s10.53 Consultation and preparation of a water resource plan. | Appropriate representatives include:
• Basin States
• local communities
• MDBA
• CEWH
• persons materially affected by the management of environmental water
• river operators
• managers of planned environmental water
• relevant Indigenous organisations. |
| SA Long Term Watering Plan | Currently same as Basin Plan but will be reviewed following accreditation of SA River Murray Water Resource Plan | • Community Advisory Panel (CLLMM CAP)
• Scientific Advisory Group (CLLMM SAG)
• NRA |
| Lower Lakes, Coorong and Murray Mouth: | Implementation of the EWMP includes an engagement and communications Strategy. This document identifies key stakeholders and the level of engagement. | • Community Advisory Panel (CLLMM CAP)
• Scientific Advisory Group (CLLMM SAG)
• NRA |
| Environmental Water Management Plan | | |
| Lower Lakes, Coorong and Murray Mouth Community Engagement and Communications Strategy | | |
| Ecological Character Description and Ramsar | Documents are currently being drafted. This section will be updated when it is completed. | • DEWNR site Manager |
| Management Plan | | |
| Lakes and Coorong Fisheries Management Plan | Consultation requirements are given effect via governance described in the Plan. | • Southern Fishermen’s Association
• Lakes and Coorong Fishery Management Advisory Committee |
9 Operational Considerations

The operational considerations for the BOS are described in detail in the following sections and include considerations and constraints that may influence the management and DMF process for water level and barrage management.

9.1 Legislation

Supporting legislated objectives is an important principle of the BWLMP and BOS. Key pieces of legislation and associated legislative instruments provide regulatory guidance for the management of water resources including, or specifically for, the River Murray and the CLLMM region. The legislation relevant to BMAs and the CLLMM region are described in more detail in the Considerations Report and presented in Table 8 below.
Table 8. Relevant legislation for water resource management in the Lower Lakes and Coorong.

<table>
<thead>
<tr>
<th>Legislation</th>
<th>Description</th>
<th>CLLMM region related objectives</th>
<th>Relevant sections</th>
</tr>
</thead>
</table>
| **Water Act 2007 (Cth)** | Provides for the management of Murray-Darling Basin water resources and for other matters of national interest in relation to water and water information, and for related purposes. This includes the establishment of the MDBA, CEWH and the requirements to develop the Basin Plan. | Facilitates the management of the Basin through elements such as the development of the Basin Plan and the Murray-Darling Basin Agreement.
In developing the Basin Plan, according to Division 1, Subdivision B, Section 21(3) of the *Water Act 2007* (Cth), the Murray-Darling Basin Authority is required to give effect to the Ramsar Convention (and a number of other international environmental agreements), and to promote the wise use of all the Basin water resources and the conservation of declared Ramsar wetlands.
The CEWH must manage the Australian Government’s environmental water holdings to protect or restore environmental assets, and to give effect to relevant international agreements (which includes wetlands listed under the Ramsar Convention). | Part 2 – Management of Basin water resources
Part 6 – Commonwealth Environmental Water Holder |
| **The Murray-Darling Basin Plan (Basin Plan)** | The Basin Plan is a statutory instrument that has obligations for governments to sustainably manage and use the waters of the Murray–Darling Basin under the *Water Act 2007* (Cth). The Basin Plan came into effect in November 2012, and will be reviewed and revised throughout a seven year implementation phase. | The Basin Plan’s overall objectives and outcomes, the environmental watering plan and water quality and salinity management plan include objectives and targets relevant to the CLLMM. Chapter 8 outlines principles to be applied to environmental watering, which includes watering consistent with the objectives, maximising outcomes, having regard to local views, Indigenous values, social and economic outcomes, cost of environmental watering, risks, relevant international agreements and applying adaptive management.
The environmental watering plan also requires the development of the Basin-wide environmental watering strategy, long-term watering plans for water resource areas, as well as Basin and state annual watering priorities (all of which relate to the CLLMM management).
The Basin Plan requires the Water Resource Plan for the region include specific arrangements for environmental watering, water quality and Indigenous values and uses. | Chapter 5 – Objectives
Chapter 8 – Environmental Watering Plan
Chapter 9 – Water Quality and Salinity Management Plan
Chapter 10 – Water Resource Plan requirements
Chapter 13 – Monitoring and Evaluation |
<table>
<thead>
<tr>
<th>Legislation</th>
<th>Description</th>
<th>CLLMM region related objectives</th>
<th>Relevant sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>River Murray Act 2003 (SA)</td>
<td>Provides for the protection and enhancement of the River Murray and related areas and ecosystems.</td>
<td>Ensures that all reasonable and practicable measures are taken to protect, restore and enhance the River Murray in recognition of its critical importance to the South Australian community and its unique value from environmental, economic and social perspectives.</td>
<td>Part 2 – Objects of the River Murray Act 2003 and statutory objectives</td>
</tr>
<tr>
<td>Aboriginal Heritage Act 1988 (SA)</td>
<td>Provides a legislative basis for recognising and protecting Aboriginal heritage, specifically in relation to culturally significant sites, objects or remains on all land and waters.</td>
<td>This legislation gives effect to the Meeting of the Waters registered heritage site, which is central to the life and culture of the Ngarrindjeri people, who continue to live on their traditional country. It also gives effect to the Kungun Ngarrindjeri Yunnan Agreement 2009 and Speaking As Country Deed 2014.</td>
<td>Part 3 – Protection and preservation of Aboriginal heritage Division 6 – Aboriginal heritage agreements</td>
</tr>
<tr>
<td>National Parks and Wildlife Act 1972 (SA)</td>
<td>Provides for the establishment and management of reserves for public benefit and enjoyment; to provide for the conservation of wildlife in a natural environment; and for other purposes</td>
<td>Facilitates the preservation and management of wildlife and preservation of historic sites, objects and structures including within the Coorong National Park.</td>
<td>Section 37 – Objectives of Management Schedule 3 – National Parks</td>
</tr>
<tr>
<td>Environment Protection and Biodiversity Conservation Act 1999 (Cth)</td>
<td>Provides for the protection of the environment, especially those aspects of the environment that are matters of national environmental significance</td>
<td>Stipulates what areas are considered wetlands of international significance under the Ramsar Convention. Provides for the protection of the CLLMM as a Ramsar listed wetlands, including through requiring approval of activities likely to have a significant impact on the ecological character of a Ramsar wetland.</td>
<td>Subdivision B – Wetlands of international importance (Section 16-17B)</td>
</tr>
<tr>
<td>Environment Protection and Biodiversity Conservation Regulations 2000 (Cth)</td>
<td>For subsection 335 (1) of the Act, the Australian Ramsar management principles for the management of wetlands included in the List of Wetlands of International Importance kept under the Ramsar Convention are set out in Schedule 6.</td>
<td>Schedule 6 describes the general principles, management planning actions and environmental impact assessment and approval requirements for actions undertaken in a Ramsar declared area. These include the need to describe the ecological character (ECD) for the Ramsar site.</td>
<td>Environment Protection And Biodiversity Conservation Regulations 2000 – Schedule 6, 1. General principles</td>
</tr>
<tr>
<td>Legislation</td>
<td>Description</td>
<td>CLLMM region related objectives</td>
<td>Relevant sections</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| Environment Protection Act 1993 (SA) | Provides for the protection of the environment; to establish the EPA and define its functions and powers; and for other purposes. | Protects the South Australian environment from point source pollution including the protection of Water Protection Areas. | Part 8 – Special environment protection provisions
Division 1 – Water quality in water protection areas
Division 2 – Contravention of mandatory provisions
34 – Offence to contravene mandatory provisions of policy |
| Environment Protection (Water Quality) Policy 2015 (SA) | A mandatory provision of policy under the Environment Protection Act 1993 (SA). | Outlines the protection of South Australian waters including the Coorong and Lower Lakes. | 3 – Interpretation
Part 2 – Water quality measures |
| Natural Resources Management Act 2004 (SA) | Promotes sustainable and integrated management of the State's natural resources (including the CLLMM region). Provides the basis upon which allocations are granted to River Murray water access entitlement holders in South Australia via the River Murray Water Allocation Plan. | Protects biological diversity and, insofar as is reasonably practicable, to support and encourage the restoration or rehabilitation of ecological systems and processes that have been lost or degraded. Protection and management of catchments and the sustainable use of land and water resources and, insofar as is reasonably practicable, seeks to enhance and restore or rehabilitate land and water resources that have been degraded. | Division 1 – Regional NRM Plans
Division 2 – Water allocation plans |
| South Eastern Water Conservation and Drainage Act 1992 (SA) | Provides for the conservation and management of water and the prevention of flooding of rural land in the South East. | Manages surface waters and drainage in the south east, and releases of drainage waters into the South Lagoon of the Coorong pursuant to the Upper South East Drainage Network Management Strategy. | Objects of the Act: the SEWCD Board must act consistently with the objects of the River Murray Act 2003 (SA) and the objectives for a healthy River Murray in that Act when taking actions within, or in relation to, any part of the Murray-Darling Basin within the meaning of the Murray-Darling Basin Act 1993 (Cth) |
9.2 Climate and Physical

The climatic conditions and physical characteristics of the CLLMM can influence the success of BMAs achieving their objectives. Wind, sea level change, photoperiod (hours of daylight/night time) and tide actions are important climatic drivers within the CLLMM region. These climate drivers will change seasonally and annually (eg El Nino and La Nina events). In addition, the geomorphic and hydrological characteristics can inhibit or enhance BMA outcomes.

9.2.1 Wind

Wind strength, duration and direction can influence the Lower Lakes and Coorong differential head through the effect it has on water levels upstream and downstream of the barrages. Mean wind speeds peak during summer and are dominated by southerly winds (Figure 7). North-west to south-west winds generally increase water levels in the Coorong. Winter winds are predominantly from the north-west through west to north-east (Figure 8). Wind direction has a strong influence on achieving the BMA’s objectives. For example, for the BMA Murray Mouth Scouring objective, winds from a north to north westerly direction are preferred. Whereas winds from a north-west to south westerly direction are preferred for Coorong salinity objectives. Other considerations such as barrage splits (the distribution of water releases between the barrages) in conjunction with wind direction will also influence BMA effectiveness. Wind direction can also inhibit the effectiveness of some BMAs and cause potentially undesirable outcomes such as reverse flows. This is more likely to occur when winds prevail from the south.

When determining preferred BMAs, the predicted wind conditions should be assessed to determine the opportunities and risks they potentially pose.

The combination of high velocity winds and the shallow depth of the Lower Lakes can also increase wave action and wind seiche. Seiching is the wind driven movement of water and can cause mixing of the water column, erosion in the littoral zones and resuspension of sediments. Wind direction and seiching play an important and often significant role in the hydrodynamics of the Lower Lakes. Together they influence the exchange of freshwater between the Lower Lakes, Coorong and seawater entering from the Murray Mouth.
Figure 7. Wind rose direction versus wind speed in km/h (01 June 1989 to 24 Jan 2003) for December at Goolwa (Hindmarsh Island Marina).

Figure 8. Wind rose direction versus wind speed in km/h (01 June 1989 to 24 Jan 2003) for August at Goolwa (Hindmarsh Island Marina).
9.2.2 Tide and Storm Surges

The Coorong is estuarine, meaning it is a zone where barrage releases (freshwater) meet tidal inflows from the Murray Mouth (seawater). The height of tidal events dictate the extent of mudflat exposure or submergence, which in-turn influences physio-chemical and ecological processes. Tidal variability within the Coorong estuary occurs primarily on a diurnal frequency. Due to the restriction of flow through the Murray Mouth, the tidal impact on Coorong water levels is lower than the tidal impact on the open-ocean coastline. The southern part of the Coorong is even less impacted by tides. Tidal variability alters the differential head between the Coorong and Lake Alexandrina, with a decreasing gradient during high tides and increasing gradient during low tides. In addition, persistent storm surges can alter the differential head between the Coorong and Lake Alexandrina, typically elevating Coorong water levels during autumn and winter.

BMAs need to consider tidal variability and storm surges as these may influence, inhibit, or enhance, the ability of a BMA to achieve its objective. Some critical considerations for tidal influence include:

- difficulty releasing water during high tide events due to low differential head;
- mean daily tidal water levels are highest during winter/spring and lowest during summer/autumn;
- high tides and storm surges are more common in winter/spring resulting in barrage closures; and
- high tides and storm surges can cause reverse head conditions and seawater intrusion if the barrages are open.

Based on the above considerations, BMAs should aim to take advantage of lower tides and avoid unfavourable conditions (e.g. high tides and storm surges), in conjunction with other climatic conditions (e.g. wind direction).

9.2.3 Evaporation

The Lower Lakes and Coorong have a relatively shallow depth and large surface area. This leads to large evaporation losses, particularly during the hot summer months where rainfall is much lower. The average annual evaporation for the Coorong is estimated at approximately 96 per cent of the average Coorong water storage or 170 GL per annum.

Evaporation is a major determining factor for water level management and barrage operations between summer and autumn. The evaporation rates contribute significantly to water level and salinity changes in the Lower Lakes and Coorong. When evaporation exceeds precipitation and freshwater inflows, salinity in the Coorong can increase to several times that of seawater, particularly in the Southern Lagoon where there are limited freshwater inflows. Once fully implemented, the SEFR Project (Section 8.6) will provide an additional tool to manage salinity in the Southern Lagoon, which will complement other salinity management actions at the barrages.

A potential BMA is to surcharge the Lower Lakes’ water levels prior to the hot summer months, to assist in preparing and managing water levels for probable high losses (evaporation and increased consumptive demand, mainly irrigation). This assists the maintenance of Lower Lakes water levels during the summer-autumn period and enables some barrage releases to the Coorong. This mode of surcharging the Lower Lakes will be considered on a case-by-case basis and determined by a combination of factors, including the climate forecast, water availability, River Murray flow (regulated and unregulated conditions), objectives relating to environmental water delivery and outcomes to be achieved in the Coorong.
9.2.4 Hydrology

The hydrology of the CLLMM region is a complex, spatially and temporally variable interaction of inflows from the River Murray, tributaries, local rainfall, groundwater and the Southern Ocean. Lake Alexandrina predominantly receives freshwater from the River Murray, entering near the township of Wellington. Other sources of inflow include the Eastern Mount Lofty Ranges, local tributaries, direct rainfall and local run-off. Lake Albert is a terminal lake that predominantly receives its inflows from Lake Alexandrina via the Narrung Narrows, as well as from local rainfall. The Coorong receives inflows from multiple sources including the Lower Lakes via the barrages, from the South East via Salt Creek (including from the SEFR project), local rainfall and from the Southern Ocean via the Murray Mouth.

Lower Lakes water levels are a critical factor to enable BMAs to achieve targeted objectives. Under the BWLMP, Lower Lake water levels will be managed in a variable range, which will fluctuate seasonally to maintain the ecological character of the site. BMAs will need to consider River Murray flow conditions, such as large unregulated flow events. This could limit options for barrage releases, as the only option may be to open all barrages.

9.2.5 Geomorphology

As an open Murray Mouth is an identified objective of the Basin Plan and LTWP, BMAs need to consider the geomorphology of the CLLMM. The position of the Murray Mouth is dynamic, migrating over 1.6 km since the 1830s, with migration of up to 6 km over the past 3000 years. Movements of 14 m in 12 hours have been observed under storm (high wave energy) conditions. These documented changes demonstrate the dynamic nature of the River Murray estuary. While sand dredging is an effective intervention tool to maintain an open Murray Mouth during low flow periods, BMAs are essential for reducing the requirement to dredge and achieve the Basin Plan key target to maintain an ‘open Murray Mouth’, with adequate tidal variations to meet the needs of the Coorong ecosystem. BMAs need to also consider how releases can be utilised to reduce the growth and consolidation of the flood tidal delta (Bird Island) landward of the Murray Mouth.

9.3 Ecological

In 1985, the CLLMM region was designated as a ‘Wetland of International Importance’, commonly known as a ‘Ramsar wetland’. This designation recognises the site’s diverse range of wetland ecosystems, habitats and bird, fish and plant species, a number of which are threatened with extinction. The majority of objectives supported by relevant legislation (Table 8) aim to maintain or improve the ecological health of the CLLMM region. BMAs need to consider how operations can be undertaken to maximise ecological outcomes. Volumes, timing and duration should be undertaken to target critical periods for targeted ecological objectives. These include the migrating patterns, breeding and feeding cycles for targeted birds, fish and other fauna in the CLLMM region. Critical periods of vegetation lifecycles, such as for Ruppia, need to also be considered. Specific details for environmental watering requirements (EWRs) for ecological processes and values are detailed in the Long-term Environmental Watering Plan (LTEWP) for South Australia, which also considers the requirements of the Basin Wide Environmental Watering Strategy (MDBA, 2014b). Additional information on ecological metrics are also detailed in the Ecological Character Description (ECD) (Phillips and Muller, 2006). Development of South Australia’s River Murray Annual Operating Plans considers optimal timing of releases and volumes for ecological objectives (eg spring-summer releases for fish migration and attractant flows).
9.3.1 Ecological Character Description

The ECD is the most comprehensive summary of the CLLMM regions ecology and the critical processes and systems (CPS) that influence or effect its condition. BMAs targeting ecological objectives will consider the recommendations and information documented in the ECD. Consideration will also be given to the Limits of Acceptable change (LAC) provided in the ECD. The LACs are used to indicate whether a variation in the condition of an ecological parameter or measure is considered acceptable/unacceptable. If a parameter or measure moves outside the LAC, it is an indication that could lead to a reduction or loss of the values of the site, specifically a value for which the site was Ramsar listed (Figure 9). At the time of the development of BOS, the ECD was being reviewed and updated to reflect the current condition of ecological values in the CLLMM region. When the review is complete, the recommendations will be considered in the development of BMAs.

![Figure 9. The limits of acceptable change concept (Phillips and Muller, 2006).](image)

9.4 Social and economic

Maintaining and promoting a healthy CLLMM site supports the health of local communities and facilitates economic outcomes through eco-based tourism and commercial fisheries. Consideration of specific social and economic interests and objectives also need to be undertaken when determining BMAs. These include ensuring an adequate depth in the Lower Lakes for boat navigation and preventing flooding of infrastructure and property. Boat navigation requires water levels to be maintained above a minimum level required for safe navigation, which can be achieved when water levels are above +0.4 m AHD (assuming calm wind conditions). Preventing flooding requires BMAs that limit water levels to below where infrastructure and property can potentially be damaged. Depending on the River Murray flow and other constraints, it may not be possible to prevent water levels rising above these damaging levels.

To function properly, irrigation infrastructure surrounding the Lower Lakes, tributaries and Lower Murray Reclaimed Irrigation Areas (LMRIA) require local water levels to be maintained above +0.5 m AHD. A survey of LMRIA critical operating limits indicates that a minimum of +0.4 m AHD in Lake Alexandrina is required to ensure upstream (ie River Murray Channel in LMRIA) levels remain above the critical +0.5 m AHD (Mosely et al. 2017).
9.5 Barrage infrastructure

Opening and closing the barrages is the primary mechanism used to manage water levels in the Lower lakes. The effectiveness of BMAs are dependent on the duration, timing and frequency of flow events from upstream, as well as the configuration and location of barrage releases. Barrage releases can be split between different barrages to achieve one or more objectives, such as influencing Coorong salinity levels, Murray Mouth scouring or ecological objectives. The capabilities and functionality of the barrages are dependent on their individual locations and design. For example, some barrages have a combination of automatic and manual gates/bays and/or have limited ability to pass water at low Lake water levels. Some constraints to operating the barrages exist, particularly when the Coorong water level exceeds the water level in Lake Alexandrina. Generally the majority of barrages are closed during reverse flow events, often with the exception of Tauwitchere barrage to enable ongoing connectivity between the Coorong and Lower Lakes to assist with fish passage.

9.5.1 Design

Goolwa Barrage features 128 bays of which 120 are operated by stop logs (Figure 10), three are fishways and five are navigable pass bays. It is the deepest of the five barrages at approximately 5.5 m deep. At the Goolwa Barrage, a crane mounted on steel rails is used to remove or add stop logs as necessary. This can limit the speed at which changes to the barrages configuration is made, as such its design should be considered when determining a BMA.

Figure 10. Cross section of Goolwa Barrage gates.
Tauwitchere Barrage consists of 329 bays comprising 168 manual radial taintor gates, 21 automated radial taintor gates, 130 bays with stop logs and three fishways (Figure 11). Each gate has rubber seals that have direct contact with the base and sides of the bay wall. A small hand operated lock chamber was constructed on the Tauwitchere Barrage.

Ewe Island has 49 manual radial taintor gates, 12 automated radial taintor gates and 49 bays with stop logs. Both the Tauwitchere and Ewe Island Barrages have a base sill height of around -0.5 m to 0.0 m AHD. The automated radial gates can allow for remote and rapid operations, which should be taken into consideration for BMAs.

Figure 11. Cross section of Tauwitchere Barrage’s radial gate system.

Mundoo and Boundary Creek Barrages are the shortest of the five barrages. There are a total of 26 bays at the Mundoo Barrage consisting of 6 remotely operated vertical spindle gates, 19 stop log bays and one fishway. Boundary Creek has four bays containing stop logs, one fishway and one used for attractant flow for the fishway. These barrages have a base sill level of approximately -0.5 m to 0.0 m AHD.

9.6 South East Flows Restoration Project

The South East Flows Restoration Project (SEFRP) was implemented to provide the capability to deliver a median annual flow to the Coorong South Lagoon of 26.5 gigalitres (GL). This will be achieved by connecting additional parts of the existing South East Drainage Network to the Coorong via Salt Creek (Figure 12). The principle aim of the SEFRP is to deliver water to the Coorong South Lagoon for salinity management to support the ecological health of the Coorong (eg support the life-cycle of Ruppia tuberosa, native fish habitat and waterbird feeding and breeding). SEFRP Flows will be used to complement barrage releases.

SEFRP is currently in the construction phase with on-ground works scheduled for completion in June 2018. This phase involves the construction of 13 km of new channel, and the upgrade of 60 km of existing drains. The SEFRP Channel is designed to divert water from the Blackford Drain and existing drainage network to the Morella Basin and Tilley Swamp to supply the Coorong South Lagoon at its time of greatest need. Once implemented, the SEFRP will have the capability to deliver winter flows directly to the Coorong South Lagoon when required, and the flexibility to store water in the Tilley Swamp Watercourse for delayed release through Salt Creek to assist in salinity management during summer.

At the time of writing this report, an operations manual for the SEFRP is being drafted. The manual will allow operators to manage flows according to the immediate or forecast salinity and ecological requirements of the Coorong South Lagoon, such that volumes, timing and duration are considered under a number of operational scenarios.

The SEFRP Operations Manual will assist with integrating SEFRP operations with the Barrage Operating Strategy and will be reviewed as new knowledge emerges.
Figure 12. South East Flows Restoration Project alignment map.
10 BOS Review

The BOS is intended to be a ‘living’ document that will be regularly updated as new information and science becomes available that is relevant to optimising BMAs. It is important to differentiate between an operational versus a strategic review of the BOS. Operational reviews will focus on assessment of short-term effectiveness and efficiencies within the BOS. For example, improvements to the DMF will be incorporated following an operational review. Conversely, the objective of a strategic review of the BOS is to evaluate the overall performance of the BOS in meeting the BWLMP. Changes to the BOS based on this assessment are a basis for considering changes to the BWLMP during its review. Subject to funding, a CLLMM Management Action Database will be developed and utilised to capture information, which will greatly assist with future operations and management of the site.

Operating reviews are to be undertaken on an annual basis. Strategic reviews of the BOS are to be undertaken every three years, unless required earlier.
11 References

Muller, K.L., 2010, Target water level envelopes for the Lower Lakes derived from biological and ecological process indicators, including implications of compliance and non-compliance. Report prepared for the Department for Environment and Natural Resources, SA.
